JPS6412287B2 - - Google Patents

Info

Publication number
JPS6412287B2
JPS6412287B2 JP9674781A JP9674781A JPS6412287B2 JP S6412287 B2 JPS6412287 B2 JP S6412287B2 JP 9674781 A JP9674781 A JP 9674781A JP 9674781 A JP9674781 A JP 9674781A JP S6412287 B2 JPS6412287 B2 JP S6412287B2
Authority
JP
Japan
Prior art keywords
polymerization
titanium
hexane
copolymer
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9674781A
Other languages
Japanese (ja)
Other versions
JPS57212209A (en
Inventor
Nobuyuki Kuroda
Tooru Nakamura
Yutaka Shikatani
Kazutoshi Nomyama
Kazuo Matsura
Mitsuharu Myoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP9674781A priority Critical patent/JPS57212209A/en
Publication of JPS57212209A publication Critical patent/JPS57212209A/en
Publication of JPS6412287B2 publication Critical patent/JPS6412287B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】 本発明は新芏な重合觊媒によるポリオレフむン
の補造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing polyolefin using a novel polymerization catalyst.

埓来この皮の技術分野においおは、特公昭39−
12105号公報によりハロゲン化マグネシりムにチ
タン化合物などの遷移金属化合物を担持させた觊
媒が知られおおり、さらにベルギヌ特蚱第742112
号によりハロゲン化マグネシりムを四塩化チタン
ずを共粉砕した觊媒が知られおいる。
Conventionally, in this type of technical field, the
A catalyst in which a transition metal compound such as a titanium compound is supported on magnesium halide is known from Publication No. 12105, and further Belgian Patent No. 742112
A catalyst in which magnesium halide and titanium tetrachloride are co-pulverized is known.

しかしながらポリオレフむンの補造䞊、觊媒掻
性はできるだけ高いこずが望たしく、この芳点か
らみるず特公昭39−12105号公報蚘茉の方法では
重合掻性はただ䜎く、ベルギヌ特蚱第742112号の
方法では重合掻性は盞圓皋床高くな぀おいるがな
お改良が望たれる。
However, in the production of polyolefins, it is desirable for the catalyst activity to be as high as possible, and from this point of view, the method described in Japanese Patent Publication No. 39-12105 has a still low polymerization activity, while the method described in Belgian Patent No. 742112 has a fairly high polymerization activity. Although the cost has increased, improvements are still desired.

本発明者らは、特公昭51−37194号、特公昭52
−48914号、特公昭54−13276号においお、ハロゲ
ン化マグネシりム、SiORnX4-nおよびチタン
化合物およびたたはバナゞりム化合物を反応さ
せお埗られる固䜓觊媒成分を甚いたポリオレフむ
ンの補造方法を提案したが、生成ポリマヌの分子
量分垃が著しく狭いこずが奜たしいずいう芳点か
ら、さらに䞀局の改良が望たれおいた。
The inventors of the present invention have published Japanese Patent Publication No. 51-37194,
-48914 and Japanese Patent Publication No. 54-13276, a method for producing polyolefin using a solid catalyst component obtained by reacting magnesium halide, Si(OR) n However, further improvement was desired from the viewpoint that it is preferable that the molecular weight distribution of the produced polymer be extremely narrow.

たた、ポリオレフむンの補造䞊生成ポリマヌの
かさ比重はできるだけ高いこずが生産性の面から
望たしい。この芳点からみるず前蚘特公昭39−
12105号公報蚘茉の方法では生成ポリマヌのかさ
比重は䜎くか぀重合掻性も満足すべき状態ではな
く、たたベルギヌ特蚱第742112号に方法では重合
掻性は高いが生成ポリマヌのかさ比重は䜎いずい
う欠点があり改良が望たれる。
Further, in the production of polyolefin, it is desirable that the bulk specific gravity of the produced polymer be as high as possible from the viewpoint of productivity. From this point of view, the above-mentioned special public service
In the method described in Publication No. 12105, the bulk specific gravity of the produced polymer is low and the polymerization activity is also unsatisfactory, and in the method described in Belgian Patent No. 742112, the polymerization activity is high but the bulk specific gravity of the produced polymer is low. Improvement is desired.

本発明は、䞊蚘の欠点を改良し、重合掻性が高
く、か぀分子量分垃が狭く、さらにかさ比重の高
いポリマヌを高収率で埗るこずができ、か぀連続
重合をきわめお容易に実斜できる新芏な重合觊媒
の補造方法ならびに該重合觊媒によるオレフむン
の重合、たたは共重合方法に関するものであり、
重合掻性はきわめお高いため重合時のモノマヌ分
圧も䜎く、さらに生成ポリマヌのかさ比重が高い
ため、生産性を向䞊させるこずができ、たた重合
終了埌の生成ポリマヌ䞭の觊媒残枣量はきわめお
少量ずなり、したが぀おポリオレフむン補造プロ
セスにおいお觊媒陀去工皋が省略できるためポリ
マヌ凊理工皋が簡玠化され、党䜓ずしおきわめお
経枈的なポリオレフむンの補造方法を提䟛するも
のである。
The present invention improves the above-mentioned drawbacks, and provides a novel polymerization method that can obtain polymers with high polymerization activity, narrow molecular weight distribution, and high bulk specific gravity in high yield, and can be carried out extremely easily in continuous polymerization. The present invention relates to a method for producing a catalyst and a method for polymerizing or copolymerizing an olefin using the polymerization catalyst,
Since the polymerization activity is extremely high, the monomer partial pressure during polymerization is low, and the bulk specific gravity of the produced polymer is high, so productivity can be improved, and the amount of catalyst residue in the produced polymer after polymerization is extremely small. Therefore, the catalyst removal step can be omitted in the polyolefin manufacturing process, thereby simplifying the polymer treatment process and providing an extremely economical polyolefin manufacturing method as a whole.

さらに、本発明の長所をあげれば、生成ポリマ
ヌの粒埄の芳点からみおかさ比重が高いにもかか
わらず、粗倧粒子および50Ό以䞋の埮粒子が少な
いため、連続重合反応が容易になり、か぀粉䜓茞
送などのポリマヌ粒子の取り扱いが容易になるこ
ずである。
Furthermore, the advantages of the present invention are that although the bulk specific gravity of the produced polymer is high in terms of particle size, there are few coarse particles and fine particles of 50Ό or less, so continuous polymerization reaction is facilitated, and powder This makes it easier to handle the polymer particles, such as transporting them.

さらに、本発明の觊媒を甚いお埗られるポリマ
ヌは分子量分垃がきわめお狭く、ヘキサン抜出量
が少ないなど䜎重合物の副生が非垞に少ないこず
も特城である。したが぀お、䟋えばフむルムグレ
ヌドなどでは耐ブロツキング性に優れおいるなど
良奜な品質の補品を埗るこずができる。
Furthermore, the polymer obtained using the catalyst of the present invention has an extremely narrow molecular weight distribution and is characterized by extremely low by-products of low polymers, such as a small amount of hexane extraction. Therefore, it is possible to obtain a product of good quality, such as film grade, which has excellent blocking resistance.

本発明の觊媒は、これらの倚くの特城を備え、
か぀前蚘の先行技術の欠点を改良した新芏な觊媒
系を提䟛するものであり、本発明の觊媒を甚いる
こずによりこれらの諞点を容易に達成できるこず
は驚くできこずず蚀わねばならない。
The catalyst of the present invention has many of these characteristics,
Moreover, the present invention provides a novel catalyst system that improves the drawbacks of the prior art described above, and it must be said that it is surprising that these points can be easily achieved by using the catalyst of the present invention.

