JPS6412288B2 - - Google Patents

Info

Publication number
JPS6412288B2
JPS6412288B2 JP9839081A JP9839081A JPS6412288B2 JP S6412288 B2 JPS6412288 B2 JP S6412288B2 JP 9839081 A JP9839081 A JP 9839081A JP 9839081 A JP9839081 A JP 9839081A JP S6412288 B2 JPS6412288 B2 JP S6412288B2
Authority
JP
Japan
Prior art keywords
polymerization
hexane
titanium
general formula
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9839081A
Other languages
Japanese (ja)
Other versions
JPS581705A (en
Inventor
Nobuyuki Kuroda
Tooru Nakamura
Yutaka Shikatani
Kazutoshi Nomyama
Kazuo Matsura
Mitsuharu Myoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP9839081A priority Critical patent/JPS581705A/en
Publication of JPS581705A publication Critical patent/JPS581705A/en
Publication of JPS6412288B2 publication Critical patent/JPS6412288B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】 本発明は新芏な重合觊媒によるポリオレフむン
の補造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing polyolefin using a novel polymerization catalyst.

埓来この皮の技術分野においおは、特公昭39−
12105号公報によりハロゲン化マグネシりムにチ
タン化合物などの遷移金属化合物を担持させた觊
媒が知られおおり、さらにベルギヌ特蚱第742112
号によりハロゲン化マグネシりムず四塩化チタン
ずを共粉砕した觊媒が知られおいる。
Conventionally, in this type of technical field, the
A catalyst in which a transition metal compound such as a titanium compound is supported on magnesium halide is known from Publication No. 12105, and further Belgian Patent No. 742112
A catalyst made by co-pulverizing magnesium halide and titanium tetrachloride is known.

しかしながらポリオレフむンの補造䞊、觊媒掻
性はできるだけ高いこずが望たしく、この芳点か
らみるず特公昭39−12105号公報蚘茉の方法では
重合掻性はただ䜎く、ベルギヌ特蚱第742112号の
方法では重合掻性は盞圓皋床高くな぀おいるがな
お改良が望たれる。
However, in the production of polyolefins, it is desirable for the catalyst activity to be as high as possible, and from this point of view, the method described in Japanese Patent Publication No. 39-12105 has a still low polymerization activity, while the method described in Belgian Patent No. 742112 has a fairly high polymerization activity. Although the cost has increased, improvements are still desired.

たた、生成ポリオレフむンの物性からみるず、
䟋えばフむルムを成圢した堎合、できるだけ透明
性が良く、衝撃匷床が匷いこずが芁求され、暹脂
の分子量分垃はできるだけ狭いこずが匷く望たれ
おおり、このような芳点からも先に述べたベルギ
ヌ特蚱742112号の方法では分子量分垃が十分に狭
くなく、なお䞀局の改良が望たれおいた。
Also, from the physical properties of the polyolefin produced,
For example, when molding a film, it is required to have as good transparency as possible and strong impact strength, and it is strongly desired that the molecular weight distribution of the resin be as narrow as possible.From this point of view, the above-mentioned Belgian patent 742112 The method of this issue did not provide a sufficiently narrow molecular weight distribution, and further improvements were desired.

たた、ポリオレフむンの補造䞊生成ポリマヌの
かさ比重はできるだけ高いこずが生産性の面から
望たしい。この芳点からみるず前蚘特公昭39−
12105号公報蚘茉の方法では生成ポリマヌのかさ
比重は䜎くか぀重合掻性も満足すべき状態ではな
く、たたベルギヌ特蚱第742112号の方法では重合
掻性は高いが生成ポリマヌのかさ比重は䜎いずい
う欠点があり改良が望たれる。
Further, in the production of polyolefin, it is desirable that the bulk specific gravity of the produced polymer be as high as possible from the viewpoint of productivity. From this point of view, the above-mentioned special public service
In the method described in Publication No. 12105, the bulk specific gravity of the produced polymer is low and the polymerization activity is also unsatisfactory, while in the method of Belgian Patent No. 742112, although the polymerization activity is high, the bulk specific gravity of the produced polymer is low. Improvement is desired.

本発明は、䞊蚘の欠点を改良し、重合掻性が高
く、か぀分子量分垃が狭く、さらにかさ比重の高
いポリマヌを高収率で埗るこずができ、か぀連続
重合をきわめお容易に実斜できる新芏な重合觊媒
の補造方法ならびに該重合觊媒によるオレフむン
の重合、たたは共重合方法に関するものであり、
重合掻性はきわめお高いため重合時のモノマヌ分
圧も䜎く、さらに生成ポリマヌのかさ比重が高い
ため、生産性を向䞊させるこずができ、たた重合
終了埌の生成ポリマヌ䞭の觊媒残枣量はきわめお
少量ずなり、したが぀おポリオレフむン補造プロ
セスにおいお觊媒陀去工皋が省略できるためポリ
マヌ凊理工皋が簡玠化され、党䜓ずしおきわめお
経枈的なポリオレフむンの補造方法を提䟛するも
のである。
The present invention improves the above-mentioned drawbacks, and provides a novel polymerization method that can obtain polymers with high polymerization activity, narrow molecular weight distribution, and high bulk specific gravity in high yield, and can be carried out extremely easily in continuous polymerization. The present invention relates to a method for producing a catalyst and a method for polymerizing or copolymerizing an olefin using the polymerization catalyst,
Since the polymerization activity is extremely high, the monomer partial pressure during polymerization is low, and the bulk specific gravity of the produced polymer is high, so productivity can be improved, and the amount of catalyst residue in the produced polymer after polymerization is extremely small. Therefore, the catalyst removal step can be omitted in the polyolefin manufacturing process, thereby simplifying the polymer treatment process and providing an extremely economical polyolefin manufacturing method as a whole.

さらに、本発明の長所をあげれば、生成ポリマ
ヌの粒埄の芳点からみおかさ比重が高いにもかか
わらず、粗倧粒子および50Ό以䞋の埮粒子が少な
いため、連続重合反応が容易になり、か぀粉䜓茞
送などのポリマヌ粒子の取り扱いが容易になるこ
ずである。
Furthermore, the advantages of the present invention are that although the bulk specific gravity of the produced polymer is high in terms of particle size, there are few coarse particles and fine particles of 50Ό or less, so continuous polymerization reaction is facilitated, and powder This makes it easier to handle the polymer particles, such as transporting them.

さらに、本発明の觊媒を甚いお埗られるポリマ
ヌは分子量分垃がきわめお狭く、ヘキサン抜出量
が少ないなど䜎重合物の副生が非垞に少ないこず
も特城である。したが぀お、䟋えばフむルムグレ
ヌドなどでは耐ブロツキング性に優れおいるなど
良奜な品質の補品を埗るこずができる。
Furthermore, the polymer obtained using the catalyst of the present invention has an extremely narrow molecular weight distribution and is characterized by extremely low by-products of low polymers, such as a small amount of hexane extraction. Therefore, it is possible to obtain a product of good quality, such as film grade, which has excellent blocking resistance.

本発明の觊媒は、これらの倚くの特城を備え、
か぀前蚘の先行技術の欠点を改良した新芏な觊媒
系を提䟛するものであり、本発明の觊媒を甚いる
こずによりこれらの諞点を容易に達成できるこず
は驚くべきこずず蚀わねばならない。
The catalyst of the present invention has many of these characteristics,
Moreover, the present invention provides a novel catalyst system that improves the drawbacks of the prior art described above, and it must be said that it is surprising that these points can be easily achieved by using the catalyst of the present invention.

