JPS642121B2 - - Google Patents

Info

Publication number
JPS642121B2
JPS642121B2 JP13754880A JP13754880A JPS642121B2 JP S642121 B2 JPS642121 B2 JP S642121B2 JP 13754880 A JP13754880 A JP 13754880A JP 13754880 A JP13754880 A JP 13754880A JP S642121 B2 JPS642121 B2 JP S642121B2
Authority
JP
Japan
Prior art keywords
general formula
carbon atoms
catalyst
polymerization
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13754880A
Other languages
Japanese (ja)
Other versions
JPS5763308A (en
Inventor
Masahiko Kuramoto
Yasuhiro Takeshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP13754880A priority Critical patent/JPS5763308A/en
Publication of JPS5763308A publication Critical patent/JPS5763308A/en
Publication of JPS642121B2 publication Critical patent/JPS642121B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明はα―オレフむンの重合方法に関し、詳
しくは特定の掻性化チタン觊媒成分ず有機金属化
合物および有機酞゚ステル化合物よりなる觊媒を
甚いお炭玠数〜のα―オレフむンを重合し、
高床に立䜓芏則性をも぀ポリα―オレフむンを高
掻性で埗る方法に関する。 埓来から、マグネシりムずチタンを含有する固
䜓觊媒成分ず有機金属化合物からなる觊媒でα―
オレフむンを立䜓芏則的に重合する方法は知られ
おおり、䟋えば特公昭46―34098、特開昭52―
98076、特開昭53―2580に開瀺された方法などが
ある。 しかし、いずれの方法も䞀長䞀短があり、高掻
性、高立䜓芏則性、高嵩比重、ポリマヌの安定
性、觊媒の取扱いの容易性などの様々な芁望を満
たすものは未だ開発されおいない。特に、觊媒の
重合掻性ず生成ポリマヌの立䜓芏則性ずは逆の盞
関関係にあり、䞡者を同時に高く保぀こずは珟圚
たでのずころ非垞に困難であるずされおいる。 本発明者らは、䞊蚘埓来技術の欠点を克服し
お、重合掻性ず生成ポリマヌの立䜓芏則性の䞡方
を高床に維持し぀぀嵩比重の倧きいポリα―オレ
フむンを補造する方法を開発すべく鋭意研究を重
ねた。その結果、特別に凊理されたマグネシりム
化合物にチタン成分を担持したものを觊媒の䞀成
分ずしお甚いるこずによ぀お目的を達成しうるこ
ずを芋出し、本発明を完成するに至぀た。すなわ
ち本発明は、(A)䞀般匏MgOR12匏䞭、R1は炭
玠数〜のアルキル基を瀺す。で衚わされる
マグネシりムゞアルコキシドず塩化マグネシりム
ずを混合したものに、䞀般匏R3OH匏䞭、R3は
炭玠数〜10の盎鎖もしくは偎鎖を有するアルキ
ル基たたはシクロアルキル基を瀺す。で衚わさ
れるアルコヌルを反応させ、次に有機酞゚ステル
化合物を反応させ、さらに䞀般匏TiX1 4匏䞭、
X1はハロゲン原子を瀺す。で衚わされるテトラ
ハロゲン化チタンを反応させお埗られる固䜓生成
物、(B)䞀般匏AlR4 nX2 3-n匏䞭、R4は炭玠数〜
のアルキル基を瀺し、は〜の間の実数で
あり、X2はハロゲン原子を瀺す。で衚わされる
有機アルミニりム化合物および(C)有機酞゚ステル
化合物を成分ずする觊媒を甚いお炭玠数〜の
α―オレフむンを重合するこずを特城ずするα―
オレフむンの重合方法を提䟛するものである。 本発明の方法においおは、䞀般匏MgOR12で
衚わされるマグネシりムゞアルコキシドを甚い
る。ここでR1は前述した劂く炭玠数〜のア
ルキル基を瀺す。具䜓的にはマグネシりムゞメト
キシド、マグネシりムゞ゚トキシド、マグネシり
ムゞプロポキシド、マグネシりムゞブトキシドな
どを挙げるこずができる。たた、これらのマグネ
シりムゞアルコキシドは垂販のものを䜿甚するこ
ずができるが、金属マグネシりムずアルコヌルの
反応により補造したものを甚いおもよい。 本発明の方法で甚いる塩化マグネシりムは無氎
塩を甚いおもよいが、アルコヌルは付加物を甚い
た方が奜たしい。このようなアルコヌル付加物ず
しおは、䞀般匏MgCl2・nR2OHで瀺されるもの
であり、匏䞭のR2は炭玠数〜のアルキル基、
は0.1〜10を瀺すものが甚いられる。具䜓的に
は、MgCl2・6C2H5OH等があげられる。 䞊述のマグネシりムゞアルコキシドず塩化マグ
ネシりムのアルコヌル付加物ずを混合するに際し
おは、奜たしくは前者埌者〜〜
モル比の割合で混合しお、枛圧䞋で100〜200
℃に加熱しお〜10時間皋床凊理する。この熱凊
理にあた぀おは、系内に極く少量䞊蚘混合物
あたりml皋床のアルコヌルを加えるこずも
できる。ここで加えるアルコヌルは埌に行なうア
ルコヌル凊理の際に加えるアルコヌルず同皮のも
のであ぀おもよく、たた異なる皮類のものであ぀
おもよい。 本発明の方法では、䞊蚘したマグネシりムゞア
ルコキシドず塩化マグネシりムの混合物を粉砕
し、埗られた粉砕物に、䞀般匏R3OHで衚わされ
るアルコヌルを反応させおアルコヌル凊理を行な
う。ここでR3は前述した劂く、炭玠数〜10の
盎鎖もしくは偎鎖を有するアルキル基たたはシク
ロアルキル基を瀺す。このアルコヌルの奜適なも
のずしおは、炭玠数〜10の第第あるいは
第アルコヌルがあげられ、より具䜓的にはメタ
ノヌル、゚タノヌル、プロパノヌル、む゜プロパ
ノヌル、ブタノヌル、む゜ブタノヌル、アミルア
ルコヌル、オクタノヌル等をあげるこずができ
る。 アルコヌル凊理に際しお䜿甚する䞊蚘アルコヌ
ルの量は、特に制限はなく各皮条件に応じお適宜
遞定すればよいが、通垞は䞊蚘した粉砕物䞭のマ
グネシりムモルに察しお0.01〜10モル、奜たし
くは0.1〜モルずすべきである。たたこのアル
コヌル凊理の枩床ならびに時間等は適宜定めれば
よいが、䞀般には〜200℃の範囲で分〜時
間、奜たしくは20〜100℃にお20分〜時間ずす
べきである。 さらに本発明においおはアルコヌル凊理を行な
぀た埌、埗られた生成物に有機酞゚ステル化合物
を反応させ、さらに䞀般匏TiX1 4匏䞭、X1はハ
ロゲン原子を瀺す。で衚わされるテトラハロゲ
ン化チタンを反応させるこずが必芁である。 ここで甚いる有機酞゚ステル化合物ずしおは䟋
えばギ酞メチル、酢酞メチル、酢酞゚チル、酢酞
ビニル、酢酞プロピル、酢酞オクチル、酢酞シク
ロヘキシル、プロピオン酞゚チル、酪酞メチル、
吉草酞゚チル、クロル酢酞メチル、ゞクロル酢酞
゚チル、メタクリル酞メチル、クロトン酞゚チ
ル、ピバリン酞゚チル、マレむン酞ゞメチル、シ
クロヘキサンカルボン酞゚チル、安息銙酞メチ
ル、安臭銙酞゚チル、安息銙酞プロピル、安息銙
酞ブチル、安息銙酞オクチル、安息銙酞シクロヘ
キシル、安息銙酞プニル、安息銙酞ベンゞル、
トルむル酞メチル、トルむル酞゚チル、トルむル
酞アミル、゚チル安息銙酞゚チル、アニス酞メチ
ル、アニス酞゚チル、゚トキシ安息銙酞゚チル、
―ブトキシ安息銙酞゚チル、―クロル安息銙
酞゚チル、ナフト゚酞゚チル、γ―ブチロラクト
ン、Ύ―バレロラクトン、クマリン、フタリド、
炭酞゚チレンなどの炭玠数〜18の゚ステル類な
どが挙げられる。ずりわけ、芳銙族カルボン酞の
アルキル゚ステル、䟋えば安息銙酞、―メトキ
シ安息銙酞、―゚トキシ安息銙酞、トルむル酞
の劂き芳銙族カルボン酞の炭玠数〜のアルキ
ル゚ステルが奜たしい。 たた、テトラハロゲン化チタンは、䞀般匏
TiX1 4で衚わされるものであり、ここでX1はハロ
ゲン原子を瀺す。具䜓的にはTiCl4TiBr4
TiI4などがあげられる。これらは単独でも混合物
ずしお甚いおもよい。これらのうち特に四塩化チ
タンTiCl4を甚いるのが奜たしい。これらの
反応における条件は、特に制限はなく各皮条件等
に応じお適宜遞定すればよいが、たずアルコヌル
凊理しお埗られた生成物に有機酞゚ステル化合物
を、該生成物䞭のマグネシりムモルに察しお
0.01〜モル、奜たしくは0.1〜モル皋床加え
お、通垞は〜200℃にお分〜時間、奜たし
くは20〜120℃にお20分〜時間反応させる。続
いおこの反応系にテトラハロゲン化チタンを生成
物䞭のマグネシりムモルに察しお0.5〜100モ
ル、奜たしくは〜50モルの範囲で加え、20〜
200℃にお30分〜10時間、奜たしくは50〜150℃に
お〜時間反応させる。なおここたでの反応に
おいお、必芁に応じお―ヘプタン等の䞍掻性溶
媒を甚いるこずも可胜である。 反応終了埌、埗られる固䜓生成物を―ヘプタ
ン等の䞍掻性溶媒で充分に掗浄する。ここで反応
埌、液のみを陀去し、さらに䞊述したテトラハロ
ゲン化チタンの添加および反応を繰り返せば、固
䜓生成物の觊媒ずしおの性胜が向䞊するので奜た
しい。 本発明ではこのようにしお埗られた固䜓生成物
を、α―オレフむンの重合觊媒の(A)成分固䜓觊
媒成分ずしお甚いる。 本発明によれば、䞊蚘の固䜓生成物を(A)成分ず
し、たた有機アルミニりム化合物を(B)成分ずし、
さらに有機酞゚ステル化合物を(C)成分ずした、
(A)(B)(C)の䞉成分よりなる觊媒を甚いおα―オ
レフむンの重合を行なう。 α―オレフむンの重合にあた぀おは、反応系に
(A)成分である前蚘の固䜓生成物の分散液、(B)成分
である有機酞゚ステル化合物および(C)成分である
有機酞゚ステル化合物を加え、次いでこの系にα
―オレフむンを導入する。 重合方法ならびに条件等は特に制限はなく、溶
液重合、懞濁重合、気盞重合等のいずれも可胜で
あり、たた連続重合、非連続重合のどちらも可胜
である。觊媒成分の添加量は、溶液重合あるいは