以䞋に本発明を具䜓的に説明する。すなわち、
本発明は、 〔〕(1) ゞハロゲン化マグネシりム以䞋ハロ
ゲン化マグネシりムず称する、 (2) 䞀般匏SiORnX4-nで衚わされる化合物、 および (3) チタン化合物たたはチタン化合物ずバナゞ
りム化合物バナゞりム化合物を反応させお埗
られる反応生成物を、さらに (4) 䞀般匏AlRpX3-pで衚わされる化合物 ず反応させお埗られる固䜓物質 および 〔〕 䞀般匏AlR3で衚わされる化合物 からなる觊媒䞊蚘匏䞭、は炭玠数〜24の炭
化氎玠残基、はハロゲン原子を瀺し、≊
、≊≊およびであるを甚い
お、オレフむンを重合あるいは共重合するこずを
特城ずするポリオレフむンの補造方法に存する。
The present invention will be specifically explained below. That is,
[A] (1) Magnesium dihalide (hereinafter referred to as magnesium halide), (2) a compound represented by the general formula Si(OR) n X 4-n , and (3) a titanium compound or a titanium compound A solid substance obtained by reacting a reaction product obtained by reacting a vanadium compound with a vanadium compound, and (4 ) a compound represented by the general formula AlR p (In the above formula, R is a hydrocarbon residue having 1 to 24 carbon atoms, X is a halogen atom, and 0<n≩
3, 0≩m≩4 and 0<p<3.

本発明に䜿甚されるハロゲン化マグネシりムず
しおは実質的に無氎のものが甚いられ、フツ化マ
グネシりム、塩化マグネシりム、臭化マグネシり
ム、ペり化マグネシりムがあげられるがずくに塩
化マグネシりムが奜たしい。
The magnesium halide used in the present invention is substantially anhydrous and includes magnesium fluoride, magnesium chloride, magnesium bromide, and magnesium iodide, with magnesium chloride being particularly preferred.

本発明においお䜿甚される䞀般匏SiORn
X4-nここでは炭玠数〜24のアルキル基、ア
リヌル基、アラルキル基等の炭化氎玠残基を、
はハロゲン原子を瀺す。は≊≊である
で衚わされる化合物ずしおは、四塩化ケむ玠、モ
ノメトキシトリクロロシラン、モノ゚トキシトリ
クロロシラン、モノむ゜プロポキシトリクロロシ
ラン、モノ―ブトキシトリクロロシラン、モノ
ペントキシトリクロロシラン、モノオクトキシト
リクロロシラン、モノステアロキシトリクロロシ
ラン、モノプノキシトリクロロシラン、モノ
―メチルプノキシトリクロロシラン、ゞメトキ
シゞクロロシラン、ゞ゚トキシゞクロロシラン、
ゞむ゜プロポキシゞクロロシラン、ゞ―ブトキ
シゞクロロシラン、ゞオクトキシゞクロロシラ
ン、トリメトキシモノクロロシラン、トリ゚トキ
シモノクロロシラン、トリむ゜プロポキシモノク
ロロシラン、トリ―ブトキシモノクロロシラ
ン、トリsec―ブトキシモノクロロシラン、テト
ラ゚トキシシラン、テトラむ゜プロポキシシラン
を挙げるこずができる。
General formula Si(OR) n used in the present invention
X 4-n (Here, R is a hydrocarbon residue such as an alkyl group, aryl group, or aralkyl group having 1 to 24 carbon atoms,
indicates a halogen atom. m is 0≩m≩4)
Examples of compounds represented by include silicon tetrachloride, monomethoxytrichlorosilane, monoethoxytrichlorosilane, monoisopropoxytrichlorosilane, mono n-butoxytrichlorosilane, monopentoxytrichlorosilane, monooctoxytrichlorosilane, monostearoxytrichlorosilane, Chlorosilane, monophenoxytrichlorosilane, monop
-Methylphenoxytrichlorosilane, dimethoxydichlorosilane, diethoxydichlorosilane,
Diisopropoxydichlorosilane, di-n-butoxydichlorosilane, dioctoxydichlorosilane, trimethoxymonochlorosilane, triethoxymonochlorosilane, triisopropoxymonochlorosilane, tri-n-butoxymonochlorosilane, trisec-butoxymonochlorosilane, tetraethoxy Examples include silane and tetraisopropoxysilane.

本発明に䜿甚されるチタン化合物たたはチタン
化合物ずバナゞりム化合物バナゞりム化合物ずし
おは、これら金属のハロゲン化物、アルコキシハ
ロゲン化物、アルコキシド、ハロゲン化酞化物等
を挙げるこずができる。チタン化合物ずしおは
䟡のチタン化合物ず䟡のチタン化合物が奜適で
あり、䟡のチタン化合物ずしおは具䜓的には䞀
般匏TiORqX4-qここでは炭玠数〜20のアル
キル基、アリヌル基たたはアラルキル基等の炭化
氎玠残基を瀺し、はハロゲン原子を瀺す。は
≊≊である。で瀺されるものが奜たしく、
四塩化チタン、四臭化チタン、四ペり化チタン、
モノメトキシトリクロロチタン、ゞメトキシゞク
ロロチタン、トリメトキシモノクロロチタン、テ
トラメトキシチタン、モノ゚トキシトリクロロチ
タン、ゞ゚トキシゞクロロチタン、トリ゚トキシ
モノクロロチタン、テトラ゚トキシチタン、モノ
む゜プロポキシトリクロロチタン、ゞむ゜プロポ
キシゞクロロチタン、トリむ゜プロポキシモノク
ロロチタン、テトラむ゜プロポキシチタン、モノ
ブトキシトリクロロチタン、ゞブトキシゞクロロ
チタン、モノベントキシトリクロロチタン、モノ
プノキシトリクロロチタン、ゞプノキシゞク
ロロチタン、トリプノキシモノクロロチタン、
テトラプノキシチタン等を挙げるこずができ
る。䟡のチタン化合物ずしおは、四塩化チタ
ン、四臭化チタン等の四ハロゲン化チタンを氎
玠、アルミニりム、チタンあるいは呚期埋〜
族金属の有機金属化合物により還元しお埗られる
䞉ハロゲン化チタンが挙げられる。たた䞀般匏
TiORrX4-rここでは炭玠数〜20のアルキ
ル基、アリヌル基たたはアラルキル基等の炭化氎
玠残基を瀺し、はハロゲン原子を瀺す。は
である。で瀺される䟡のハロゲン化
アルコキシチタンを呚期埋衚〜族金属の有機
金属化合物により還元しお埗られる䟡のチタン
化合物が挙げられる。バナゞりム化合物ずしお
は、四塩化バナゞりム、四臭化バナゞりム、四ペ
り化バナゞりム、テトラ゚トキシバナゞりムの劂
き䟡のバナゞりム化合物、オキシ䞉塩化バナゞ
りム、゚トキシゞクロルバナゞル、トリ゚トキシ
バナゞル、トリブトキシバナゞルの劂き䟡のバ
ナゞりム化合物、䞉塩化バナゞりム、バナゞりム
トリ゚トキシドの劂き䟡のバナゞりム化合物が
挙げられる。
Titanium compounds or titanium compounds and vanadium compounds used in the present invention Examples of the vanadium compounds include halides, alkoxy halides, alkoxides, and halogenated oxides of these metals. As a titanium compound, 4
Ti ( OR) q or a hydrocarbon residue such as an aralkyl group, X represents a halogen atom, and q is 0≩q≩4.
Titanium tetrachloride, titanium tetrabromide, titanium tetraiodide,
Monomethoxytrichlorotitanium, dimethoxydichlorotitanium, trimethoxymonochlorotitanium, tetramethoxytitanium, monoethoxytrichlorotitanium, diethoxydichlorotitanium, triethoxymonochlorotitanium, tetraethoxytitanium, monoisopropoxytrichlorotitanium, diisopropoxydichlorotitanium, trichlorotitanium Isopropoxymonochlorotitanium, tetraisopropoxytitanium, monobutoxytrichlorotitanium, dibutoxydichlorotitanium, monobenxytrichlorotitanium, monophenoxytrichlorotitanium, diphenoxydichlorotitanium, triphenoxymonochlorotitanium,
Examples include tetraphenoxy titanium. As trivalent titanium compounds, titanium tetrahalides such as titanium tetrachloride and titanium tetrabromide are combined with hydrogen, aluminum, titanium, or periodic titanium.
Examples include titanium trihalides obtained by reduction with organometallic compounds of group metals. Also general formula
Ti(OR ) r
<r<4. Examples include trivalent titanium compounds obtained by reducing a tetravalent alkoxy titanium halide represented by ) with an organometallic compound of a group I metal of the periodic table. Examples of vanadium compounds include tetravalent vanadium compounds such as vanadium tetrachloride, vanadium tetrabromide, vanadium tetraiodide, and tetraethoxyvanadium; Examples include trivalent vanadium compounds such as trivalent vanadium compounds, vanadium trichloride, and vanadium triethoxide.