以䞋に本発明を具䜓的に説明する。すなわち、
本発明は、 〔〕(1) ゞハロゲン化マグネシりム以䞋ハロ
ゲン化マグネシりムず称する (2) 䞀般匏AlORoX3-oで衚わされる化合物、 (3) 䞀般匏SiORnX4-nで衚わされる化合物、 および (4) チタン化合物たたはチタン化合物バナゞり
ム化合物を反応させお埗られる反応生成物
を、さらに (5) 䞀般匏AlRpX3-pで衚わされる化合物ず反
応させお埗られる固䜓物質 および 〔〕 䞀般匏AlR3で衚わされる化合物 からなる觊媒䞊蚘匏䞭、は炭玠数〜24の炭
化氎玠残基、はハロゲン原子を瀺し、≊
、≊≊およびであるを甚い
お、オレフむンを重合あるいは共重合するこずを
特城ずするポリオレフむンの補造方法に存する。
The present invention will be specifically explained below. That is,
[A] (1) Magnesium dihalide (hereinafter referred to as magnesium halide) (2) A compound represented by the general formula Al(OR) o x 3-o , (3) A compound represented by the general formula Si(OR) n A reaction product obtained by reacting a compound represented by X 4-n and (4) a titanium compound or a titanium compound vanadium compound is further reacted with ( 5 ) a compound represented by the general formula AlR p and [B] a catalyst consisting of a compound represented by the general formula AlR3 (in the above formula, R is a hydrocarbon residue having 1 to 24 carbon atoms, X is a halogen atom, and 0<n≩
3, 0≩m≩4 and 0<p<3.

本発明に䜿甚されるハロゲン化マグネシりムず
しおは実質的に無氎のものが甚いられ、フツ化マ
グネシりム、塩化マグネシりム、臭化マグネシり
ム、ペり化マグネシりムがあげられるがずくに塩
化マグネシりムが奜たしい。
The magnesium halide used in the present invention is substantially anhydrous and includes magnesium fluoride, magnesium chloride, magnesium bromide, and magnesium iodide, with magnesium chloride being particularly preferred.

本発明においお䜿甚される䞀般匏AlORo
X3-oここでは炭玠数〜24、奜たしくは〜
12のアルキル基、アリヌル基、アラルキル基等の
炭化氎玠残基を、特に奜たしくは炭玠数〜の
アルキル基を、はハロゲン原子を瀺す。は
≊≊であるで衚わされる化合物ずしおは、
アルミニりムトリメトキシド、アルミニりムトリ
゚トキシド、ゞ゚トキシモノクロロアルミニり
ム、モノ゚トキシゞクロロアルミニりム、モノメ
トキシゞ゚トキシアルミニりム、アルミニりムト
リ―プロポキシド、アルミニりムトリむ゜プロ
ポキシド、ゞむ゜プロポキシモノクロロアルミニ
りム、モノむ゜プロポキシゞクロロアルミニり
ム、モノメトキシゞむ゜プロポキシアルミニり
ム、アルミニりムトリ―ブトキシド、アルミニ
りムトリsec―ブトキシド、アルミニりム―ブ
トキシドがあげられるが、ずくにアルミニりムト
リメトキシド、アルミニりムトリ゚トキシドが奜
たしい。
General formula Al(OR) o used in the present invention
X 3-o (here, R has 1 to 24 carbon atoms, preferably 1 to 24 carbon atoms)
Hydrocarbon residues such as 12 alkyl groups, aryl groups, and aralkyl groups are particularly preferred, and an alkyl group having 1 to 4 carbon atoms is particularly preferred, and X represents a halogen atom. n is 0
≩n≩4),
Aluminum trimethoxide, aluminum triethoxide, diethoxymonochloroaluminum, monoethoxydichloroaluminum, monomethoxydiethoxyaluminum, aluminum tri-n-propoxide, aluminum triisopropoxide, diisopropoxymonochloroaluminum, monoisopropoxydichloroaluminum , monomethoxydiisopropoxyaluminum, aluminum tri-n-butoxide, aluminum trisec-butoxide, and aluminum t-butoxide, with aluminum trimethoxide and aluminum triethoxide being particularly preferred.

本発明においお䜿甚される䞀般匏SiORn
X4-nここでは炭玠数〜24のアルキル基、ア
リヌル基、アラルキル基等の炭化氎玠残基を、
はハロゲン原子を瀺す。は≊≊である
で衚わされる化合物ずしおは、四塩化ケむ玠、モ
ノメトキシトリクロロシラン、モノ゚トキシトリ
クロロシラン、モノむ゜プロポキシトリクロロシ
ラン、モノ―ブトキシトリクロロシラン、モノ
ペントキシトリクロロシラン、モノオクトキシト
リクロロシラン、モノステアロキシトリクロロシ
ラン、モノプノキシトリクロロシラン、モノ
―メチルプノキシトリクロロシラン、ゞメトキ
シゞクロロシラン、ゞ゚トキシゞクロロシラン、
ゞむ゜プロポキシゞクロロシラン、ゞ―ブトキ
シゞクロロシラン、ゞオクトキシゞクロロシラ
ン、トリメトキシモノクロロシラン、トリ゚トキ
シモノクロロシラン、トリむ゜プロポキシモノク
ロロシラン、トリ―ブトキシモノクロロシラ
ン、トリsec―ブトキシモノクロロシラン、テト
ラ゚トキシシラン、テトラむ゜プロポキシシラン
を挙げるこずができる。
General formula Si(OR) n used in the present invention
X 4-n (Here, R is a hydrocarbon residue such as an alkyl group, aryl group, or aralkyl group having 1 to 24 carbon atoms,
indicates a halogen atom. m is 0≩m≩4)
Examples of compounds represented by include silicon tetrachloride, monomethoxytrichlorosilane, monoethoxytrichlorosilane, monoisopropoxytrichlorosilane, mono n-butoxytrichlorosilane, monopentoxytrichlorosilane, monooctoxytrichlorosilane, monostearoxytrichlorosilane, Chlorosilane, monophenoxytrichlorosilane, monop
-Methylphenoxytrichlorosilane, dimethoxydichlorosilane, diethoxydichlorosilane,
Diisopropoxydichlorosilane, di-n-butoxydichlorosilane, dioctoxydichlorosilane, trimethoxymonochlorosilane, triethoxymonochlorosilane, triisopropoxymonochlorosilane, tri-n-butoxymonochlorosilane, trisec-butoxymonochlorosilane, tetraethoxy Examples include silane and tetraisopropoxysilane.

本発明に䜿甚されるチタン化合物たたはチタン
化合物バナゞりム化合物ずしおは、これら金属の
ハロゲン化物、アルコキシハロゲン化物、アルコ
キシド、ハロゲン化酞化物等を挙げるこずができ
る。チタン化合物ずしおは䟡のチタン化合物ず
䟡のチタン化合物が奜適であり、䟡のチタン
化合物ずしおは具䜓的には䞀般匏TiORqX4-q
ここでは炭玠数〜20のアルキル基、アリヌ
ル基たたはアラルキル基等の炭化氎玠残基を瀺
し、はハロゲン原子を瀺す。は≊≊で
ある。で瀺されるものが奜たしく、四塩化チタ
ン、四臭化チタン、四ペり化チタン、モノメトキ
シトリクロロチタン、ゞメトキシゞクロロチタ
ン、トリメトキシモノクロロチタン、テトラメト
キシチタン、モノ゚トキシトリクロロチタン、ゞ
゚トキシゞクロロチタン、トリ゚トキシモノクロ
ロチタン、テトラ゚トキシチタン、モノむ゜プロ
ポキシトリクロロチタン、ゞむ゜プロポキシゞク
ロロチタン、トリむ゜プロポキシモノクロロチタ
ン、テトラむ゜プロポキシチタン、モノブトキシ
トリクロロチタン、ゞブトキシゞクロロチタン、
モノベントキシトリクロロチタン、モノプノキ
シトリクロロチタン、ゞプノキシゞクロロチタ
ン、トリプノキシモノクロロチタン、テトラフ
゚ノキシチタン等を挙げるこずができる。䟡の
チタン化合物ずしおは、四塩化チタン、四臭化チ
タン等の四ハロゲン化チタンを氎玠、アルミニり
ム、チタンあるいは呚期埋〜族金属の有機金
属化合物により還元しお埗られる䞉ハロゲン化チ
タンが挙げられる。たた䞀般匏TiORrX4-rこ
こでは炭玠数〜20のアルキル基、アリヌル基
たたはアラルキル基等の炭化氎玠残基を瀺し、
はハロゲン原子を瀺す。はである。
で瀺される䟡のハロゲン化アルコキシチタンを
呚期埋衚〜族金属の有機金属化合物により還
元しお埗られる䟡のチタン化合物が挙げられ
る。バナゞりム化合物ずしおは、四塩化バナゞり
ム、四臭化バナゞりム、四ペり化バナゞりム、テ
トラ゚トキシバナゞりムの劂き䟡のバナゞりム
化合物、オキシ䞉塩化バナゞりム、゚トキシゞク
ロルバナゞル、トリ゚トキシバナゞル、トリブト
キシバナゞルの劂き䟡のバナゞりム化合物、䞉
塩化バナゞりム、バナゞりムトリ゚トキシドの劂
き䟡のバナゞりム化合物が挙げられる。
Examples of the titanium compound or titanium compound vanadium compound used in the present invention include halides, alkoxy halides, alkoxides, and halogenated oxides of these metals. As the titanium compound, a tetravalent titanium compound and a trivalent titanium compound are suitable, and the tetravalent titanium compound specifically has the general formula Ti(OR) q X 4-q
(Here, R represents a hydrocarbon residue such as an alkyl group, aryl group, or aralkyl group having 1 to 20 carbon atoms, and X represents a halogen atom. q is 0≩q≩4.) Preferred are titanium tetrachloride, titanium tetrabromide, titanium tetraiodide, monomethoxytrichlorotitanium, dimethoxydichlorotitanium, trimethoxymonochlorotitanium, tetramethoxytitanium, monoethoxytrichlorotitanium, diethoxydichlorotitanium, triethoxymonochlorotitanium, Tetraethoxytitanium, monoisopropoxytrichlorotitanium, diisopropoxydichlorotitanium, triisopropoxymonochlorotitanium, tetraisopropoxytitanium, monobutoxytrichlorotitanium, dibutoxydichlorotitanium,
Examples include monobenoxytrichlorotitanium, monophenoxytrichlorotitanium, diphenoxydichlorotitanium, triphenoxymonochlorotitanium, and tetraphenoxytitanium. Examples of trivalent titanium compounds include titanium trihalides obtained by reducing titanium tetrahalides such as titanium tetrachloride and titanium tetrabromide with hydrogen, aluminum, titanium, or organometallic compounds of group metals of the periodic table. It will be done. In addition, the general formula Ti(OR ) r
indicates a halogen atom. r is 0<r<4. )
A trivalent titanium compound obtained by reducing a tetravalent alkoxy titanium halide represented by the following formula with an organometallic compound of a group I metal of the periodic table can be mentioned. Examples of vanadium compounds include tetravalent vanadium compounds such as vanadium tetrachloride, vanadium tetrabromide, vanadium tetraiodide, and tetraethoxyvanadium; Examples include trivalent vanadium compounds such as trivalent vanadium compounds, vanadium trichloride, and vanadium triethoxide.