懞濁重合の堎合を䟋にずれば、(A)成分をチタン原
子に換算しお0.001〜1.0ミリモルずし、(B)成
分を(A)成分䞭のチタン原子に察しお〜1000モ
ル比、奜たしくは〜500モル比ずする。た
た(C)成分の添加量は(A)成分䞭のチタン原子に察し
お0.01〜100モル比、奜たしくは0.1〜50モル
比ずすべきである。たた反応系のα―オレフむ
ン圧は垞圧〜50Kgcm2が奜たしく、反応枩床は30
〜200℃、奜たしくは50〜150℃ずする。重合に際
しおの分子量調節は公知の手段、䟋えば氎玠等に
より行なうこずができる。なお反応時間は10分〜
10時間、奜たしくは30分〜時間の間で適宜遞定
すればよい。 本発明の方法においお甚いる觊媒の(B)成分は、
前蚘した劂く䞀般匏AlR4 nX2 3-nで衚わされる有
機アルミニりム化合物である。ここでR4は炭玠
数〜のアルキル基を瀺し、は〜の間の
実数であり、X2は塩玠、臭玠などのハロゲン原
子を瀺す。具䜓的にはトリメチルアルミニりム、
トリ゚チルアルミニりム、トリむ゜プロピルアル
ミニりム、トリむ゜ブチルアルミニりム等のトリ
アルキルアルミニりム化合物およびゞ゚チルアル
ミニりムモノクロリド、ゞむ゜プロピルアルミニ
りムモノクロリド、ゞむ゜ブチルアルミニりムモ
ノクロリド等のゞアルキルアルミニりムモノハラ
むドが奜適であり、たたこれらの、混合物も奜適
なものずしおあげられる。 たた本発明の方法においお甚いる觊媒の(C)成分
である有機酞゚ステル化合物は、前述した觊媒の
(A)成分の調補の際に甚いたものず同様のものを䜿
甚するこずができる。さらにこの堎合、(C)成分ず
しおの有機酞゚ステル化合物は、觊媒の(A)成分の
調補の際に甚いたものず党く同䞀の化合物であ぀
おもよく、異なるものであ぀おもよい。 本発明の方法では叙䞊の劂き觊媒を甚いお炭玠
数〜のα―オレフむンを重合する。このよう
なα―オレフむンは䞀般匏R5―CHCH2匏䞭、
R5は炭玠数〜のアルキル基を瀺す。で衚わ
されるもの、プロピレン、ブテン―、ヘキセン
―、オクテン―等の盎鎖モノオレフむン類を
はじめ、―メチル―ペンテン―等の分岐モノ
オレフむン類、ブタゞ゚ン等のゞ゚ン類その他各
皮のものがあげられ、本発明は、これらの単独重
合、あるいは各皮α―オレフむン盞互の共重合に
有効に利甚できる。 本発明の方法によれば、甚いる觊媒の掻性が極
めお高く、しかも埗られるポリマヌの立䜓芏則性
が倧きいため極めお補品䟡倀の高いものである。 埓぀お本発明の方法は高掻性重合であるず共に
立䜓芏則性の倧きいポリマヌが埗られるものであ
るため、觊媒の陀去工皋や非晶性ポリマヌの抜出
工皋を簡略化あるいは省略するこずが可胜であ
り、非垞に効率のよい重合を行なうこずができ
る。 次に本発明の実斜䟋を瀺す。なお以䞋の実斜䟋
における操䜜はすべおアルゎン気流䞋にお行な぀
た。たた実斜䟋においお求めた觊媒掻性およびア
む゜タクチツク収率I.Y.は次のように定矩し
た。 觊媒掻性70℃、時間、プロピレン分圧
Kgcm2の条件の重合でチタン原子あた
りに生成した党ポリマヌの重量Kg。 I.Y.沞隰―ヘプタンに䞍溶なポリマヌの
重量党生成ポリマヌの重量×100 実斜䟋  (1) 固䜓觊媒の補造 〔觊媒担䜓ClMgORの補造〕 ボヌルミルで粉砕した平均粒埄10ΌのMg
OC2H5210.491ミリモルず過剰の゚タノ
ヌルにMgCl2を溶解し゚タノヌルを留去しお補造
したMgCl2・6C2H5OHを33.791ミリモル
分取しお䞡者を混合した。これに少量玄40ml
の゚タノヌルを加えお混緎しフラスコに移しお
160℃で時間枛圧䞋に熱凊理し、埗られた固䜓
を粉砕しお觊媒担䜓ずした。 〔チタン担持觊媒の補造〕 200mlフラスコにヘプタン100mlおよび前蚘担䜓
Mgずしお19ミリモルを加えおかきたぜ
懞濁させた。この懞濁液に゚タノヌルを0.18
3.8ミリモル加え、80℃で時間反応させた。
次に安息銙酞゚チル゚ステルを0.573.8ミリ
モル加え80℃で時間反応を行な぀た埌、四塩
化チタン36190ミリモルを80℃で時間内
に滎䞋し、さらに還流䞋で時間反応を行な぀
た。反応終了埌、傟瀉法より䞊柄液を陀去し、ヘ
プタン150mlを加えお掗浄した。掗浄液ヘプタン
䞭に塩玠むオンが怜出されなくなるたでこの操䜜
を繰り返した。比色法により求めた担持量は20mg
―Ti―担䜓であ぀た。 (2) プロピレンの重合 也燥したのステンレス補オヌトクレヌブに
ヘプタン400mlを加えた。これにトリ゚チルアル
ミニりムミリモル、パラトルむル酞メチル0.5
ミリモル、ゞ゚チルアルミニりムクロリドミリ
モルおよび前蚘固䜓觊媒をTiずしお0.02ミリモル
加え、70℃に昇枩した。氎玠を0.2Kgcm2加え、
プロピレン分圧をKgcm2ずし連続的にプロピレ
ンを導入するこずにより党圧を䞀定に保぀お70℃
で時間重合を行な぀た。重合反応終了埌、70℃
にお濟過し、䞍溶性ポリマヌを分離した。さら
に、濟過した重合溶媒を蒞発也固しお可溶性ポリ
マヌを回収した。䞍溶性ポリマヌは沞隰―ヘプ
タンで時間凊理しおアタクチツクポリマヌ抜出
分離した。 党ポリマヌ収量は93.0であり、觊媒掻性は97
Kg―Ti、アむ゜タクテむツク収率I.Y.は
82.1であ぀た。 実斜䟋 〜 実斜䟋ず同様に補造した担䜓を䜿甚し、チタ
ン觊媒の補造においおアルコヌルの皮類ならびに
量を倉化させたこず以倖は実斜䟋ず同様に觊媒
を補造した。 たた、これらの觊媒を甚いお実斜䟋ず同䞀条
件でプロピレンの重合を行な぀た。結果を第衚
に瀺す。
The present invention relates to a method for polymerizing α-olefin, in particular, polymerizing α-olefin having 3 to 8 carbon atoms using a specific activated titanium catalyst component, an organometallic compound, and an organic acid ester compound,
This invention relates to a method for obtaining highly stereoregular poly-α-olefins with high activity. Conventionally, α-
Methods for stereoregularly polymerizing olefins are known, for example, Japanese Patent Publication No. 1983-34098;
98076, and the method disclosed in Japanese Unexamined Patent Publication No. 53-2580. However, each method has advantages and disadvantages, and no method has yet been developed that satisfies various demands such as high activity, high stereoregularity, high bulk specific gravity, stability of the polymer, and ease of handling of the catalyst. In particular, there is an inverse correlation between the polymerization activity of the catalyst and the stereoregularity of the resulting polymer, and it has so far been extremely difficult to simultaneously maintain both of them at high levels. The present inventors have worked diligently to overcome the drawbacks of the above-mentioned conventional techniques and to develop a method for producing polyα-olefins with high bulk specific gravity while maintaining a high degree of both polymerization activity and stereoregularity of the resulting polymer. I did a lot of research. As a result, they discovered that the object could be achieved by using a specially treated magnesium compound with a titanium component supported thereon as a component of the catalyst, leading to the completion of the present invention. That is, the present invention provides (A) a compound having the general formula Mg(OR 1 ) 2 [wherein R 1 represents an alkyl group having 1 to 5 carbon atoms]. ] to a mixture of magnesium dialkoxide and magnesium chloride, a mixture of the general formula R 3 OH [wherein R 3 represents an alkyl group or cycloalkyl group having a straight chain or side chain having 1 to 10 carbon atoms] . ], then an organic acid ester compound is reacted, and further the general formula TiX 1 4 [in the formula,