本発明においおは、䟡のチタン化合物が最も
奜たしい。
In the present invention, tetravalent titanium compounds are most preferred.

本発明をさらに効果的にするために、チタン化
合物ずバナゞりム化合物を䜵甚するずきの
Tiモル比は〜0.01の範囲が奜たしい。
In order to make the present invention even more effective, when a titanium compound and a vanadium compound are used together, V/
The Ti molar ratio is preferably in the range of 2/1 to 0.01/1.

本発明における(1)ハロゲン化マグネシりム、(2)
䞀般匏SiORnX4-nで衚わされる化合物、およ
び(3)チタン化合物たたはチタン化合物ずバナゞり
ム化合物バナゞりム化合物、を反応させる方法ず
しおは特に制限はなく、䞍掻性溶媒の存圚䞋ある
いは䞍存圚䞋に枩床20〜400℃、奜たしくは50〜
300℃の加熱䞋に、通垞、分〜20時間接觊させ
るこずにより反応させる方法、共粉砕凊理により
反応させる方法、あるいはこれらの方法を適宜組
み合わせるこずにより反応させおもよい。
(1) Magnesium halide in the present invention, (2)
There are no particular restrictions on the method of reacting the compound represented by the general formula Si( OR ) n In the presence of temperature 20~400℃, preferably 50~
The reaction may be carried out by contacting under heating at 300°C for usually 5 minutes to 20 hours, by co-pulverization, or by an appropriate combination of these methods.

たた、成分(1)〜(3)の反応順序に぀いおも特に制
限はなく、成分を同時に反応させおもよく、
成分を反応させた埌、他の成分を反応させおも
よい。
Furthermore, there is no particular restriction on the reaction order of components (1) to (3), and the three components may be reacted simultaneously, or the two components may be reacted at the same time.
After reacting the components, one other component may be reacted.

このずき䜿甚する䞍掻性溶媒は特に制限される
ものではなく、通垞チグラヌ型觊媒を䞍掻性化し
ない液状有機化合物を䜿甚するこずができる。こ
れらの具䜓䟋ずしおは、プロパン、ブタン、ペン
タン、ヘキサン、ヘプタン、オクタン、ベンれ
ン、トル゚ン、キシレン、シクロヘキサン等の各
皮脂肪族飜和炭化氎玠、芳銙族炭化氎玠、脂環族
炭化氎玠、および゚タノヌル、ゞ゚チル゚ヌテ
ル、テトラヒドロフラン、酢酞゚チル、安息銙酞
゚チル等のアルコヌル類、゚ヌテル類、゚ステル
類を挙げるこずができる。
The inert solvent used at this time is not particularly limited, and any liquid organic compound that does not normally inactivate the Ziegler type catalyst can be used. Specific examples of these include propane, butane, pentane, hexane, heptane, octane, benzene, toluene, xylene, various aliphatic saturated hydrocarbons such as cyclohexane, aromatic hydrocarbons, alicyclic hydrocarbons, and ethanol and diethyl. Examples include alcohols, ethers, and esters such as ether, tetrahydrofuran, ethyl acetate, and ethyl benzoate.

共粉砕に甚いる装眮はずくに限定はされない
が、通垞ボヌルミル、振動ミル、ロツドミル、衝
撃ミルなどが䜿甚されその粉砕方匏に応じおの混
合順序、粉砕時間、粉砕枩床などの条件は特に限
定されるものではなく圓業者にず぀お容易に定め
られるものである。通垞℃〜200℃、奜たしく
は20℃〜100℃の枩床で0.5時間〜30時間共粉砕す
るこずが望たしい。もちろん共粉砕操䜜は䞍掻性
ガス雰囲気䞭で行なうべきであり、たた湿気はで
きる限り避けるべきである。
The equipment used for co-pulverization is not particularly limited, but ball mills, vibration mills, rod mills, impact mills, etc. are usually used, and conditions such as mixing order, grinding time, and grinding temperature are particularly limited depending on the grinding method. rather, it can be easily determined by a person skilled in the art. It is desirable to co-mill at a temperature of usually 0°C to 200°C, preferably 20°C to 100°C for 0.5 to 30 hours. Of course, the co-grinding operation should be carried out in an inert gas atmosphere and moisture should be avoided as much as possible.

本発明においお、䞀般匏SiORnX4-nで衚わ
される化合物の䜿甚量は䜙り倚すぎおもたた少な
すぎでも添加効果は望めず、通垞ハロゲン化マグ
ネシりム100gに察しお0.1〜50g、奜たしくは0.5
〜10gの範囲内である。
In the present invention, the amount of the compound represented by the general formula Si(OR) n Preferably 0.5
~10g.

たた、チタン化合物たたはチタン化合物ずバナ
ゞりム化合物バナゞりム化合物の量は成分(1)〜(3)
を反応させお埗られる反応生成物䞭に含たれるチ
タンずバナゞりムが0.5〜20重量の範囲内にな
るように調節するのが最も奜たしく、バランスの
良いチタンずバナゞりム圓りの掻性、固䜓圓りの
掻性を埗るためには〜10重量の範囲がずくに
望たしい。
In addition, the amount of titanium compound or titanium compound and vanadium compound is the amount of components (1) to (3).
It is most preferable to adjust the titanium and vanadium contained in the reaction product obtained by reacting them so that it is within the range of 0.5 to 20% by weight, and achieve a well-balanced activity per titanium and vanadium and activity per solid. In order to obtain this, a range of 1 to 10% by weight is particularly desirable.

