JPS646857B2 - - Google Patents

Info

Publication number
JPS646857B2
JPS646857B2 JP4079681A JP4079681A JPS646857B2 JP S646857 B2 JPS646857 B2 JP S646857B2 JP 4079681 A JP4079681 A JP 4079681A JP 4079681 A JP4079681 A JP 4079681A JP S646857 B2 JPS646857 B2 JP S646857B2
Authority
JP
Japan
Prior art keywords
mold
ingot
opening
horn
rotating ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4079681A
Other languages
Japanese (ja)
Other versions
JPS57154353A (en
Inventor
Yasushi Watanabe
Kosaku Nakano
Takaaki Nishama
Yasuyuki Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4079681A priority Critical patent/JPS57154353A/en
Publication of JPS57154353A publication Critical patent/JPS57154353A/en
Publication of JPS646857B2 publication Critical patent/JPS646857B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0602Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a casting wheel and belt, e.g. Properzi-process

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はCu及びCu合金の連続鋳造方法に関す
るもので、特に鋳造後、鋳塊に熱間圧延等の加工
を行なうのに好ましい鋳塊組織とするためのもの
である。 〔従来の技術〕 一般にCu及びCu合金荒引線の製造には、外周
面に凹溝を設けた鋳型用回転輪と、該回転輪の一
部外周面と接動する金属製無端ベルトにより、一
端が回転輪の上部で水平方向に開口する鋳型を形
成し、該開口部に取付けたノズルを通してCu又
はCu合金溶湯を水平方向から鋳型内に注湯し、
凝固した鋳塊を他端より取出し、これに熱間圧延
加工を加えている。このような熱間圧延加工を受
ける鋳塊では、表面近傍に欠陥が存在すると、加
工により拡大され、製品品質に悪影響を及ぼす。 鋳塊表面の欠陥は、表面近傍の結晶粒が大きい
程発生し易く、拡大され易いことが知られてい
る。従つて、鋳塊表面近傍は微細な結晶組織とす
ることが好ましい。一方、鋳塊内部は表面に比較
して冷却速度が遅いため、固液間の温度勾配を大
きくしないと、溶湯の固溶ガスが凝固時に析出し
て気泡として鋳塊内部にトラツプされる。この気
泡のトラツプは結晶粒界を脆弱化し、熱間圧延加
工後の伸線等において断線の原因となる。従つ
て、鋳塊内部は温度勾配の大きいときに生成する
柱状晶とすることが好ましい。 〔発明が解決しようとする課題〕 前記回転輪と金属製無端ベルトを用いて鋳型を
形成し、該鋳型内に水平方向から溶湯を注湯する
方法では、鋳塊組織が全面粗大な柱状晶となり、
鋳塊表面には欠陥が発生し易く、これが熱間圧延
加工により拡大され製品不良を招く原因となつて
いる。これを改善するため種々の方法が試みられ
ているが、何れも好ましい組織の鋳塊は得られて
いない。例えば、鋳型内の溶湯中に超音波伝達ホ
ーンの先端を挿入して、凝固界面の溶湯に超音波
振動を印加する方法が知られているが、超音波の
伝達には指向性が強いため、鋳塊内部が微細な結
晶組織となり、好ましい組織の鋳塊は得られなか
つた。 〔課題を解決するための手段〕 本発明はこれに鑑み種々検討の結果、超音波伝
達ホーンの先端を鋳型開口部の手前の溶湯中に位
置させることにより、鋳塊表面近傍が微細な等軸
晶で、内部が柱状晶からなる鋳塊組織が得られる
ことを知見し、Cu及びCu合金の連続鋳造方法を
開発したもので、外周面に凹溝を設けた鋳型用回
転輪と、該回転輪の一部外周面と接動する金属製
無端ベルトにより、一端が回転輪の上部で水平方
向に開口する鋳型を形成し、該開口部に取付けた
ノズルを通してCu又はCu合金溶湯を水平方向か
ら鋳型内に注湯し、凝固した鋳塊を他端より取出
す方法において、ノズル内の溶湯中に超音波伝達
ホーンを挿入し、鋳型断面の最大長さをl1、ホー
ン先端と鋳型間の距離をl2とすると、 5.5≧l2/l1≧0.9 となるようにホーン先端を鋳型開口部の手前に位
置させて、鋳塊表面近傍の結晶を形成しつつある
凝固界面に超音波振動を作用させることを特徴と
するものである。 即ち本発明は第1図に示すように、外周面に凹
溝2を設けた鋳型用回転輪1の一部外周面に、金
属製無端ベルト3をプレツシヤーホイール4と図
には示してないがガイドホイール等により接動さ
せ、一端が回転輪1の上部で水平方向に開口する
鋳型5を形成し、鋳型5の開口部にノズル6を取
付け、該ノズル6を通して水平方向よりCu又は
Cu合金溶湯7を鋳型5内に注湯する。ノズル6
内には超音波振動子8に接続した超音波伝達ホー
ン9を挿入し、その先端を鋳型5の開口部より手
前に位置させて、鋳型5内に注湯する溶湯に超音
波振動を印加することにより、鋳型5内で凝固し
始める溶湯界面に超音波振動を作用せしめ、鋳型
5内で凝固した鋳塊10を鋳型5の他端より連続
的に取出すものである。 〔作用〕 本発明は、このように超音波伝達ホーンの先端
をノズル内の鋳型開口部の手前即ち、鋳型断面の
最大長さをl1、ホーン先端と鋳型間の距離をl2
すると、 5.5≧l2/l1≧0.9 となるように鋳型開口部より離れた手前に位置さ
せて、注湯中の溶湯に超音波振動を印加すること
により、鋳塊表面近傍を微細な等軸晶とし、内部
を柱状晶としたもので、鋳塊表面の欠陥を低減
し、製品品質を向上する。 本発明において超音波振動とは、振動数数KHz
以上のもので、鋳造サイズ、鋳造条件の変化に対
しては、超音波発振条件を適当に選択することに
より対処すればよい。 〔実施例〕 以下本発明を実施例について詳細に説明する。 第1図に示すように、外周面に凹溝を設けた直
径2.1mの銅製鋳型用回転輪の一部外周面にエン
ドレス鋼帯を接動させて、回転輪の上部に水平方
向に開口する断面積3300mm2、最大長さ83mmの鋳型
を形成し、開口部にノズルを取付け、該ノズルを
通して純度99.9%の銅溶湯を水平方向から鋳型内
に注湯した。ノズル内には超音波伝達ホーンを挿
入し、ホーン先端と鋳型開口部との距離を種々変
化させた。超音波の発振条件は出力4KW、振動
数25KHz、振巾20μとした。またノズル内の溶湯
温度を1100℃に保持し、鋳造速度を10m/分とし
て鋳型内で凝固した鋳塊を鋳型の他端より連続的
に取出した。 このようにして得られた鋳塊について、断面結
晶構造を調べると共に、熱間圧延を加えて欠陥発
生数を調べた。その結果を第1表に示す。尚、第
1表中、l1は鋳型断面の最大長さ(83mm)、l2は超
音波伝達ホーンの先端と鋳型開口部間の距離を示
す。