X 1 represents a halogen atom. A solid product obtained by reacting titanium tetrahalide represented by (B) general formula AlR 4 n X 2 3-n [wherein R 4 is a carbon number of 1 to
5 alkyl group, m is a real number between 2 and 3, and X 2 represents a halogen atom. ] An α-olefin having 3 to 8 carbon atoms is polymerized using a catalyst containing an organoaluminum compound represented by the formula (C) and an organic acid ester compound (C).
A method for polymerizing olefins is provided. In the method of the present invention, a magnesium dialkoxide represented by the general formula Mg(OR 1 ) 2 is used. Here, R 1 represents an alkyl group having 1 to 5 carbon atoms as described above. Specific examples include magnesium dimethoxide, magnesium diethoxide, magnesium dipropoxide, and magnesium dibutoxide. Moreover, although commercially available magnesium dialkoxides can be used, those produced by the reaction of metallic magnesium and alcohol may also be used. The magnesium chloride used in the method of the present invention may be an anhydrous salt, but it is preferable to use an adduct of the alcohol. Such alcohol adducts are represented by the general formula MgCl 2 ·nR 2 OH, where R 2 is an alkyl group having 1 to 5 carbon atoms,
n is 0.1 to 10. Specifically, MgCl 2 .6C 2 H 5 OH and the like can be mentioned. When mixing the above-mentioned magnesium dialkoxide and the alcohol adduct of magnesium chloride, preferably the former: the latter = 1 to 4: 4 to 1
(molar ratio) of 100 to 200 under reduced pressure.
Heat to ℃ and process for about 3 to 10 hours. During this heat treatment, a very small amount (above mixture 1) should be added to the system.
You can also add about 1 ml of alcohol per gram. The alcohol added here may be of the same type as the alcohol added during the alcohol treatment to be performed later, or may be of a different type. In the method of the present invention, the above-described mixture of magnesium dialkoxide and magnesium chloride is pulverized, and the resulting pulverized product is subjected to an alcohol treatment by reacting with an alcohol represented by the general formula R 3 OH. Here, R 3 represents an alkyl group or a cycloalkyl group having a straight chain or side chain having 1 to 10 carbon atoms, as described above. Suitable alcohols include primary, secondary or tertiary alcohols having 1 to 10 carbon atoms, more specifically methanol, ethanol, propanol, isopropanol, butanol, isobutanol, amyl alcohol, octanol. etc. can be given. The amount of the alcohol used in the alcohol treatment is not particularly limited and may be selected appropriately depending on various conditions, but it is usually 0.01 to 10 mol, preferably 0.1 to 10 mol, per 1 mol of magnesium in the above-mentioned pulverized material. It should be 5 moles. In addition, the temperature and time of this alcohol treatment may be determined as appropriate, but generally it should be in the range of 0 to 200°C for 5 minutes to 5 hours, preferably 20 to 100°C for 20 minutes to 3 hours. . Furthermore, in the present invention, after performing an alcohol treatment, the obtained product is reacted with an organic acid ester compound, and further a compound of the general formula TiX 1 4 [wherein X 1 represents a halogen atom] is formed. ] It is necessary to react titanium tetrahalide represented by: Examples of organic acid ester compounds used here include methyl formate, methyl acetate, ethyl acetate, vinyl acetate, propyl acetate, octyl acetate, cyclohexyl acetate, ethyl propionate, methyl butyrate,
Ethyl valerate, methyl chloroacetate, ethyl dichloroacetate, methyl methacrylate, ethyl crotonate, ethyl pivalate, dimethyl maleate, ethyl cyclohexanecarboxylate, methyl benzoate, ethyl benzoate, propyl benzoate, butyl benzoate , octyl benzoate, cyclohexyl benzoate, phenyl benzoate, benzyl benzoate,
Methyl toluate, ethyl toluate, amyl toluate, ethyl ethylbenzoate, methyl anisate, ethyl anisate, ethyl ethoxybenzoate,
Ethyl p-butoxybenzoate, ethyl o-chlorobenzoate, ethyl naphthoate, γ-butyrolactone, Ύ-valerolactone, coumarin, phthalide,
Examples include esters having 2 to 18 carbon atoms such as ethylene carbonate. Particularly preferred are alkyl esters of aromatic carboxylic acids, such as alkyl esters of aromatic carboxylic acids having 1 to 4 carbon atoms, such as benzoic acid, p-methoxybenzoic acid, p-ethoxybenzoic acid, and toluic acid. In addition, titanium tetrahalide has the general formula