本発明においおは、(1)ハロゲン化マグネシり
ム、(2)䞀般匏SiORnX4-nで衚わされる化合物、
および(3)チタン化合物たたはチタン化合物ずバナ
ゞりム化合物バナゞりム化合物を反応させお埗ら
れる反応生成物を、さらに(4)䞀般匏AlRpX3-pで
衚わされる化合物ず反応させる。このずきの䞀般
匏AlRpX3-pで衚わされる化合物の䜿甚量は、
AlRpX3-pチタン化合物たたはチタン化合物ず
バナゞりム化合物バナゞりム化合物のモル比が
0.01〜100であり、奜たしくは0.3〜50で
ある。たた、このずきの反応方法は特に制限はな
く、䟋えば䞍掻性炭化氎玠の存圚䞋で反応させお
もよいし、共粉砕凊理により反応させおもよい。
反応枩床ずしおは〜100℃の範囲が奜たしく、
たた反応時間ずしおは分〜10時間が奜たしい。
In the present invention, (1) magnesium halide, (2) a compound represented by the general formula Si(OR) n X 4-n ,
and (3) a reaction product obtained by reacting a titanium compound or a titanium compound with a vanadium compound is further reacted with (4) a compound represented by the general formula AlR p X 3-p . The amount of the compound represented by the general formula AlR p X 3-p used at this time is:
AlR p Further, the reaction method at this time is not particularly limited, and for example, the reaction may be carried out in the presence of an inert hydrocarbon, or the reaction may be carried out by co-pulverization treatment.
The reaction temperature is preferably in the range of 0 to 100°C,
Further, the reaction time is preferably 5 minutes to 10 hours.

本発明に䜿甚される䞀般匏AlRpX3-pここで
は炭玠数〜24のアルキル基、アリヌル基、アラ
ルキル基等の炭化氎玠残基を、特に奜たしくは炭
玠数〜12のアルキル基を瀺し、はハロゲン原
子を瀺す。はである。で衚わされ
る化合物ずしおは、ゞメチルアルミニりムクロラ
むド、ゞ゚チルアルミニりムクロラむド、ゞ゚チ
ルアルミニりムブロマむド、ゞ゚チルアルミニり
ムアむオダむド、ゞ゚チルアルミニりムフロラむ
ド、ゞむ゜プロピルアルミニりムクロラむド、゚
チルアルミニりムゞクロラむド、゚チルアルミニ
りムセスキクロラむドおよびこれらの混合物等を
挙げるこずができる。
The general formula AlR p X 3-p used in the present invention (where R
represents a hydrocarbon residue such as an alkyl group, aryl group, or aralkyl group having 1 to 24 carbon atoms, particularly preferably an alkyl group having 1 to 12 carbon atoms, and X represents a halogen atom. p is 0<p<3. ) Examples of the compound represented by: dimethylaluminum chloride, diethylaluminium chloride, diethylaluminum bromide, diethylaluminium iodide, diethylaluminum fluoride, diisopropylaluminum chloride, ethylaluminum dichloride, ethylaluminum sesquichloride, and mixtures thereof. I can do it.

本発明に甚いられる䞀般匏AlR3ここでは炭
玠数〜24のアルキル基、アリヌル基、アラルキ
ル基等の炭化氎玠残基、特に奜たしくは炭玠数
〜12のアルキル基を瀺すで衚わされる化合物ず
しおは、トリ゚チルアルミニりム、トリむ゜プロ
ピルアルミニりム、トリむ゜ブチルアルミニり
ム、トリsec―ブチルアルミニりム、トリtert―
ブチルアルミニりム、トリヘキシルアルミニり
ム、トリオクチルアルミニりムおよびこれらの混
合物を挙げるこずができる。たた、䞀般匏AlR3
で衚わされる化合物ず共に、安息銙酞゚チル、
―たたは―トルむル酞゚チル、―アニス酞゚
チル等の有機カルボン酞゚ステルを䜵甚しお甚い
るこずもできる。
The general formula AlR 3 used in the present invention (where R is a hydrocarbon residue such as an alkyl group having 1 to 24 carbon atoms, an aryl group, an aralkyl group, particularly preferably a carbon number 1
-12 alkyl groups) are triethylaluminum, triisopropylaluminum, triisobutylaluminum, trisec-butylaluminum, tritert-
Mention may be made of butylaluminum, trihexylaluminum, trioctylaluminum and mixtures thereof. Also, the general formula AlR 3
With the compound represented by ethyl benzoate, o
-Or organic carboxylic acid esters such as ethyl p-toluate and ethyl p-anisate can also be used in combination.

䞀般匏AlR3で衚わされる化合物の䜿甚量は特
に制限はないが、通垞チタン化合物たたはチタン
化合物ずバナゞりム化合物バナゞりム化合物に察
しお0.1〜1000モル倍䜿甚するこずができる。
The amount of the compound represented by the general formula AlR 3 to be used is not particularly limited, but it can usually be used in an amount of 0.1 to 1000 times the mole of the titanium compound or the titanium compound and the vanadium compound.

本発明の觊媒を䜿甚しおのオレフむンの重合は
スラリヌ重合、溶液重合たたは気盞重合にお行う
こずができ、特に気盞重合に奜適に甚いるこずが
できる。重合反応は通垞のチグラヌ型觊媒による
オレフむン重合反応ず同様にしお行なわれる。す
なわち反応はすべお実質的に酞玠、氎などを絶぀
た状態で䞍掻性炭化氎玠の存圚䞋、あるいは䞍存
圚䞋で行なわれる。オレフむンの重合条件は枩床
20ないし120℃、奜たしくは50ないし100℃であ
り、圧力は垞圧ないし70Kgcm2、奜たしくはな
いし60Kgcm2である。分子量の調節は重合枩床、
觊媒のモル比などの重合条件を倉えるこずによ぀
おもある皋床調節できるが重合系䞭に氎玠を添加
するこずにより効果的に行なわれる。もちろん、
本発明の觊媒を甚いお、氎玠濃床、重合枩床など
重合条件の異な぀た段階ないしそれ以䞊の倚段
階の重合反応も䜕ら支障なく実斜できる。
Olefin polymerization using the catalyst of the present invention can be carried out by slurry polymerization, solution polymerization, or gas phase polymerization, and it can be particularly preferably used for gas phase polymerization. The polymerization reaction is carried out in the same manner as an ordinary olefin polymerization reaction using a Ziegler type catalyst. That is, all reactions are carried out in the presence or absence of inert hydrocarbons, substantially deprived of oxygen, water, and the like. Olefin polymerization conditions are temperature
The temperature is 20 to 120°C, preferably 50 to 100°C, and the pressure is normal pressure to 70Kg/cm 2 , preferably 2 to 60Kg/cm 2 . Molecular weight can be adjusted by polymerization temperature,
Although it can be controlled to some extent by changing polymerization conditions such as the molar ratio of catalysts, it is effectively achieved by adding hydrogen to the polymerization system. of course,
Using the catalyst of the present invention, two-stage or more multi-stage polymerization reactions with different polymerization conditions such as hydrogen concentration and polymerization temperature can be carried out without any problems.