本発明においおは、䟡のチタン化合物が最も
奜たしい。
In the present invention, tetravalent titanium compounds are most preferred.

本発明をさらに効果的にするために、チタン化
合物ずバナゞりム化合物を䜵甚するずきの
Tiモル比は〜0.01の範囲が奜たしい。
In order to make the present invention even more effective, when a titanium compound and a vanadium compound are used together, V/
The Ti molar ratio is preferably in the range of 2/1 to 0.01/1.

本発明における、 (1) ハロゲン化マグネシりム、 (2) 䞀般匏AlORoX3-oで衚わされる化合物、 (3) 䞀般匏SiORnX4-nで衚わされる化合物 および (4) チタン化合物たたはチタン化合物バナゞりム
化合物 を反応させる方法ずしおは特に制限はなく、䞍掻
性溶媒の存圚䞋あるいは䞍存圚䞋に枩床20〜400
℃、奜たしくは50〜300℃の加熱䞋に、通垞、
分〜20時間接觊させるこずにより反応させる方
法、共粉砕凊理により反応させる方法、あるいは
これらの方法を適宜組み合わせるこずにより反応
させおもよい。
In the present invention, (1) magnesium halide, (2) a compound represented by the general formula Al(OR) o X 3-o , (3) a compound represented by the general formula Si(OR) n X 4-n , and ( 4) There are no particular restrictions on the method for reacting titanium compounds or titanium compound-vanadium compounds, and the reaction may be carried out at a temperature of 20 to 400 ℃ in the presence or absence of an inert solvent.
℃, preferably 50 to 300℃ under heating, usually 5
The reaction may be carried out by contacting for minutes to 20 hours, by co-pulverization, or by an appropriate combination of these methods.

たた、成分(1)〜(4)の反応順序に぀いおも特に制
限はなく、成分を同時に反応させおもよく、
成分を反応させた埌、他の成分を反応させおも
よく、たた成分を反応させた埌、他の成分を
反応させおもよく、成分を反応させた埌、次の
成分を反応させ、次いで残りの成分を反応さ
せおもよい。
Furthermore, there is no particular restriction on the reaction order of components (1) to (4), and the four components may be reacted simultaneously, or the three components may be reacted simultaneously.
After reacting the components, one other component may be reacted, or after reacting two components, the other two components may be reacted, and after reacting the two components, the next one component may be reacted. may be reacted, and then the remaining one component may be reacted.

このずき䜿甚する䞍掻性溶媒は特に制限される
ものではなく、通垞チグラヌ型觊媒を䞍掻性化し
ない液状有機化合物を䜿甚するこずができる。こ
れらの具䜓䟋ずしおは、プロパン、ブタン、ペン
タン、ヘキサン、ヘプタン、オクタン、ベンれ
ン、トル゚ン、キシレン、シクロヘキサン等の各
皮脂肪族飜和炭化氎玠、芳銙族炭化氎玠、脂環族
炭化氎玠、および゚タノヌル、ゞ゚チル゚ヌテ
ル、テトラヒドロフラン、酢酞゚チル、安息銙酞
゚チル等のアルコヌル類、゚ヌテル類、゚ステル
類を挙げるこずができる。
The inert solvent used at this time is not particularly limited, and any liquid organic compound that does not normally inactivate the Ziegler type catalyst can be used. Specific examples of these include propane, butane, pentane, hexane, heptane, octane, benzene, toluene, xylene, various aliphatic saturated hydrocarbons such as cyclohexane, aromatic hydrocarbons, alicyclic hydrocarbons, and ethanol and diethyl. Examples include alcohols, ethers, and esters such as ether, tetrahydrofuran, ethyl acetate, and ethyl benzoate.

共粉砕に甚いる装眮はずくに限定はされない
が、通垞ボヌルミル、振動ミル、ロツドミル、衝
撃ミルなどが䜿甚されその粉砕方匏に応じおの混
合順序、粉砕時間、粉砕枩床などの条件は特に限
定されるものではなく圓業者にず぀お容易に定め
られるものである。通垞℃〜200℃、奜たしく
は20℃〜100℃の枩床で0.5時間〜30時間共粉砕す
るこずが望たしい。もちろん共粉砕操䜜は䞍掻性
ガス雰囲気䞭で行なうべきであり、たた湿気はで
きる限り避けるべきである。
The equipment used for co-pulverization is not particularly limited, but ball mills, vibration mills, rod mills, impact mills, etc. are usually used, and conditions such as mixing order, grinding time, and grinding temperature are particularly limited depending on the grinding method. rather, it can be easily determined by a person skilled in the art. It is desirable to co-mill at a temperature of usually 0°C to 200°C, preferably 20°C to 100°C for 0.5 to 30 hours. Of course, the co-grinding operation should be carried out in an inert gas atmosphere and moisture should be avoided as much as possible.

ハロゲン化マグネシりムず䞀般匏AlORo
X3-oで衚わされる化合物ずの混合割合は、アル
ミニりム化合物の量が䜙りにも少なすぎおもたた
逆にあたりにも倚すぎおも重合掻性は䜎䞋する傟
向にありMgAlモル比が0.001〜20、奜
たしくは0.01〜の範囲内であり、最も
奜たしくは0.05〜0.5の範囲が高掻性の
觊媒の補造のために望たしい。
Magnesium halide and general formula Al(OR) o
The mixing ratio with the compound represented by X 3-o is such that polymerization activity tends to decrease if the amount of the aluminum compound is too small or too large; The range is from 0.001 to 1/20, preferably from 1/0.01 to 1/1, and most preferably from 1/0.05 to 1/0.5 for the production of highly active catalysts.

本発明においお、䞀般匏SiORnX4-nで衚わ
される化合物の䜿甚量は䜙り倚すぎおもたた少な
すぎでも添加効果は望めず、通垞ハロゲン化マグ
ネシりム100gに察しお0.1〜50g、奜たしくは0.5
〜10gの範囲内である。
In the present invention, the amount of the compound represented by the general formula Si(OR) n Preferably 0.5
~10g.