It is represented by TiX 1 4 , where X 1 represents a halogen atom. Specifically, TiCl 4 , TiBr 4 ,
Examples include TiI 4 . These may be used alone or as a mixture. Among these, it is particularly preferable to use titanium tetrachloride (TiCl 4 ). The conditions for these reactions are not particularly limited and may be selected appropriately depending on various conditions, etc., but first, an organic acid ester compound is added to the product obtained by alcohol treatment to 1 mole of magnesium in the product. for
About 0.01 to 5 mol, preferably 0.1 to 1 mol, is added, and the reaction is usually carried out at 0 to 200°C for 5 minutes to 5 hours, preferably at 20 to 120°C for 20 minutes to 3 hours. Next, titanium tetrahalide is added to this reaction system in an amount of 0.5 to 100 mol, preferably 1 to 50 mol, per 1 mol of magnesium in the product.
The reaction is carried out at 200°C for 30 minutes to 10 hours, preferably at 50 to 150°C for 1 to 5 hours. In the reactions up to this point, it is also possible to use an inert solvent such as n-heptane, if necessary. After the reaction is completed, the solid product obtained is thoroughly washed with an inert solvent such as n-heptane. After the reaction, it is preferable to remove only the liquid and repeat the above-described addition of titanium tetrahalide and the reaction, since this improves the performance of the solid product as a catalyst. In the present invention, the solid product thus obtained is used as component (A) (solid catalyst component) of an α-olefin polymerization catalyst. According to the present invention, the above solid product is the component (A), and the organoaluminum compound is the component (B),
Furthermore, an organic acid ester compound was used as the (C) component,
α-olefin is polymerized using a catalyst consisting of three components (A), (B), and (C). When polymerizing α-olefin, the reaction system
A dispersion of the solid product as component (A), an organic acid ester compound as component (B), and an organic acid ester compound as component (C) are added, and then α
- Introducing olefin. The polymerization method and conditions are not particularly limited, and any of solution polymerization, suspension polymerization, gas phase polymerization, etc. is possible, and both continuous polymerization and discontinuous polymerization are possible. For example, in the case of solution polymerization or suspension polymerization, the amount of the catalyst component added is 0.001 to 1.0 mmol per titanium atom for component (A), and the amount of component (B) is 0.001 to 1.0 mmol per titanium atom. The amount is 1 to 1000 (molar ratio), preferably 5 to 500 (molar ratio) to titanium atoms. The amount of component (C) added should be 0.01 to 100 (mole ratio), preferably 0.1 to 50 (mole ratio), relative to the titanium atoms in component (A). The α-olefin pressure in the reaction system is preferably normal pressure to 50 kg/cm 2 , and the reaction temperature is 30 kg/cm 2 .
~200°C, preferably 50~150°C. Molecular weight adjustment during polymerization can be carried out by known means, such as hydrogen. The reaction time is 10 minutes ~
The time period may be appropriately selected from 10 hours, preferably from 30 minutes to 5 hours. Component (B) of the catalyst used in the method of the present invention is:
As mentioned above, it is an organoaluminum compound represented by the general formula AlR 4 n X 2 3-n . Here, R 4 represents an alkyl group having 1 to 5 carbon atoms, m is a real number between 2 and 3, and X 2 represents a halogen atom such as chlorine or bromine. Specifically, trimethylaluminum,
Trialkylaluminum compounds such as triethylaluminum, triisopropylaluminium, and triisobutylaluminum, and dialkylaluminum monohalides such as diethylaluminum monochloride, diisopropylaluminum monochloride, and diisobutylaluminum monochloride are preferred, and mixtures thereof are also preferred. It can be given as a thing. Furthermore, the organic acid ester compound which is the component (C) of the catalyst used in the method of the present invention is