[Industrial Application Field] The present invention relates to a method for continuous casting of Cu and Cu alloys, and in particular, to provide an ingot structure suitable for processing such as hot rolling on the ingot after casting. . [Prior art] In general, in the production of Cu and Cu alloy rough drawing wire, one end of the wire is manufactured using a rotary molding ring with a concave groove on its outer circumferential surface, and a metal endless belt that comes into contact with a portion of the outer circumferential surface of the rotating ring. forms a mold that opens horizontally at the top of the rotating ring, pours Cu or Cu alloy molten metal horizontally into the mold through a nozzle attached to the opening,
The solidified ingot is taken out from the other end and subjected to hot rolling. In an ingot that undergoes such hot rolling, if defects exist near the surface, they will be enlarged by the processing and have a negative impact on product quality. It is known that defects on the surface of an ingot are more likely to occur and expand as the crystal grains near the surface are larger. Therefore, it is preferable that the vicinity of the surface of the ingot has a fine crystal structure. On the other hand, since the inside of the ingot cools at a slower rate than the surface, unless the temperature gradient between solid and liquid is increased, solid solution gas in the molten metal will precipitate during solidification and become trapped inside the ingot as bubbles. These bubble traps weaken the grain boundaries and cause wire breakage during wire drawing after hot rolling. Therefore, it is preferable that the inside of the ingot has columnar crystals that are generated when there is a large temperature gradient. [Problems to be Solved by the Invention] In a method in which a mold is formed using the rotating wheel and an endless metal belt, and molten metal is poured horizontally into the mold, the ingot structure becomes coarse columnar crystals on the entire surface. ,
Defects are likely to occur on the surface of the ingot, and these are magnified by hot rolling, causing product defects. Various methods have been tried to improve this problem, but none of them have yielded an ingot with a preferable structure. For example, a method is known in which the tip of an ultrasonic transmission horn is inserted into the molten metal in a mold and ultrasonic vibrations are applied to the molten metal at the solidification interface, but since ultrasonic waves are highly directional, The inside of the ingot had a fine crystal structure, and an ingot with a preferable structure could not be obtained. [Means for Solving the Problems] In view of this, the present invention has been developed as a result of various studies, and by positioning the tip of the ultrasonic transmission horn in the molten metal in front of the mold opening, the vicinity of the surface of the ingot is made to have fine equiaxed structure. The company discovered that an ingot structure consisting of columnar crystals inside could be obtained with copper crystals, and developed a continuous casting method for Cu and Cu alloys. An endless metal belt that comes into contact with a portion of the outer peripheral surface of the ring forms a mold with one end opening horizontally at the top of the rotating ring, and Cu or Cu alloy molten metal is poured horizontally through a nozzle attached to the opening. In the method of pouring molten metal into a mold and taking