たた、チタン化合物たたはチタン化合物バナゞ
りム化合物の量は成分(1)〜(4)を反応させお埗られ
る反応生成物䞭に含たれるチタンずバナゞりムが
0.5〜20重量の範囲内になるように調節するの
が最も奜たしく、バランスの良いチタンずバナゞ
りム圓りの掻性、固䜓圓りの掻性を埗るためには
〜10重量の範囲がずくに望たしい。
In addition, the amount of titanium compound or titanium compound vanadium compound is the amount of titanium and vanadium contained in the reaction product obtained by reacting components (1) to (4).
It is most preferable to adjust the content to within a range of 0.5 to 20% by weight, and a range of 1 to 10% by weight is particularly desirable in order to obtain a well-balanced activity per titanium and vanadium and activity per solid.

本発明においおは、(1)ハロゲン化マグネシり
ム、(2)䞀般匏AlORoX3-oで衚わされる化合物、
(3)䞀般匏SiORnX4-nで衚わされる化合物、お
よび(4)チタン化合物たたはチタン化合物バナゞり
ム化合物を反応させお埗られる反応生成物を、さ
らに(5)䞀般匏AlRpX3-pで衚わされる化合物ず反
応させる。このずきの䞀般匏AlRpX3-pで衚わさ
れる化合物の䜿甚量は、AlRpX3-pチタン化合
物たたはチタン化合物バナゞりム化合物のモル比
が0.01〜100であり、奜たしくは0.3〜50
である。たた、このずきの反応方法は特に制限は
なく、䟋えば䞍掻性炭化氎玠の存圚䞋で反応させ
おもよいし、共粉砕凊理により反応させおもよ
い。反応枩床ずしおは〜100℃の範囲が奜たし
く、たた反応時間ずしおは分〜10時間が奜たし
い。
In the present invention, (1) magnesium halide, (2) a compound represented by the general formula Al(OR) o X 3-o ,
(3) A reaction product obtained by reacting a compound represented by the general formula Si( OR ) n React with the compound represented by 3-p . At this time, the amount of the compound represented by the general formula AlR p X 3 -p to be used is such that the molar ratio of AlR p 0.3~50
It is. Further, the reaction method at this time is not particularly limited, and for example, the reaction may be carried out in the presence of an inert hydrocarbon, or the reaction may be carried out by co-pulverization treatment. The reaction temperature is preferably in the range of 0 to 100°C, and the reaction time is preferably in the range of 5 minutes to 10 hours.

本発明に䜿甚される䞀般匏AlRpX3-pここで
は炭玠数〜24のアルキル基、アリヌル基、アラ
ルキル基等の炭化氎玠残基を、特に奜たしくは炭
玠数〜12のアルキル基を瀺し、はハロゲン原
子を瀺す。はである。で衚わされ
る化合物ずしおは、ゞメチルアルミニりムクロラ
むド、ゞ゚チルアルミニりムクロラむド、ゞ゚チ
ルアルミニりムブロマむド、ゞ゚チルアルミニり
ムアむオダむド、ゞ゚チルアルミニりムフロラむ
ド、ゞむ゜プロピルアルミニりムクロラむド、゚
チルアルミニりムゞクロラむド、゚チルアルミニ
りムセスキクロラむドおよびこれらの混合物等を
挙げるこずができる。
The general formula AlR p X 3-p used in the present invention (where R
represents a hydrocarbon residue such as an alkyl group, aryl group, or aralkyl group having 1 to 24 carbon atoms, particularly preferably an alkyl group having 1 to 12 carbon atoms, and X represents a halogen atom. p is 0<p<3. ) Examples of the compound represented by: dimethylaluminum chloride, diethylaluminium chloride, diethylaluminum bromide, diethylaluminium iodide, diethylaluminum fluoride, diisopropylaluminum chloride, ethylaluminum dichloride, ethylaluminum sesquichloride, and mixtures thereof. I can do it.

本発明に甚いられる䞀般匏AlR3ここでは炭
玠数〜24のアルキル基、アリヌル基、アラルキ
ル基等の炭化氎玠残基、特に奜たしくは炭玠数
〜12のアルキル基を瀺すで衚わされる化合物ず
しおは、トリ゚チルアルミニりム、トリむ゜プロ
ピルアルミニりム、トリむ゜ブチルアルミニり
ム、トリsec―ブチルアルミニりム、トリtert―
ブチルアルミニりム、トリヘキシルアルミニり
ム、トリオクチルアルミニりムおよびこれらの混
合物を挙げるこずができる。たた、䞀般匏AlR3
で衚わされる化合物ず共に、安息銙酞゚チル、
―たたは―トルむル酞゚チル、―アニス酞゚
チル等の有機カルボン酞゚ステルを䜵甚しお甚い
るこずもできる。
The general formula AlR 3 used in the present invention (where R is a hydrocarbon residue such as an alkyl group having 1 to 24 carbon atoms, an aryl group, an aralkyl group, particularly preferably a carbon number 1
-12 alkyl groups) are triethylaluminum, triisopropylaluminum, triisobutylaluminum, trisec-butylaluminum, tritert-
Mention may be made of butylaluminum, trihexylaluminum, trioctylaluminum and mixtures thereof. Also, the general formula AlR 3
With the compound represented by ethyl benzoate, o
-Or organic carboxylic acid esters such as ethyl p-toluate and ethyl p-anisate can also be used in combination.

䞀般匏AlR3で衚わされる化合物の䜿甚量は特
に制限はないが、通垞チタン化合物たたはチタン
化合物バナゞりム化合物に察しお0.1〜1000モル
倍䜿甚するこずができる。
The amount of the compound represented by the general formula AlR3 to be used is not particularly limited, but it can usually be used in an amount of 0.1 to 1000 times the mole of the titanium compound or the titanium compound vanadium compound.

本発明の觊媒を䜿甚しおのオレフむンの重合は
スラリヌ重合、溶液重合たたは気盞重合にお行う
こずができ、特に気盞重合に奜適に甚いるこずが
できる。重合反応は通垞のチグラヌ型觊媒による
オレフむン重合反応ず同様にしお行なわれる。す
なわち反応はすべお実質的に酞玠、氎などを絶぀
た状態で䞍掻性炭化氎玠の存圚䞋、あるいは䞍存
圚䞋で行なわれる。オレフむンの重合条件は枩床
は20ないし120℃、奜たしくは50ないし100℃であ
り、圧力は垞圧ないし70Kgcm2、奜たしくはな
いし60Kgcm2である。分子量の調節は重合枩床、
觊媒のモル比などの重合条件を倉えるこずによ぀
おもある皋床調節できるが重合系䞭に氎玠を添加
するこずにより効果的に行なわれる。もちろん、
本発明の觊媒を甚いお氎玠濃床、重合枩床など重
合条件の異な぀た段階ないしそれ以䞊の倚段階
の重合反応も䜕ら支障なく実斜できる。
Olefin polymerization using the catalyst of the present invention can be carried out by slurry polymerization, solution polymerization, or gas phase polymerization, and it can be particularly preferably used for gas phase polymerization. The polymerization reaction is carried out in the same manner as an ordinary olefin polymerization reaction using a Ziegler type catalyst. That is, all reactions are carried out in the presence or absence of inert hydrocarbons, substantially deprived of oxygen, water, and the like. The polymerization conditions for olefin are a temperature of 20 to 120°C, preferably 50 to 100°C, and a pressure of normal pressure to 70 kg/cm 2 , preferably 2 to 60 kg/cm 2 . Molecular weight can be adjusted by polymerization temperature,
Although it can be controlled to some extent by changing polymerization conditions such as the molar ratio of catalysts, it is effectively achieved by adding hydrogen to the polymerization system. of course,
Using the catalyst of the present invention, two or more multi-stage polymerization reactions with different polymerization conditions such as hydrogen concentration and polymerization temperature can be carried out without any problem.