The same material as used in the preparation of component (A) can be used. Furthermore, in this case, the organic acid ester compound as component (C) may be exactly the same compound as that used in the preparation of component (A) of the catalyst, or may be a different compound. In the method of the present invention, an α-olefin having 3 to 8 carbon atoms is polymerized using the catalyst described above. Such α-olefin has the general formula R 5 —CH=CH 2 (wherein,
R 5 represents an alkyl group having 1 to 6 carbon atoms. ), linear monoolefins such as propylene, butene-1, hexene-1, octene-1, branched monoolefins such as 4-methyl-pentene-1, dienes such as butadiene, and various others. The present invention can be effectively used for homopolymerization of these or copolymerization of various α-olefins. According to the method of the present invention, the activity of the catalyst used is extremely high, and the resulting polymer has great stereoregularity, resulting in extremely high product value. Therefore, since the method of the present invention is a method of highly active polymerization and a polymer with large stereoregularity is obtained, it is possible to simplify or omit the catalyst removal step and the amorphous polymer extraction step. , very efficient polymerization can be carried out. Next, examples of the present invention will be shown. Note that all operations in the following examples were performed under an argon stream. Further, the catalytic activity and isotactic yield (IY) determined in the examples were defined as follows. Catalyst activity: 70℃, 2 hours, propylene partial pressure 7
Weight (Kg) of total polymer produced per 1g of titanium atom during polymerization under conditions of Kg/ cm2 . IY = Weight of polymer insoluble in boiling n-heptane/Weight of total polymer produced x 100 (%) Example 1 (1) Production of solid catalyst [Production of catalyst support (ClMgOR)] Average particle diameter of 10Ό pulverized with a ball mill of Mg
(OC 2 H 5 ) 2 10.4 g (91 mmol) and 33.7 g (91 mmol) of MgCl 2 6C 2 H 5 OH, which was produced by dissolving MgCl 2 in excess ethanol and distilling off the ethanol.
They were separated and both were mixed. Add a small amount (about 40ml)
Add ethanol, mix, and transfer to a flask.
The mixture was heat-treated at 160° C. for 4 hours under reduced pressure, and the resulting solid was pulverized to form a catalyst carrier. [Production of titanium-supported catalyst] 100 ml of heptane and 2 g of the above-mentioned support (19 mmol as Mg) were added to a 200 ml flask and stirred to suspend. Add 0.18g of ethanol to this suspension.
(3.8 mmol) and reacted at 80°C for 1 hour.
Next, 0.57 g (3.8 mmol) of benzoic acid ethyl ester was added and the reaction was carried out at 80°C for 1 hour, and then 36 g (190 mmol) of titanium tetrachloride was added dropwise at 80°C within 1 hour, and then refluxed for 3 hours. A time reaction was performed. After the reaction was completed, the supernatant liquid was removed by decanting, and 150 ml of heptane was added for washing. This operation was repeated until no chloride ions were detected in the heptane cleaning solution. The supported amount determined by colorimetric method is 20 mg.
-Ti/g- It was a carrier. (2) Polymerization of propylene 400 ml of heptane was added to the dry stainless steel autoclave in step 1. Add to this 2 mmol of triethylaluminum and 0.5 methyl paratoluate.
2 mmol of diethylaluminum chloride and 0.02 mmol of the solid catalyst as Ti were added, and the temperature was raised to 70°C. Add 0.2Kg/ cm2 of hydrogen,
By setting the propylene partial pressure to 7Kg/ cm2 and continuously introducing propylene, the total pressure is kept constant at 70℃.
Polymerization was carried out for 2 hours. After the polymerization reaction, 70℃
The insoluble polymer was separated by filtration. Furthermore, the filtered polymerization solvent was evaporated to dryness to recover the soluble polymer. The insoluble polymer was treated with boiling n-heptane for 6 hours to extract and separate the atactic polymer. The total polymer yield was 93.0 g and the catalyst activity was 97
Kg/g-Ti, isotactic yield (IY) is
It was 82.1%. Examples 2 to 9 Catalysts were produced in the same manner as in Example 1, except that the carrier produced in the same manner as in Example 1 was used and the type and amount of alcohol were changed in the production of the titanium catalyst. Further, propylene was polymerized using these catalysts under the same conditions as in Example 1. The results are shown in Table 1.