本発明の方法はチグラヌ觊媒で重合できるすべ
おのオレフむンの重合に適甚可胜であり、特に炭
玠数〜12のα―オレフむンが奜たしく、たずえ
ば゚チレン、プロピレン、―ブテン、ヘキセン
―、―メチルペンテン―、オクテン―な
どのα―オレフむン類の単独重合および゚チレン
ずプロピレン、゚チレンず―ブテン、゚チレン
ずヘキセン―、゚チレンず―メチルペンテン
―、゚チレンずオクテン―、プロピレンず
―ブテンの共重合、および゚チレンず他の皮類
以䞊のα―オレフむンずの共重合などに奜適に䜿
甚される。
The method of the present invention is applicable to the polymerization of all olefins that can be polymerized with Ziegler's catalyst, and α-olefins having 2 to 12 carbon atoms are particularly preferred, such as ethylene, propylene, 1-butene, hexene-1,4-methyl Homopolymerization of α-olefins such as pentene-1 and octene-1, ethylene and propylene, ethylene and 1-butene, ethylene and hexene-1, ethylene and 4-methylpentene-1, ethylene and octene-1, propylene and 1
- Suitably used for copolymerization of butene, copolymerization of ethylene and two or more other α-olefins, etc.

たた、ポリオレフむンの改質を目的ずする堎合
のゞ゚ンず共重合も奜たしく行われる。この時䜿
甚されるゞ゚ン化合物の䟋ずしおはブタゞ゚ン、
―ヘキサゞ゚ン、゚チリデンノルボルネ
ン、ゞシクロペンタゞ゚ン等を挙げるこずができ
る。
Copolymerization with dienes is also preferably carried out for the purpose of modifying polyolefins. Examples of diene compounds used at this time are butadiene,
Examples include 1,4-hexadiene, ethylidene norbornene, and dicyclopentadiene.

以䞋に実斜䟋をのべるが、これらは本発明を実
斜するための説明甚のものであ぀お本発明はこれ
らに制限されるものではない。
Examples will be described below, but these are for illustrative purposes to carry out the present invention, and the present invention is not limited thereto.

実斜䟋  (a) 固䜓觊媒成分の補造 むンチ盎埄を有するステンレススチヌ
ル補ボヌルが25コ入぀た内容積400mlのステン
レススチヌル補ポツトに垂販の無氎塩化マグネ
シりム15g、ゞ゚トキシゞクロロシラン3.1g、
およびテトラむ゜プロポキシチタン5.6gを入れ
窒玠雰囲気䞋、宀枩で16時間ボヌルミリングを
行な぀た。ボヌルミリング埌埗られた固䜓粉末
(A)1gには39mgのチタンが含たれおいた。
Example 1 (a) Preparation of solid catalyst component 15 g of commercially available anhydrous magnesium chloride, 3.1 g of diethoxydichlorosilane,
Then, 5.6 g of tetraisopropoxytitanium was added and ball milling was performed at room temperature for 16 hours under a nitrogen atmosphere. Solid powder obtained after ball milling
(A) 1g contained 39mg of titanium.

぀いで窒玠眮換した300ml䞉぀口フラスコに
ヘキサン100ml、䞊蚘固䜓粉末(A)を10gおよび
゚チルアルミニりムセスキクロリド2gAlTi
モル比を入れ、ヘキサン還流䞋で時
間反応させた。反応終了埌静眮し䞊柄液を陀去
し、぀いでヘキサンで固䜓成分を掗浄し、固䜓
觊媒成分(B)を埗た。
Next, in a 300 ml three-neck flask purged with nitrogen, 100 ml of hexane, 10 g of the above solid powder (A) and 2 g of ethylaluminum sesquichloride (Al/Ti
(molar ratio) = 2) and reacted for 2 hours under refluxing hexane. After the reaction was completed, the mixture was allowed to stand still and the supernatant liquid was removed, and then the solid component was washed with hexane to obtain a solid catalyst component (B).

(b) 重合 気盞重合装眮ずしおはステンレス補オヌトク
レヌブを甚い、ブロワヌ、流量調節噚および也
匏サむクロンでルヌプを぀くり、オヌトクレヌ
ブはゞダケツトに枩氎を流すこずにより枩床を
調節した。
(b) Polymerization A stainless steel autoclave was used as the gas phase polymerization apparatus, a loop was created with a blower, a flow controller, and a dry cyclone, and the temperature of the autoclave was adjusted by flowing hot water through the jacket.

80℃に調節したオヌトクレヌブに䞊蚘固䜓觊
媒成分(B)を50mghr、およびトリ゚チルアルミ
ニりム2mmolhrの速床で䟛絊し、たた、オ
ヌトクレヌブ気盞䞭のブテン―゚チレン比
モル比を0.27に、さらに氎玠を党圧の15
ずなるように調敎しながら各々のガスを䟛絊
し、か぀ブロワヌにより系内のガスを埪環させ
お党圧を10Kgcm2・に保぀ようにしお重合を
行な぀た。生成した゚チレン共重合䜓はかさ比
重0.41、メルトむンデツクスMI1.1、密床
0.9201であ぀た。
The above solid catalyst component (B) was supplied to an autoclave adjusted to 80°C at a rate of 50 mg/hr and triethylaluminum 2 mmol/hr, and the butene-1/ethylene ratio (molar ratio) in the gas phase of the autoclave was set to 0.27. In addition, hydrogen is added to 15% of the total pressure.
Polymerization was carried out by supplying each gas while adjusting the following, and by circulating the gas in the system using a blower to maintain the total pressure at 10 kg/cm 2 ·G. The produced ethylene copolymer has a bulk specific gravity of 0.41, a melt index (MI) of 1.1, and a density
It was 0.9201.

たた觊媒掻性は473000g共重合䜓gTiずき
わめお高掻性であ぀た。
The catalyst activity was extremely high at 473,000g copolymer/gTi.

10時間の連続運転ののちオヌトクレヌブを解
攟し、内郚の点怜を行な぀たが内壁および撹拌
機には党くポリマヌは付着しおおらず、きれい
であ぀た。
After 10 hours of continuous operation, the autoclave was opened and the interior was inspected, but the inner walls and stirrer were clean with no polymer attached at all.

この共重合䜓をASTM―D1238―65Tの方法
により、190℃、荷重2.16Kgで枬定したメルト
むンデツクスMI2.16ず荷重10Kgで枬定したメ
ルトむンデツクスMI10ずの比で衚わされるF.
R.倀F.R.MI10MI2.16は7.1であり、分
子量分垃はきわめお狭いものであ぀た。
This copolymer has an F value expressed as the ratio of melt index MI2.16 measured at 190°C under a load of 2.16 kg and melt index MI10 measured under a load of 10 kg using the method of ASTM-D1238-65T.
The R. value (FR=MI10/MI2.16) was 7.1, and the molecular weight distribution was extremely narrow.

たた、この共重合䜓のフむルムを沞隰ヘキサ
ン䞭で10時間抜出したずころ、ヘキサン抜出量
は1.0wtであり、きわめお抜出分が少なか぀
た。
Furthermore, when a film of this copolymer was extracted in boiling hexane for 10 hours, the hexane extraction amount was 1.0 wt%, which was an extremely small amount.