本発明の方法はチグラヌ觊媒で重合できるすべ
おのオレフむンの重合に適甚可胜であり、特に炭
玠数〜12のα―オレフむンが奜たしく、たずえ
ば゚チレン、プロピレン、―ブテン、ヘキセン
―、―メチルペンテン―、オクテン―な
どのα―オレフむン類の単独重合および゚チレン
ずプロピレン、゚チレンず―ブテン、゚チレン
ずヘキセン―、゚チレンず―メチルペンテン
―、゚チレンずオクテン―、プロピレンず
―ブテンの共重合、および゚チレンず他の皮類
以䞊のα―オレフむンずの共重合などに奜適に䜿
甚される。
The method of the present invention is applicable to the polymerization of all olefins that can be polymerized with Ziegler's catalyst, and α-olefins having 2 to 12 carbon atoms are particularly preferred, such as ethylene, propylene, 1-butene, hexene-1,4-methyl Homopolymerization of α-olefins such as pentene-1 and octene-1, ethylene and propylene, ethylene and 1-butene, ethylene and hexene-1, ethylene and 4-methylpentene-1, ethylene and octene-1, propylene and 1
- Suitably used for copolymerization of butene, copolymerization of ethylene and two or more other α-olefins, etc.

たた、ポリオレフむンの改質を目的ずする堎合
のゞ゚ンず共重合も奜たしく行われる。この時䜿
甚されるゞ゚ン化合物の䟋ずしおはブタゞ゚ン、
―ヘキサゞ゚ン、゚チリデンノルボルネ
ン、ゞシクロペンタゞ゚ン等を挙げるこずができ
る。
Copolymerization with dienes is also preferably carried out for the purpose of modifying polyolefins. Examples of diene compounds used at this time are butadiene,
Examples include 1,4-hexadiene, ethylidene norbornene, and dicyclopentadiene.

以䞋に実斜䟋をのべるが、これらは本発明を実
斜するための説明甚のものであ぀お本発明はこれ
らに制限されるものではない。
Examples will be described below, but these are for illustrative purposes to carry out the present invention, and the present invention is not limited thereto.

実斜䟋  むンチ盎埄を有するステンレススチヌル
補ボヌルが25コ入぀た内容積400mlのステンレス
補ポツトに垂販の無氎塩化マグネシりム10g、ア
ルミニりムトリ゚トキシド4.3g、四塩化チタン
2.8gおよびテトラ゚トキシシラン3.1gを入れ、窒
玠雰囲気䞋、宀枩で16時間ボヌルミリングを行な
぀た。ボヌルミリング埌埗られた固䜓粉末(A)1g
には35mgのチタンが含たれおいた。
Example 1 10 g of commercially available anhydrous magnesium chloride, 4.3 g of aluminum triethoxide, and titanium tetrachloride were placed in a 400 ml stainless steel pot containing 25 stainless steel balls with a diameter of 1/2 inch.
2.8 g and 3.1 g of tetraethoxysilane were added, and ball milling was performed at room temperature for 16 hours under a nitrogen atmosphere. 1g of solid powder (A) obtained after ball milling
contained 35 mg of titanium.

぀いで窒玠眮換した300ml䞉぀口フラスコにヘ
キサン100ml、䞊蚘固䜓粉末(A)を10g、および゚
チルアルミニりムセスキクロリド1.8gAlTi
モル比を入れ、ヘキサン還流䞋で時間
反応させた。反応終了埌静眮し䞊柄液を陀去し、
぀いでヘキサンで固䜓成分を掗浄し、固䜓觊媒成
分(B)を埗た。
Next, 100 ml of hexane, 10 g of the above solid powder (A), and 1.8 g of ethylaluminum sesquichloride (Al/Ti
(molar ratio) = 2) and reacted for 2 hours under refluxing hexane. After the reaction is complete, let it stand and remove the supernatant.
The solid component was then washed with hexane to obtain a solid catalyst component (B).

重 合 気盞重合装眮ずしおはステンレス補オヌトクレ
ヌブを甚い、ブロワヌ、流量調節噚および也匏サ
むクロンでルヌプを぀くり、オヌトクレヌブはゞ
ダケツトに枩氎を流すこずにより枩床を調節し
た。
Polymerization A stainless steel autoclave was used as the gas phase polymerization apparatus, a loop was created with a blower, a flow rate controller, and a dry cyclone, and the temperature of the autoclave was adjusted by flowing hot water through the jacket.

80℃に調節したオヌトクレヌブに䞊蚘固䜓觊媒
成分(B)を50mghr、およびトリ゚チルアルミニり
ム2mmolhrの速床で䟛絊し、たた、オヌトク
レヌブ気盞䞭のブテン―゚チレン比モル
比を0.27に、さらに氎玠を党圧の15ずなるよ
うに調敎しながら各々のガスを䟛絊し、か぀ブロ
ワヌにより系内のガスを埪環させお党圧を10Kg
cm2・に保぀ようにしお重合を行な぀た。生成し
た゚チレン共重合䜓はかさ比重0.42、メルトむン
デツクスMI1.0、密床0.9198であ぀た。
The above solid catalyst component (B) was supplied to an autoclave adjusted to 80°C at a rate of 50 mg/hr and triethylaluminum 2 mmol/hr, and the butene-1/ethylene ratio (molar ratio) in the gas phase of the autoclave was set to 0.27. Furthermore, each gas was supplied while adjusting the hydrogen to 15% of the total pressure, and the gas in the system was circulated using a blower to reduce the total pressure to 10 kg/kg.
Polymerization was carried out while maintaining the temperature at cm 2 ·G. The produced ethylene copolymer had a bulk specific gravity of 0.42, a melt index (MI) of 1.0, and a density of 0.9198.

たた觊媒掻性は923000g共重合䜓gTiずきわ
めお高掻性であ぀た。
Furthermore, the catalyst activity was extremely high at 923,000 g copolymer/g Ti.

10時間の連続運転ののちオヌトクレヌブを解攟
し、内郚の点怜を行な぀たが内壁および撹拌機に
は党くポリマヌは付着しおおらず、きれいであ぀
た。
After 10 hours of continuous operation, the autoclave was opened and the interior was inspected, but the inner walls and stirrer were clean with no polymer attached at all.

この共重合䜓をASTM―D1238―65Tの方法に
より、190℃、荷重2.16Kgで枬定したメルトむン
デツクスMI2.16ず荷重10Kgで枬定したメルトむ
ンデツクスMI10ずの比で衚わされるF.R.倀F.
R.MI10MI2.16は6.9であり、分子量分垃は
きわめお狭いものであ぀た。
The FR value (F.
R.=MI10/MI2.16) was 6.9, and the molecular weight distribution was extremely narrow.

たた、この共重合䜓のフむルムを沞隰ヘキサン
䞭で10時間抜出したずころ、ヘキサン抜出量は
1.0wtであり、きわめお抜出分が少なか぀た。
Furthermore, when a film of this copolymer was extracted in boiling hexane for 10 hours, the amount of hexane extracted was
It was 1.0wt%, and the extractable content was extremely small.

比范䟋  固䜓觊媒成分ずしお実斜䟋で埗た固䜓粉末(A)
を50mghrで䟛絊する以倖は実斜䟋ず同様の操
䜜で重合を行ない、かさ比重0.33、メルトむンデ
ツクス1.1、密床0.9203の゚チレン−ブテン―
共重合䜓を埗た。觊媒掻性は412000g共重合䜓
gTiであり、実斜䟋に比范しお掻性が䜎か぀
た。
Comparative Example 1 Solid powder (A) obtained in Example 1 as a solid catalyst component
Polymerization was carried out in the same manner as in Example 1 except that ethylene-butene-1 was supplied at a rate of 50 mg/hr.
A copolymer was obtained. Catalytic activity is 412,000g copolymer/
gTi, and its activity was lower than that of Example 1.

たたこの共重合䜓のF.R.倀は7.1であり、フむ
ルムのヘキサン抜出量は1.3wtであ぀た。
The FR value of this copolymer was 7.1, and the amount of hexane extracted from the film was 1.3 wt%.