【衚】 実斜䟋 10 (1) 固䜓觊媒の補造 500mlフラスコにヘプタン200mlおよび実斜䟋
ず同様に補造した担䜓10Mgずしお95ミリモ
ルを加え、かきたぜお懞濁液ずした。この懞濁
液にノルマルブタノヌルを1.824ミリモル
加え、還流䞋に時間反応を行な぀た埌、四塩化
チタン180950ミリモルを時間内に滎䞋
し、さらに還流䞋で時間反応を行な぀た。反応
終了埌、䞊柄液を傟瀉法により陀去し、ヘプタン
200mlを加えお掗浄した。この操䜜を掗浄液ヘプ
タン䞭に塩玠むオンが怜出されなくなるたで繰り
返した。比色法により求めた担持量は34mg―
Ti―担䜓であ぀た。 (2) プロピレンの重合 実斜䟋の方法においお、パラトルむル酞メチ
ルの量を0.5ミリモルにしたこず以倖は実斜䟋
の方法ず同䞀条件でプロピレンの重合を行な぀
た。結果を第衚に瀺す。 実斜䟋 11〜15 (1) 固䜓觊媒の補造 ノルマルブタノヌルの量および安息銙酞゚チル
の量を倉化させたこず以倖は実斜䟋10ず同様にし
お觊媒を補造した。 (2) プロピレンの重合 䞊蚘(1)で補造した觊媒を䜿甚し、他は実斜䟋10
ず同䞀条件でプロピレンの重合を行な぀た。結果
を第衚に瀺す。
[Table] Example 10 (1) Production of solid catalyst 200 ml of heptane in a 500 ml flask and Example 1
10 g (95 mmol as Mg) of the carrier prepared in the same manner as above was added and stirred to form a suspension. Add 1.8 g (24 mmol) of normal butanol to this suspension.
After the reaction was carried out for 1 hour under reflux, 180 g (950 mmol) of titanium tetrachloride was added dropwise within 1 hour, and the reaction was further carried out for 3 hours under reflux. After the reaction, the supernatant liquid was removed by decanting, and heptane was added.
200ml was added for washing. This operation was repeated until no chlorine ions were detected in the heptane cleaning solution. The supported amount determined by colorimetric method is 34 mg.
It was a Ti/g-carrier. (2) Polymerization of propylene Example 1 according to the method of Example 1 except that the amount of methyl paratoluate was changed to 0.5 mmol.
Polymerization of propylene was carried out under the same conditions as the method described above. The results are shown in Table 2. Examples 11 to 15 (1) Production of solid catalyst Catalysts were produced in the same manner as in Example 10, except that the amount of n-butanol and the amount of ethyl benzoate were changed. (2) Polymerization of propylene The catalyst prepared in (1) above was used, and the rest were as in Example 10.
Polymerization of propylene was carried out under the same conditions. The results are shown in Table 2.