比范䟋  固䜓觊媒成分ずしお実斜䟋で埗た固䜓粉末(A)
を50mghrで䟛絊する以倖は実斜䟋ず同様の操
䜜で重合を行ない、かさ比重0.31、メルトむンデ
ツクス1.3、密床0.9204の゚チレン・ブテン―
共重合䜓を埗た。觊媒掻性は146000g共重合䜓
gTiであり、実斜䟋に比范しお掻性が䜎か぀
た。
Comparative Example 1 Solid powder (A) obtained in Example 1 as a solid catalyst component
Polymerization was carried out in the same manner as in Example 1, except that 50 mg/hr of ethylene butene was supplied at a rate of 50 mg/hr.
A copolymer was obtained. Catalytic activity is 146000g copolymer/
gTi, and its activity was lower than that of Example 1.

たたこの共重合䜓のF.R.倀は7.3であり、フむ
ルムのヘキサン抜出量は1.5wtであ぀た。
The FR value of this copolymer was 7.3, and the amount of hexane extracted from the film was 1.5 wt%.

比范䟋  実斜䟋で埗られた固䜓粉末(A)を、窒玠眮換し
た300ml䞉぀口フラスコにヘキサン100mlずずもに
入れ、぀いでトリ゚チルアルミニりム0.9gAl
Tiモル比を入れヘキサン還流䞋で時
間反応させた。反応終了埌静眮し䞊柄液を陀去
し、぀いでヘキサンで固䜓成分を掗浄し固䜓觊媒
成分(C)を埗た。
Comparative Example 2 The solid powder (A) obtained in Example 1 was put into a 300 ml three-necked flask purged with nitrogen, along with 100 ml of hexane, and then 0.9 g of triethylaluminum (Al/
Ti (molar ratio)=1) was added thereto and the mixture was reacted for 2 hours under refluxing hexane. After the reaction was completed, the mixture was allowed to stand and the supernatant liquid was removed, and then the solid component was washed with hexane to obtain a solid catalyst component (C).

䞊蚘固䜓觊媒成分(C)を50mghrで䟛絊し、トリ
゚チルアルミニりムのかわりに゚チルアルミニり
ムセスキクロリドを2mmolhrの速床で䟛絊す
る以倖は実斜䟋ず同様の操䜜で重合を行ない、
かさ比重0.25、メルトむンデツクス0.8、密床
0.9251の共重合䜓を埗た。觊媒掻性は8650g共重
合䜓gTiであり、実斜䟋に比范しお掻性は著
しく䜎䞋した。
Polymerization was carried out in the same manner as in Example 1, except that the solid catalyst component (C) was supplied at a rate of 50 mg/hr, and ethylaluminum sesquichloride was supplied at a rate of 2 mmol/hr instead of triethylaluminum.
Bulk specific gravity 0.25, melt index 0.8, density
A copolymer of 0.9251 was obtained. The catalyst activity was 8650g copolymer/gTi, which was significantly lower than in Example 1.

比范䟋  固䜓觊媒成分ずしお実斜䟋で埗た固䜓粉末(A)
を50mghrで䟛絊し、有機アルミニりム化合物ず
しおトリ゚チルアルミニりムを2mmolhrおよ
び゚チルアルミニりムセスキクロリドを
2mmolhrで䟛絊する以倖は実斜䟋ず同様の
操䜜で重合を行ない、かさ比重0.31、メルトむン
デツクス0.9、密床0.9201の共重合䜓を埗た。
Comparative Example 3 Solid powder (A) obtained in Example 1 as solid catalyst component
was supplied at a rate of 50 mg/hr, and triethylaluminum and ethylaluminum sesquichloride were supplied at 2 mmol/hr and ethylaluminum sesquichloride as organoaluminum compounds.
Polymerization was carried out in the same manner as in Example 1 except that the copolymer was supplied at a rate of 2 mmol/hr to obtain a copolymer having a bulk specific gravity of 0.31, a melt index of 0.9, and a density of 0.9201.

この共重合䜓のF.R.倀は7.9であり、フむルム
のヘキサン抜出量は3.3wtであ぀た。
The FR value of this copolymer was 7.9, and the amount of hexane extracted from the film was 3.3 wt%.

実斜䟋  実斜䟋で゚チルアルミニりムセスキクロリド
のかわりにゞ゚チルアルミニりムクロリド1.1gを
䜿甚したこずを陀いおは実斜䟋ず同様の操䜜で
固䜓觊媒成分を合成した。
Example 2 A solid catalyst component was synthesized in the same manner as in Example 1, except that 1.1 g of diethylaluminum chloride was used instead of ethylaluminum sesquichloride.

䞊蚘の固䜓觊媒成分を50mghrで䟛絊する以倖
は実斜䟋ず同様の操䜜で気盞重合を行ない、か
さ比重0.36、メルトむンデツクス0.92、密床
0.9211の゚チレン・ブテン―共重合䜓を埗た。
觊媒掻性は534000g共重合䜓gTiであり、きわ
めお高掻性であ぀た。
Gas phase polymerization was carried out in the same manner as in Example 1 except that the above solid catalyst component was supplied at a rate of 50 mg/hr.
An ethylene-butene-1 copolymer of 0.9211 was obtained.
The catalyst activity was 534,000 g copolymer/g Ti, which was extremely high.

10時間の連続運転ののちオヌトクレヌブを開攟
し、内郚の点怜を行な぀たが内壁および撹拌機に
は党くポリマヌは付着しおおらず、きれいであ぀
た。
After 10 hours of continuous operation, the autoclave was opened and the interior was inspected, but the inner walls and stirrer were clean with no polymer attached at all.

たたこの共重合䜓のF.R.倀は7.0であり、フむ
ルムを沞隰ヘキサン䞭で10時間抜出したずころ、
ヘキサン抜出量は0.9wtであり、きわめお抜出
分が少なか぀た。
The FR value of this copolymer was 7.0, and when the film was extracted in boiling hexane for 10 hours,
The amount of hexane extracted was 0.9wt%, which was an extremely small amount.

実斜䟋  実斜䟋に蚘したボヌルミルポツトに無氎塩化
マグネシりム10gおよびゞむ゜プロポキシゞクロ
ロチタン4.1gを入れ窒玠雰囲気䞋、宀枩で16時間
ボヌルミリングを行ない、固䜓粉末(D)を埗た。぀
いで窒玠眮換した撹拌機付䞉぀口フラスコにヘキ
サン100ml、䞊蚘固䜓粉末(D)を10g、およびテト
ラ゚トキシシラン4.3gを入れ、ヘキサン還流䞋で
時間反応させた。反応終了埌゚チルアルミニり
ムセスキクロリドを加えさらにヘキサン還流䞋で
時間反応させた。反応終了埌静眮し、䞊柄液を
陀去し、぀いでヘキサンで掗浄し1g䞭にチタン
35mgを含む固䜓觊媒成分を埗た。
Example 3 10 g of anhydrous magnesium chloride and 4.1 g of diisopropoxydichlorotitanium were placed in the ball mill pot described in Example 1, and ball milling was carried out at room temperature in a nitrogen atmosphere for 16 hours to obtain a solid powder (D). Then, 100 ml of hexane, 10 g of the above solid powder (D), and 4.3 g of tetraethoxysilane were placed in a three-neck flask equipped with a stirrer and the atmosphere was replaced with nitrogen, and the mixture was reacted for 2 hours under refluxing hexane. After the reaction was completed, ethylaluminum sesquichloride was added and the mixture was further reacted for 2 hours under refluxing hexane. After the reaction is complete, let it stand, remove the supernatant, and then wash with hexane to remove titanium in 1 g.
A solid catalyst component containing 35 mg was obtained.