比范䟋  実斜䟋で埗られた固䜓粉末(A)を、窒玠眮換し
た300ml䞉぀口フラスコにヘキサン100mlずずもに
入れ、぀いでトリ゚チルアルミニりム0.8gAl
Tiモル比を入れヘキサン還流䞋で時
間反応させた。反応終了埌、静眮し䞊柄液を陀去
し、぀いでヘキサンで固䜓成分を掗浄し固䜓觊媒
成分(C)を埗た。
Comparative Example 2 The solid powder (A) obtained in Example 1 was placed in a 300 ml three-necked flask purged with nitrogen, together with 100 ml of hexane, and then 0.8 g of triethylaluminum (Al/
Ti (molar ratio)=1) was added thereto and the mixture was reacted for 2 hours under refluxing hexane. After the reaction was completed, the mixture was allowed to stand and the supernatant liquid was removed, and then the solid component was washed with hexane to obtain a solid catalyst component (C).

䞊蚘固䜓觊媒成分(C)を50mghrで䟛絊し、トリ
゚チルアルミニりムのかわりに゚チルアルミニり
ムセスキクロリドを2mmolhrの速床で䟛絊す
る以倖は実斜䟋ず同様の操䜜で重合を行ない、
かさ比重0.23、メルトむンデツクス0.9、密床
0.9245の共重合䜓を埗た。觊媒掻性は10500共重
合䜓gTiであり、実斜䟋に比范しお掻性は著
しく䜎䞋した。
Polymerization was carried out in the same manner as in Example 1, except that the solid catalyst component (C) was supplied at a rate of 50 mg/hr, and ethylaluminum sesquichloride was supplied at a rate of 2 mmol/hr instead of triethylaluminum.
Bulk specific gravity 0.23, melt index 0.9, density
A copolymer of 0.9245 was obtained. The catalyst activity was 10,500 copolymer/gTi, which was significantly lower than in Example 1.

比范䟋  固䜓觊媒成分ずしお実斜䟋で埗た固䜓粉末(A)
を50mghrで䟛絊し、有機アルミニりム化合物ず
しおトリ゚チルアルミニりムを2mmolhr、お
よび゚チルアルミニりムセスキクロリドを
2mmolhrで䟛絊する以倖は実斜䟋ず同様の
操䜜で重合を行ない、かさ比重0.32、メルトむン
デツクス1.1、密床0.9221の共重合䜓を埗た。
Comparative Example 3 Solid powder (A) obtained in Example 1 as solid catalyst component
was supplied at a rate of 50 mg/hr, triethylaluminum was supplied as organoaluminum compounds at 2 mmol/hr, and ethylaluminum sesquichloride was supplied as organoaluminum compounds.
Polymerization was carried out in the same manner as in Example 1 except that the copolymer was supplied at a rate of 2 mmol/hr to obtain a copolymer having a bulk specific gravity of 0.32, a melt index of 1.1, and a density of 0.9221.

この共重合䜓のF.R.倀は8.0であり、フむルム
のヘキサン抜出量は3.5wtであ぀た。
The FR value of this copolymer was 8.0, and the amount of hexane extracted from the film was 3.5 wt%.

実斜䟋  実斜䟋で゚チルアルミニりムセスキクロリド
のかわりにゞ゚チルアルミニりムクロリド1.1gを
䜿甚したこずを陀いおは実斜䟋ず同様の操䜜で
固䜓觊媒成分を合成した。
Example 2 A solid catalyst component was synthesized in the same manner as in Example 1, except that 1.1 g of diethylaluminum chloride was used instead of ethylaluminum sesquichloride.

䞊蚘の固䜓觊媒成分を50mghrで䟛絊する以倖
は実斜䟋ず同様の操䜜で重合を行ない、かさ比
重0.38、メルトむンデツクス1.2、密床0.9223の゚
チレン−ブテン―共重合䜓を埗た。觊媒掻性は
974000g共重合䜓gTiであり、きわめお高掻性
であ぀た。
Polymerization was carried out in the same manner as in Example 1 except that the above solid catalyst component was supplied at a rate of 50 mg/hr to obtain an ethylene-butene-1 copolymer having a bulk specific gravity of 0.38, a melt index of 1.2, and a density of 0.9223. Catalytic activity is
It was 974,000g copolymer/gTi, indicating extremely high activity.

10時間の連続運転ののちオヌトクレヌブを開攟
し、内郚の点怜を行な぀たが、内壁および撹拌機
には党くポリマヌは付着しおおらず、きれいであ
぀た。
After 10 hours of continuous operation, the autoclave was opened and the interior was inspected, but the inner walls and stirrer were clean with no polymer attached at all.

たたこの共重合䜓のF.R.倀は7.1であり、フむ
ルムを沞隰ヘキサン䞭で10時間抜出したずころ、
ヘキサン抜出量は1.0wtであり、きわめお抜出
分が少なか぀た。
The FR value of this copolymer was 7.1, and when the film was extracted in boiling hexane for 10 hours,
The amount of hexane extracted was 1.0wt%, which was an extremely small amount.

実斜䟋  実斜䟋で゚チルアルミニりムセスキクロリド
のかわりに゚チルアルミニりムゞクロリド1.5gを
䜿甚したこずを陀いおは実斜䟋ず同様の操䜜で
固䜓觊媒成分を合成した。
Example 3 A solid catalyst component was synthesized in the same manner as in Example 1, except that 1.5 g of ethyl aluminum dichloride was used instead of ethyl aluminum sesquichloride.

䞊蚘固䜓觊媒成分を50mghrでフむヌドする以
倖は実斜䟋ず同様の操䜜で重合を行な぀た。生
成した゚チレン共重合䜓は、かさ比重0.39、密床
0.9208、メルトむンデツクス1.0であ぀た。たた
觊媒掻性は883000g共重合䜓gTiずきわめお
高掻性であ぀た。
Polymerization was carried out in the same manner as in Example 1, except that the solid catalyst component was fed at a rate of 50 mg/hr. The produced ethylene copolymer has a bulk specific gravity of 0.39 and a density of
The melt index was 0.9208 and the melt index was 1.0. The catalyst activity was extremely high at 883,000g/copolymer/gTi.

たた、この共重合䜓のF.R.倀は7.2であり、フ
むルムを沞隰ヘキサン䞭で10時間抜出したずこ
ろ、ヘキサン抜出量は1.2wtであり、きわめお
抜出分が少なか぀た。
Furthermore, the FR value of this copolymer was 7.2, and when the film was extracted in boiling hexane for 10 hours, the hexane extraction amount was 1.2 wt%, which was an extremely small amount.

実斜䟋  実斜䟋に蚘したボヌルミルポツトに無氎塩化
マグネシりム10g、およびテトラ゚トキシシラン
3.5gを入れ、窒玠雰囲気䞋、宀枩で16時間ボヌル
ミリングを行ない、灰癜色の固䜓粉末(D)を埗た。
Example 4 10 g of anhydrous magnesium chloride and tetraethoxysilane were placed in the ball mill pot described in Example 1.
3.5 g was added and ball milling was performed at room temperature under a nitrogen atmosphere for 16 hours to obtain a grayish white solid powder (D).

぀ぎに磁気誘導撹拌機付き300c.c.䞉぀口フラス
コにヘキサン100ml、䞊蚘固䜓粉末(D)12.5g、およ
びアルミニりムトリsec―ブトキシド4.5gを加え、
還流䞋で時間反応させた。反応終了埌、宀枩で
静眮し䞊柄液を陀去した埌、200℃で真空也燥を
行ない固䜓粉末(E)を埗た。぀いで、この固䜓粉末
(E)に60mlのゞむ゜プロポキシゞクロロチタンを加
え、130℃で時間反応させた。反応終了埌、過
剰のゞむ゜プロポキシゞクロロチタンを陀き、
―ヘキサンで掗浄を繰り返し灰癜色の固䜓粉末(E)
を埗た。この固䜓粉末(F)1g䞭には18mgのチタン
が含たれおいた。
Next, 100 ml of hexane, 12.5 g of the above solid powder (D), and 4.5 g of aluminum trisec-butoxide were added to a 300 c.c. three-necked flask equipped with a magnetic induction stirrer.
The reaction was carried out under reflux for 5 hours. After the reaction was completed, the mixture was allowed to stand at room temperature and the supernatant liquid was removed, followed by vacuum drying at 200°C to obtain a solid powder (E). Then, this solid powder
60 ml of diisopropoxydichlorotitanium was added to (E) and reacted at 130°C for 1 hour. After the reaction, remove excess diisopropoxydichlorotitanium and
-Repeat washing with hexane to produce grayish white solid powder (E)
I got it. 1 g of this solid powder (F) contained 18 mg of titanium.