【衚】 実斜䟋 16 (1) 固䜓觊媒の補造 実斜䟋10で補造した固䜓觊媒ヘプタンスラリヌ
に宀枩で四塩化チタン180を滎䞋し、昇枩埌還
流䞋で時間反応を行な぀た。以䞋、ヘプタンで
実斜䟋10ず同様な掗浄を行ない、比色法による担
持量31mg―Ti―担䜓の固䜓觊媒を埗た。 (2) プロピレンの重合 実斜䟋の方法においお、パラトルむル酞メチ
ルの量を0.7ミリモルにしたこず以倖は実斜䟋
の方法ず同䞀条件でプロピレンの重合を行な぀
た。觊媒掻性は136Kg―Ti、I.Y.は92.4、
A.D.は0.31であ぀た。 実斜䟋 17 (1) 固䜓觊媒の補造 実斜䟋14で補造した固䜓觊媒ヘプタンスラリヌ
に宀枩で四塩化チタン180を滎䞋し、昇枩埌還
流䞋で時間反応させた。以䞋、ヘプタンで実斜
䟋10ず同様な掗浄を行ない、比色法による担持量
34mg―Ti―担䜓の固䜓觊媒を埗た。 (2) プロピレンの重合 実斜䟋の方法においお、パラトルむル酞メチ
ルの量を0.7ミリモルにしたこず以倖は実斜䟋
の方法ず同䞀条件でプロピレンの重合を行な぀
た。觊媒掻性は164Kg―Ti、I.Y.は91.5、
A.D.は0.37であ぀た。
[Table] Example 16 (1) Production of solid catalyst 180 g of titanium tetrachloride was added dropwise to the solid catalyst heptane slurry produced in Example 10 at room temperature, and after raising the temperature, the reaction was carried out under reflux for 3 hours. Thereafter, washing was carried out with heptane in the same manner as in Example 10, and a solid catalyst having a supported amount of 31 mg-Ti/g-carrier was obtained by colorimetric method. (2) Polymerization of propylene Example 1 according to the method of Example 1 except that the amount of methyl paratoluate was changed to 0.7 mmol.
Polymerization of propylene was carried out under the same conditions as the method described above. Catalytic activity is 136Kg/g-Ti, IY is 92.4%,
AD was 0.31. Example 17 (1) Production of solid catalyst 180 g of titanium tetrachloride was added dropwise to the solid catalyst heptane slurry produced in Example 14 at room temperature, and after raising the temperature, the mixture was reacted under reflux for 3 hours. Hereinafter, the same washing as in Example 10 was carried out with heptane, and the amount of support was determined by colorimetric method.
A solid catalyst of 34 mg-Ti/g-support was obtained. (2) Polymerization of propylene Example 1 according to the method of Example 1 except that the amount of methyl paratoluate was changed to 0.7 mmol.
Polymerization of propylene was carried out under the same conditions as the method described above. Catalytic activity is 164Kg/g-Ti, IY is 91.5%,
AD was 0.37.