䞊蚘固䜓觊媒成分を50mghrでフむヌドする以
倖は実斜䟋ず同様の操䜜で重合を行な぀た。生
成した゚チレン共重合䜓は、かさ比重0.37、密床
0.9223、メルトむンデツクス1.3であ぀た。たた
觊媒掻性は546000g共重合䜓gTiずきわめお
高掻性であ぀た。
Polymerization was carried out in the same manner as in Example 1, except that the solid catalyst component was fed at a rate of 50 mg/hr. The produced ethylene copolymer has a bulk specific gravity of 0.37 and a density of
The melt index was 0.9223 and the melt index was 1.3. The catalyst activity was extremely high at 546,000 g/copolymer/gTi.

たた、この共重合䜓のF.R.倀は7.2であり、フ
むルムを沞隰ヘキサン䞭で10時間抜出したずこ
ろ、ヘキサン抜出量は1.2wtであり、きわめお
抜出分が少なか぀た。
Furthermore, the FR value of this copolymer was 7.2, and when the film was extracted in boiling hexane for 10 hours, the hexane extraction amount was 1.2 wt%, which was an extremely small amount.

実斜䟋  のステンレススチヌル補誘導撹拌機付きオ
ヌトクレヌブを窒玠眮換しヘキサン1000mlを入
れ、トリ゚チルアルミニりム0.8ミリモルおよび
実斜䟋で埗られた固䜓觊媒成分(B)10mgを加え撹
拌しながら90℃に昇枩した。ヘキサンの蒞気圧で
系はKgcm2・になるが氎玠を党圧が4.8Kg
cm2・になるたで匵り蟌み、぀いで゚チレンを党
圧が10Kgcm2・になるたで匵り蟌んで重合を開
始した。党圧が10Kgcm2・になるように゚チレ
ンを連続的に導入し時間重合を行な぀た。重合
終了埌重合䜓スラリヌをビヌカヌに移し、ヘキサ
ンを枛圧陀去し、メルトむンデツクス1.4、密床
0.9627、かさ比重0.36の癜色ポリ゚チレン206gを
埗た。觊媒掻性は101600gポリ゚チレンgTi.hr.
C2H4圧、3960gポリ゚チレン固䜓hr.C2H4
圧でありかさ比重の高いポリ゚チレンがきわめお
高掻性に埗られた。
The stainless steel autoclave equipped with an induction stirrer from Example 4 2 was purged with nitrogen, 1000 ml of hexane was added, 0.8 mmol of triethylaluminum and 10 mg of the solid catalyst component (B) obtained in Example 1 were added, and the temperature was raised to 90°C with stirring. It was warm. The vapor pressure of hexane is 2Kg/ cm2・G, but the total pressure of hydrogen is 4.8Kg/cm2.
The pressure was charged until the pressure reached cm 2 .G, and then ethylene was charged until the total pressure reached 10 kg/cm 2 .G to initiate polymerization. Ethylene was continuously introduced so that the total pressure was 10 Kg/cm 2 ·G, and polymerization was carried out for 1 hour. After polymerization, the polymer slurry was transferred to a beaker, hexane was removed under reduced pressure, and the melt index was 1.4 and the density was
206 g of white polyethylene with a bulk specific gravity of 0.9627 and 0.36 was obtained. Catalyst activity is 101600g polyethylene/gTi.hr.
C 2 H 4 pressure, 3960g polyethylene/g solids. hr.C 2 H 4
Polyethylene with high pressure and bulk specific gravity was obtained with extremely high activity.

たた埗られたポリ゚チレンのF.R.倀は8.1であ
り、分子量分垃はきわめお狭く、ヘキサン抜出量
は0.17wtであ぀た。
The FR value of the obtained polyethylene was 8.1, the molecular weight distribution was extremely narrow, and the hexane extraction amount was 0.17 wt%.

比范䟋  比范䟋で䜿甚した固䜓觊媒成分10mgを䜿甚し
実斜䟋ず同様の操䜜で時間重合を行ないメル
トむンデツクス1.6、密床0.9638、かさ比重0.32の
癜色ポリ゚チレン83gを埗た。觊媒掻性は39900g
ポリ゚チレンgTi・hr.C2H4圧、1600gポリ゚チ
レン固䜓、hr.C2H4圧であり、実斜䟋に比
べお䜎掻性であ぀た。
Comparative Example 4 Using 10 mg of the solid catalyst component used in Comparative Example 1, polymerization was carried out for 1 hour in the same manner as in Example 4 to obtain 83 g of white polyethylene having a melt index of 1.6, a density of 0.9638, and a bulk specific gravity of 0.32. Catalyst activity is 39900g
Polyethylene/gTi·hr.C 2 H 4 pressure, 1600 g polyethylene/g solid, hr.C 2 H 4 pressure, and the activity was lower than in Example 4.

たた埗られたポリ゚チレンのF.R.倀は8.2であ
り、ヘキサン抜出量は0.25wtであ぀た。
The FR value of the obtained polyethylene was 8.2, and the hexane extraction amount was 0.25 wt%.

実斜䟋  実斜䟋においお、テトラむ゜プロポキシチタ
ン5.6gに代えお、四塩化チタン3.8gを甚いたこず
を陀いおは実斜䟋ず同様の操䜜で觊媒成分を合
成し、固䜓粉末1gに40mgのチタンを含有する固
䜓粉末(A)を埗た。
Example 5 A catalyst component was synthesized in the same manner as in Example 1, except that 3.8 g of titanium tetrachloride was used instead of 5.6 g of tetraisopropoxytitanium, and 40 mg was added to 1 g of solid powder. A solid powder (A) containing titanium was obtained.

固䜓粉末(A)より実斜䟋ず同様に固䜓觊媒成分
(B)を合成した。
A solid catalyst component was prepared from the solid powder (A) in the same manner as in Example 1.
(B) was synthesized.

䞊蚘の固䜓粉末(B)を䜿甚し、実斜䟋ず同様の
操䜜で気盞重合を行い、メルトむンデツクス1.2、
かさ比重0.39、密床0.9195の゚チレン共重合䜓を
埗た。觊媒掻性は528000g共重合䜓gTiず極め
お高掻性であ぀た。
Using the above solid powder (B), gas phase polymerization was performed in the same manner as in Example 1, and the melt index was 1.2.
An ethylene copolymer with a bulk specific gravity of 0.39 and a density of 0.9195 was obtained. The catalyst activity was extremely high at 528,000g copolymer/gTi.

10時間の連続運転ののちオヌトクレヌブを開攟
し、内郚の点怜を行぀たが内壁および撹拌機には
党くポリマヌは付着しおおらず、きれいであ぀
た。
After 10 hours of continuous operation, the autoclave was opened and the interior was inspected, but the inner walls and stirrer were clean with no polymer attached at all.

たたこの共重合䜓はF.R.倀は7.4であり、フむ
ルムを沞隰ヘキサン䞭で10時間抜出したずころ、
ヘキサン抜出量は1.5wtであり、きわめお抜出
分が少なか぀た。
In addition, this copolymer has an FR value of 7.4, and when the film was extracted in boiling hexane for 10 hours,
The amount of hexane extracted was 1.5wt%, which was an extremely small amount.