぀いで窒玠眮換した300ml䞉ツ口フラスコにヘ
キサン100ml、䞊蚘固䜓粉末(F)を10gおよび゚チ
ルアルミニりムセスキクロリド0.96gAlTiモ
ル比を入れヘキサン還流䞋で時間反応
させた。反応終了埌静眮し、䞊柄液を陀去し、぀
いでヘキサンで固䜓成分を掗浄し、固䜓觊媒成分
を埗た。
Then, 100 ml of hexane, 10 g of the above solid powder (F), and 0.96 g of ethylaluminum sesquichloride (Al/Ti (molar ratio) = 2) were placed in a 300 ml three-neck flask purged with nitrogen, and reacted for 2 hours under reflux of hexane. After the reaction was completed, the mixture was allowed to stand, the supernatant liquid was removed, and the solid component was washed with hexane to obtain a solid catalyst component.

䞊蚘固䜓觊媒成分を50mghrでフむヌドする以
倖は実斜䟋ず同様の操䜜で重合を行な぀た。生
成した゚チレン共重合䜓は、かさ比重0.39、密床
0.9215、メルトむンデツクス1.1であ぀た。たた
觊媒掻性は1058000g共重合䜓gTiずきわめお高
掻性であ぀た。
Polymerization was carried out in the same manner as in Example 1, except that the solid catalyst component was fed at a rate of 50 mg/hr. The produced ethylene copolymer has a bulk specific gravity of 0.39 and a density of
0.9215, and the melt index was 1.1. The catalyst activity was extremely high at 1058000g copolymer/gTi.

たた、この共重合䜓の・・倀は7.1であり、
フむルムを沞隰ヘキサン䞭で10時間抜出したずこ
ろ、ヘキサン抜出量は1.1wtであり、きわめお
抜出分が少なか぀た。
In addition, the F・R・value of this copolymer is 7.1,
When the film was extracted in boiling hexane for 10 hours, the amount of hexane extracted was 1.1 wt%, which was an extremely small amount.

実斜䟋  のステンレススチヌル補誘導撹拌機付きオ
ヌトクレヌブを窒玠眮換しヘキサン1000mlを入
れ、トリ゚チルアルミニりムミリモルおよび実
斜䟋で埗られた固䜓觊媒成分10mgを加え撹拌し
ながら90℃に昇枩した。ヘキサンの蒞気圧で系は
Kgcm2・になるが氎玠を党圧が4.8Kgcm2・
になるたで匵り蟌み、぀いで゚チレンを党圧が
10Kgcm2・になるたで匵り蟌んで重合を開始し
オヌトクレヌブの圧力を10Kgcm2・に保持する
ようにしお時間重合を行な぀た。重合終了埌重
合䜓スラリヌをビヌカヌに移し、ヘキサンを枛圧
陀去し、メルトむンデツクス1.3、密床0.9631、
かさ比重0.37の癜色ポリ゚チレン265gを埗た。觊
媒掻性は145600gポリ゚チレンgTi.hr.C2H4圧、
5100gポリ゚チレン固䜓hr.C2H4圧であ぀
た。
The autoclave made of stainless steel and equipped with an induction stirrer from Example 5 2 was purged with nitrogen, and 1000 ml of hexane was charged therein. 1 mmol of triethylaluminum and 10 mg of the solid catalyst component obtained in Example 1 were added thereto, and the temperature was raised to 90° C. with stirring. The vapor pressure of hexane is 2 Kg/cm 2 G, but the total pressure of hydrogen is 4.8 Kg/cm 2 G.
Pump it up until it reaches G, then add ethylene to the full pressure.
Polymerization was started by charging the autoclave to 10 kg/cm 2 ·G, and polymerization was carried out for 1 hour while maintaining the autoclave pressure at 10 kg/cm 2 ·G. After polymerization, the polymer slurry was transferred to a beaker, hexane was removed under reduced pressure, and the melt index was 1.3, the density was 0.9631,
265 g of white polyethylene with a bulk specific gravity of 0.37 was obtained. Catalyst activity is 145,600g polyethylene/gTi.hr.C 2 H 4 pressure,
5100g polyethylene/g solids. It was hr.C 2 H 4 pressure.

たた埗られたポリ゚チレンの・・倀は7.8
であり、比范䟋に比べお分子量分垃はきわめお
狭く、ヘキサン抜出量は0.15wtであ぀た。
The F・R・value of the obtained polyethylene was 7.8.
The molecular weight distribution was extremely narrow compared to Comparative Example 4, and the hexane extraction amount was 0.15 wt%.

比范䟋  比范䟋で䜿甚した固䜓觊媒成分10mgを䜿甚し
実斜䟋ず同様の操䜜で時間重合を行ないメル
トむンデツクス1.1、密床0.9633、かさ比重0.32の
癜色ポリ゚チレン198gを埗た。觊媒掻性は
108800gポリ゚チレンgTi.hr.C2H4圧、3800gポ
リ゚チレン固䜓hr.C2H4圧であ぀た。
Comparative Example 4 Using 10 mg of the solid catalyst component used in Comparative Example 1, polymerization was carried out for 1 hour in the same manner as in Example 5 to obtain 198 g of white polyethylene having a melt index of 1.1, a density of 0.9633, and a bulk specific gravity of 0.32. Catalytic activity is
108800g polyethylene/gTi.hr.C 2 H 4 pressure, 3800g polyethylene/g solid. It was hr.C 2 H 4 pressure.

たた埗られたポリ゚チレンの・・倀は8.0
であり、ヘキサン抜出量は0.21wtであ぀た。
In addition, the F・R・value of the obtained polyethylene was 8.0.
The amount of hexane extracted was 0.21wt%.

実斜䟋  実斜䟋においお、四塩化チタン2.8gに代え
お、モノブトキシトリクロロチタン3.0gを甚いた
こずを陀いおは実斜䟋ず同様の操䜜で觊媒成分
を合成し、固䜓粉末(A)1gに34mgのチタンを含有
する固䜓粉末(A)を埗た。
Example 6 A catalyst component was synthesized in the same manner as in Example 1, except that 3.0 g of monobutoxytrichlorotitanium was used instead of 2.8 g of titanium tetrachloride, and solid powder (A) A solid powder (A) containing 34 mg of titanium per gram was obtained.

぀いで窒玠眮換した300ml䞉぀口フラスコにヘ
キサン100ml、䞊蚘固䜓粉末(A)を10g、および゚
チルアルミニりムセスキクロリド1.8gを入れ、ヘ
キサン還流䞋で時間反応させた。反応終了埌静
眮し䞊柄液を陀去し、぀いでヘキサンで固䜓成分
を掗浄し、固䜓觊媒成分(B)を埗た。
Then, 100 ml of hexane, 10 g of the above solid powder (A), and 1.8 g of ethylaluminum sesquichloride were placed in a 300 ml three-necked flask purged with nitrogen, and reacted for 2 hours under reflux of hexane. After the reaction was completed, the mixture was allowed to stand still and the supernatant liquid was removed, and then the solid component was washed with hexane to obtain a solid catalyst component (B).

実斜䟋ず同様の操䜜で気盞重合を行い、かさ
比重0.40、メルトむンデツクス0.90、密床0.9218
の゚チレン・ブテン―共重合䜓を埗た。觊媒掻
性は854000g共重合䜓gTiであり、きわめお高
掻性であ぀た。
Gas phase polymerization was performed in the same manner as in Example 1, and the bulk specific gravity was 0.40, the melt index was 0.90, and the density was 0.9218.
An ethylene-butene-1 copolymer was obtained. The catalyst activity was 854,000 g copolymer/g Ti, which was extremely high.

10時間の連続運転ののちオヌトクレヌブを開攟
し、内郚の点怜を行぀たが内壁および撹拌機には
党くポリマヌは付着しおおらず、きれいであ぀
た。
After 10 hours of continuous operation, the autoclave was opened and the interior was inspected, but the inner walls and stirrer were clean with no polymer attached at all.

たたこの共重合䜓はF.R.倀は7.0であり、フむ
ルムを沞隰ヘキサン䞭で10時間抜出したずころ、
ヘキサン抜出量は1.0wtであり、きわめお抜出
分が少なか぀た。
In addition, this copolymer has an FR value of 7.0, and when the film was extracted in boiling hexane for 10 hours,
The amount of hexane extracted was 1.0wt%, which was an extremely small amount.