【図面の簡単な説明】[Brief explanation of drawings]

第図は本発明の方法で甚いる觊媒の調補工皋
を衚わした図面である。
FIG. 1 is a drawing showing the steps for preparing a catalyst used in the method of the present invention.

Claims (1)

【特蚱請求の範囲】  (A)䞀般匏MgOR12匏䞭、R1は炭玠数〜
のアルキル基を瀺す。で衚わされるマグネシ
りムゞアルコキシドず塩化マグネシりムずを混合
したものに、䞀般匏R3OH匏䞭、R3は炭玠数
〜10の盎鎖もしくは偎鎖を有するアルキル基たた
はシクロアルキル基を瀺す。で衚わされるアル
コヌルを反応させ、次に有機酞゚ステル化合物を
反応させ、さらに䞀般匏TiX1 4匏䞭、X1はハロ
ゲン原子を瀺す。で衚わされるテトラハロゲン
化チタンを反応させお埗られる固䜓生成物、(B)侀
般匏AlR4 nX2 3-n匏䞭、R4は炭玠数〜のアル
キル基を瀺し、は〜の間の実数であり、
X2はハロゲン原子を瀺す。で衚わされる有機ア
ルミニりム化合物および(C)有機酞゚ステル化合物
を成分ずする觊媒を甚いお炭玠数〜のα―オ
レフむンを重合するこずを特城ずするα―オレフ
むンの重合方法。  炭玠数〜のα―オレフむンが䞀般匏R5
―CHCH2匏䞭、R5は炭玠数〜のアルキ
ル基を瀺す。で衚わされるものである特蚱請求
の範囲第項蚘茉の方法。
[Claims] 1 (A) General formula Mg(OR 1 ) 2 [wherein R 1 is a carbon number of 1 to
5 shows the alkyl group. ] A mixture of magnesium dialkoxide and magnesium chloride is added with the general formula R 3 OH [where R 3 is
Indicates an alkyl or cycloalkyl group having ~10 straight or side chains. ] is reacted, and then an organic acid ester compound is reacted, and further the general formula TiX 1 4 [wherein X 1 represents a halogen atom] is reacted. A solid product obtained by reacting titanium tetrahalide represented by (B) general formula AlR 4 n X 2 3-n [wherein R 4 represents an alkyl group having 1 to 5 carbon atoms, m is a real number between 2 and 3,
X 2 represents a halogen atom. A method for polymerizing an α-olefin, which comprises polymerizing an α-olefin having 3 to 8 carbon atoms using a catalyst containing an organoaluminum compound represented by the formula (C) and an organic acid ester compound (C). 2 α-olefin having 3 to 8 carbon atoms has the general formula R 5
—CH=CH 2 [In the formula, R 5 represents an alkyl group having 1 to 6 carbon atoms. ] The method according to claim 1, wherein the method is represented by:
JP13754880A 1980-10-03 1980-10-03 Polymerization of alpha-olefin Granted JPS5763308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13754880A JPS5763308A (en) 1980-10-03 1980-10-03 Polymerization of alpha-olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13754880A JPS5763308A (en) 1980-10-03 1980-10-03 Polymerization of alpha-olefin

Publications (2)

Publication Number Publication Date
JPS5763308A JPS5763308A (en) 1982-04-16
JPS642121B2 true JPS642121B2 (en) 1989-01-13

Family

ID=15201265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13754880A Granted JPS5763308A (en) 1980-10-03 1980-10-03 Polymerization of alpha-olefin

Country Status (1)

Country Link
JP (1) JPS5763308A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254610A (en) * 1985-05-07 1986-11-12 Mitsubishi Petrochem Co Ltd Catalyst component for polymerizing olefin
JPS623013U (en) * 1985-06-24 1987-01-09
JP5077906B2 (en) * 2005-12-28 2012-11-21 東邊チタニりム株匏䌚瀟 SOLID CATALYST COMPONENT FOR OLEFIN POLYMERIZATION, PROCESS FOR PRODUCING THE SAME, AND CATALYST AND METHOD FOR PRODUCING OLEFIN POLYMER USING THE SAME

Also Published As

Publication number Publication date
JPS5763308A (en) 1982-04-16

Similar Documents

Publication Publication Date Title
JP2002506893A (en) Catalyst system suitable for use in ethylene polymerization or copolymerization and process for preparing the catalyst system
KR20000068056A (en) Components and catalysts for the polymerization of olefins
JPH09100312A (en) Polyolefin catalyst made from metal alkoxide or dialkyldimetal and its production and use
JPS607642B2 (en) Catalyst for production of polyalphaolefin
JPS64407B2 (en)
EP0398439B1 (en) Solid alpha-olefin polymerization catalyst components
JPH0826093B2 (en) Polymerization method of α-olefin
JPS642121B2 (en)
JP3913814B2 (en) Polymerization method of ethylene
US4308170A (en) Titanium catalyst for the polymerization of olefins
JPH0575766B2 (en)
JPS64405B2 (en)
JPS642125B2 (en)
JPS5812889B2 (en) Polyethylene material
JPH0315644B2 (en)
CN113278100B (en) Conjugated diene high-efficiency polymerization rare earth catalyst composition and application thereof
JPS6310721B2 (en)
US4482686A (en) Catalyst and process for stereospecific polymerization of α-olefins
JPH0240088B2 (en)
JPS64963B2 (en)
JPS6251281B2 (en)
JPS637201B2 (en)
JPS6410529B2 (en)
JPH0532404B2 (en)
JPS64962B2 (en)