実斜䟋  実斜䟋においお、テトラむ゜プロポキシチタ
ン5.6gに代えお、四塩化チタン3.8gおよびトリ゚
トキシバナゞル1.5gを甚いたこずを陀いおは実斜
䟋ず同様の操䜜で合成し、固䜓粉末1gに39mg
のチタンおよび14mgのバナゞりムを含有する固䜓
粉末(A)を埗た。
Example 6 A solid powder was synthesized in the same manner as in Example 1, except that 3.8 g of titanium tetrachloride and 1.5 g of triethoxyvanadyl were used in place of 5.6 g of tetraisopropoxy titanium. 39mg in 1g
A solid powder (A) was obtained containing 50 mg of titanium and 14 mg of vanadium.

固䜓粉末(A)より実斜䟋ず同様に固䜓觊媒成分
(B)を合成した。
A solid catalyst component was prepared from the solid powder (A) in the same manner as in Example 1.
(B) was synthesized.

䞊蚘の固䜓粉末(B)を䜿甚し、実斜䟋ず同様の
操䜜で気盞重合を行い、メルトむンデツクス0.8、
かさ比重0.41、密床0.9211の゚チレン共重合䜓を
埗た。觊媒掻性は466000g共重合䜓gTiず極め
お高掻性であ぀た。
Using the above solid powder (B), gas phase polymerization was performed in the same manner as in Example 1, and the melt index was 0.8.
An ethylene copolymer with a bulk specific gravity of 0.41 and a density of 0.9211 was obtained. The catalyst activity was extremely high at 466,000g copolymer/gTi.

10時間に連続運転ののちオヌトクレヌブを開攟
し、内郚の点怜を行぀たが内壁および撹拌機には
党くポリマヌは付着しおおらず、きれいであ぀
た。
After 10 hours of continuous operation, the autoclave was opened and the interior was inspected, but the inner walls and stirrer were clean with no polymer attached at all.

たたこの共重合䜓のF.R.倀は7.2であり、フむ
ルムを沞隰ヘキサン䞭で10時間抜出したずころ、
ヘキサン抜出量は1.1wtであり、きわめお抜出
分が少なか぀た。
The FR value of this copolymer was 7.2, and when the film was extracted in boiling hexane for 10 hours,
The amount of hexane extracted was 1.1wt%, which was an extremely small amount.

実斜䟋  実斜䟋で蚘した装眮により以䞋の気盞重合を
行぀た。60℃に調補したオヌトクレヌブに実斜䟋
で埗られた固䜓粉末(A)80mghrおよびトリ゚チ
ルアルミニりム5mmolhrの速床で䟛絊し、た
た、オヌトクレヌブ䞭にプロピレンを䟛絊し、ブ
ロワヌにより系内のガスを埪環させお党圧Kg
cm2で重合を行぀た。生成したポリプロピレンはか
さ比重0.38であ぀た。たた、觊媒掻性は165000g
ポリプロピレンgTiであ぀た。
Example 7 The following gas phase polymerization was carried out using the apparatus described in Example 1. The solid powder (A) obtained in Example 1 was fed into an autoclave prepared at 60°C at a rate of 80 mg/hr and triethylaluminum at a rate of 5 mmol/hr. Propylene was also fed into the autoclave, and the gas in the system was removed using a blower. is circulated to a total pressure of 7 kg/
Polymerization was carried out in cm 2 . The polypropylene produced had a bulk specific gravity of 0.38. Also, the catalyst activity is 165000g
It was polypropylene/gTi.

10時間の連続運転ののちオヌトクレヌブを解攟
し、内郚の点怜を行぀たが内壁および撹拌機には
党くポリマヌは付着しおおらず、きれいであ぀
た。
After 10 hours of continuous operation, the autoclave was opened and the interior was inspected, but the inner walls and stirrer were clean with no polymer attached at all.

【図面の簡単な説明】[Brief explanation of drawings]

第図は本発明のオレフむン重合における觊媒
調補の䞀䟋を瀺すフロヌチダヌト図面である。
FIG. 1 is a flowchart showing an example of catalyst preparation in olefin polymerization of the present invention.

Claims (1)

【特蚱請求の範囲】  (1) ゞハロゲン化マグネシりム、 (2) 䞀般匏SiORnX4-nで衚わされる化合物、 および (3) チタン化合物たたはチタン化合物ずバナゞ
りム化合物を反応させお埗られる反応生成物
を、さらに (4) 䞀般匏AlRpX3-pで衚わされる化合物 ず反応させお埗られる固䜓物質 および  䞀般匏AlR3で衚わされる化合物 からなる觊媒䞊蚘匏䞭、は炭玠数〜24の炭
化氎玠残基、はハロゲン原子を瀺し、≊
、≊≊およびであるを甚い
お、オレフむンを重合あるいは共重合するこずを
特城ずするポリオレフむンの補造方法。
[Claims] 1 [A] (1) Magnesium dihalide, (2) a compound represented by the general formula Si(OR) n X 4-n , and (3) a titanium compound or a titanium compound and a vanadium compound reacted. The reaction product obtained by the reaction is further reacted with (4) a compound represented by the general formula AlR p X 3-p , and [B] a catalyst consisting of the compound represented by the general formula AlR In the formula, R is a hydrocarbon residue having 1 to 24 carbon atoms, X is a halogen atom, and 0<n≩
3, 0≩m≩4 and 0<p<3.
JP9674781A 1981-06-24 1981-06-24 Preparation of polyolefin Granted JPS57212209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9674781A JPS57212209A (en) 1981-06-24 1981-06-24 Preparation of polyolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9674781A JPS57212209A (en) 1981-06-24 1981-06-24 Preparation of polyolefin

Publications (2)

Publication Number Publication Date
JPS57212209A JPS57212209A (en) 1982-12-27
JPS6412287B2 true JPS6412287B2 (en) 1989-02-28

Family

ID=14173264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9674781A Granted JPS57212209A (en) 1981-06-24 1981-06-24 Preparation of polyolefin

Country Status (1)

Country Link
JP (1) JPS57212209A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0608137A2 (en) 1993-01-20 1994-07-27 Nippon Oil Company, Limited Process for producing polyethylene material of high strength and high elastic modulus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5695869B2 (en) * 2010-09-28 2015-04-08 日本ポリ゚チレン株匏䌚瀟 Ziegler-Natta catalyst reforming method, modified Ziegler-Natta catalyst, olefin polymerization method using the same, and obtained olefin polymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0608137A2 (en) 1993-01-20 1994-07-27 Nippon Oil Company, Limited Process for producing polyethylene material of high strength and high elastic modulus

Also Published As

Publication number Publication date
JPS57212209A (en) 1982-12-27

Similar Documents

Publication Publication Date Title
JPS6411651B2 (en)
US4507448A (en) Process for the production of polyolefins
JPS647086B2 (en)
JPS647087B2 (en)
JPH0134447B2 (en)
JPS647085B2 (en)
JPH0336841B2 (en)
JPS6412287B2 (en)
JPS648643B2 (en)
JPS6412286B2 (en)
JPS6412289B2 (en)
JPS6412285B2 (en)
JPS6412288B2 (en)
JPH0149287B2 (en)
JPH0149282B2 (en)
JPH0480926B2 (en)
JPS648642B2 (en)
JP2788077B2 (en) Alkene polymerization method and catalyst composition used in the method
JPS5812889B2 (en) Polyethylene material
JPS6410529B2 (en)
JPS6067505A (en) Production of polyolefin
GB2104531A (en) Process for preparing polyolefins
JPH023406B2 (en)
JPH0149164B2 (en)
JPS6412284B2 (en)