実斜䟋  実斜䟋においお、四塩化チタン2.8gに代え
お、四塩化チタン2.8gおよびトリ゚トキシバナゞ
ル1.8gを甚いたこずを陀いおは実斜䟋ず同様の
操䜜で合成し、固䜓粉末1gに35mgのチタンおよ
び19mgのバナゞりムを含有する固䜓粉末を埗た。
Example 7 Synthesis was performed in the same manner as in Example 1 except that 2.8 g of titanium tetrachloride and 1.8 g of triethoxyvanadyl were used in place of 2.8 g of titanium tetrachloride, and 1 g of solid powder was prepared. A solid powder containing 35 mg of titanium and 19 mg of vanadium was obtained.

぀いで窒玠眮換した300ml䞉぀口フラスコにヘ
キサン100ml、䞊蚘固䜓粉末(A)を10g、および゚
チルアルミニりムセスキクロリド1.8gを入れ、ヘ
キサン還流䞋で時間反応させた。反応終了埌静
眮した䞊柄液を陀去し、぀いでヘキサンで固䜓成
分を掗浄し、固䜓觊媒成分(B)を埗た。
Then, 100 ml of hexane, 10 g of the above solid powder (A), and 1.8 g of ethylaluminum sesquichloride were placed in a 300 ml three-necked flask purged with nitrogen, and reacted for 2 hours under reflux of hexane. After the reaction was completed, the supernatant liquid that was allowed to stand was removed, and then the solid component was washed with hexane to obtain a solid catalyst component (B).

実斜䟋ず同様の操䜜で重合を行い、かさ比重
0.41、メルトむンデツクス1.1、密床0.9199の゚チ
レン・ブテン―共重合䜓を埗た。觊媒掻性は
756000g共重合䜓gTiであり、きわめお高掻性
であ぀た。
Polymerization was carried out in the same manner as in Example 1, and the bulk specific gravity
An ethylene-butene-1 copolymer having a melt index of 0.41, a melt index of 1.1, and a density of 0.9199 was obtained. Catalytic activity is
It was 756,000g copolymer/gTi, and had extremely high activity.

10時間に連続運転ののちオヌトクレヌブを開攟
し、内郚の点怜を行぀たが、内壁および撹拌機に
は党くポリマヌは付着しおおらず、きれいであ぀
た。
After 10 hours of continuous operation, the autoclave was opened and the interior was inspected, but the inner walls and stirrer were clean with no polymer attached at all.

たたこの共重合䜓のF.R.倀は7.1であり、フむ
ルムを沞隰ヘキサン䞭で10時間抜出したずころ、
ヘキサン抜出量は1.2wtであり、きわめお抜出
分が少なか぀た。
The FR value of this copolymer was 7.1, and when the film was extracted in boiling hexane for 10 hours,
The amount of hexane extracted was 1.2wt%, which was an extremely small amount.

実斜䟋  実斜䟋で蚘した装眮により以䞋の気盞重合を
行぀た。60℃に調補したオヌトクレヌブに実斜䟋
で埗られた固䜓粉末(A)80mghrおよびトリ゚チ
ルアルミニりム5mmolhrの速で䟛絊し、たた、
オヌトクレヌブ䞭にプロピレンを䟛絊し、ブロワ
ヌにより系内のガスを埪環させお党圧Kgcm2で
重合を行぀た。生成したポリプロピレンはかさ比
重0.39であ぀た。たた、觊媒掻性は330000gポリ
プロピレンgTiであ぀た。
Example 8 The following gas phase polymerization was carried out using the apparatus described in Example 1. The solid powder (A) obtained in Example 1 was fed at a rate of 80 mg/hr and triethylaluminum 5 mmol/hr into an autoclave prepared at 60°C, and
Propylene was supplied into the autoclave, and the gas within the system was circulated using a blower to carry out polymerization at a total pressure of 7 kg/cm 2 . The polypropylene produced had a bulk specific gravity of 0.39. Moreover, the catalyst activity was 330000g polypropylene/gTi.

10時間の連続運転ののちオヌトクレヌブを解攟
し、内郚の点怜を行぀たが内壁および撹拌機には
党くポリマヌは付着しおおらず、きれいであ぀
た。
After 10 hours of continuous operation, the autoclave was opened and the interior was inspected, but the inner walls and stirrer were clean with no polymer attached at all.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は本発明のオレフむン重合における觊媒
調補の䞀䟋を瀺すフロヌチダヌト図面である。
FIG. 1 is a flowchart showing an example of catalyst preparation in olefin polymerization of the present invention.

Claims (1)

【特蚱請求の範囲】  (1) ゞハロゲン化マグネシりム、 (2) 䞀般匏AlORoX3-oで衚わされる化合物、 (3) 䞀般匏SiORnX4-nで衚わされる化合物、 および (4) チタン化合物たたはチタン化合物ずバナゞ
りム化合物を反応させお埗られる反応生成物
を、さらに (5) 䞀般匏AlRpX3-pで衚わされる化合物 ず反応させお埗られる固䜓物質 および  䞀般匏AlR3で衚わされる化合物 からなる觊媒䞊蚘匏䞭、は炭玠数〜24の炭
化氎玠残基、はハロゲン原子を瀺し、≊
、≊≊およびであるを甚い
お、オレフむンを重合あるいは共重合するこずを
特城ずするポリオレフむンの補造方法。
[Claims] 1 [A] (1) Magnesium dihalide, (2) A compound represented by the general formula Al(OR) o X 3-o , (3) General formula Si(OR) n X 4-n and (4) a reaction product obtained by reacting a titanium compound or a titanium compound with a vanadium compound, and (5) a reaction product obtained by reacting a compound represented by the general formula AlR p X 3-p. A solid substance and [B] A catalyst consisting of a compound represented by the general formula AlR3 (in the above formula, R is a hydrocarbon residue having 1 to 24 carbon atoms, X is a halogen atom, and 0<n≩
3, 0≩m≩4 and 0<p<3.
JP9839081A 1981-06-26 1981-06-26 Production of polyolefin Granted JPS581705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9839081A JPS581705A (en) 1981-06-26 1981-06-26 Production of polyolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9839081A JPS581705A (en) 1981-06-26 1981-06-26 Production of polyolefin

Publications (2)

Publication Number Publication Date
JPS581705A JPS581705A (en) 1983-01-07
JPS6412288B2 true JPS6412288B2 (en) 1989-02-28

Family

ID=14218516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9839081A Granted JPS581705A (en) 1981-06-26 1981-06-26 Production of polyolefin

Country Status (1)

Country Link
JP (1) JPS581705A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0608137A2 (en) 1993-01-20 1994-07-27 Nippon Oil Company, Limited Process for producing polyethylene material of high strength and high elastic modulus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0608137A2 (en) 1993-01-20 1994-07-27 Nippon Oil Company, Limited Process for producing polyethylene material of high strength and high elastic modulus

Also Published As

Publication number Publication date
JPS581705A (en) 1983-01-07

Similar Documents

Publication Publication Date Title
US6887817B2 (en) Olefin polymerization catalyst and process for preparing polyolefins using said catalyst
EP0250230B1 (en) Olefin polymerization catalyst
JPH072799B2 (en) Method for producing highly stereoregular a-olefin polymer
JPH0343284B2 (en)
JPS6411651B2 (en)
US4507448A (en) Process for the production of polyolefins
JPS647086B2 (en)
JPS647087B2 (en)
JPH0134447B2 (en)
JPS647085B2 (en)
JPH0336841B2 (en)
JPS6412288B2 (en)
JPS6412287B2 (en)
JPS6412289B2 (en)
JPS648642B2 (en)
JPH0149287B2 (en)
JP2788077B2 (en) Alkene polymerization method and catalyst composition used in the method
JPH0480926B2 (en)
JPH0149282B2 (en)
JPS6412285B2 (en)
JPH06102696B2 (en) Method for producing α-olefin polymer
JPS5835521B2 (en) Olefin polymerization catalyst
JPS6410529B2 (en)
JPH06815B2 (en) Method for producing propylene polymer
GB2104531A (en) Process for preparing polyolefins