out the solidified ingot from the other end, an ultrasonic transmission horn is inserted into the molten metal in the nozzle, the maximum length of the cross section of the mold is l 1 , and the distance between the tip of the horn and the mold is If l 2 is 5.5≧l 2 /l 1 ≧0.9, the tip of the horn is positioned in front of the mold opening, and ultrasonic vibration is applied to the solidification interface where crystals are forming near the ingot surface. It is characterized by causing it to act. That is, as shown in FIG. 1, the present invention includes a metal endless belt 3 as a pressure wheel 4, which is not shown in the figure, on a part of the outer circumferential surface of a mold rotary ring 1 having a groove 2 on its outer circumferential surface. A mold 5 is formed with one end opening in the horizontal direction above the rotating wheel 1, a nozzle 6 is attached to the opening of the mold 5, and Cu or Cu is applied from the horizontal direction through the nozzle 6.
Molten Cu alloy 7 is poured into the mold 5. Nozzle 6
An ultrasonic transmission horn 9 connected to an ultrasonic vibrator 8 is inserted inside, and its tip is positioned in front of the opening of the mold 5 to apply ultrasonic vibrations to the molten metal poured into the mold 5. As a result, ultrasonic vibrations are applied to the interface of the molten metal that begins to solidify within the mold 5, and the ingot 10 solidified within the mold 5 is continuously taken out from the other end of the mold 5. [Operation] As described above, in the present invention, the tip of the ultrasonic transmission horn is placed in front of the mold opening in the nozzle, that is, the maximum length of the cross section of the mold is l 1 , and the distance between the horn tip and the mold is l 2 . 5.5≧l 2 /l 1 ≧0.9, and by applying ultrasonic vibrations to the molten metal being poured at a position far from the mold opening and in front of it, the vicinity of the surface of the ingot is made to form fine equiaxed crystals. The inside of the ingot has columnar crystals, which reduces defects on the surface of the ingot and improves product quality. In the present invention, ultrasonic vibration refers to a frequency of KHz
As described above, changes in casting size and casting conditions can be dealt with by appropriately selecting ultrasonic oscillation conditions. [Examples] The present invention will be described in detail below with reference to Examples. As shown in Figure 1, an endless steel strip is brought into contact with a part of the outer circumferential surface of a 2.1 m diameter copper mold rotating ring with a concave groove on the outer circumferential surface, and an opening is opened horizontally in the upper part of the rotating ring. A mold with a cross-sectional area of 3300 mm 2 and a maximum length of 83 mm was formed, a nozzle was attached to the opening, and molten copper with a purity of 99.9% was poured horizontally into the mold through the nozzle. An ultrasonic transmission horn was inserted into the nozzle, and the distance between the tip of the horn and the mold opening was varied. The ultrasonic oscillation conditions were an output of 4 KW, a frequency of 25 KHz, and an amplitude of 20 μ. Further, the temperature of the molten metal in the nozzle was maintained at 1100°C, the casting speed was set to 10 m/min, and the ingot solidified in the mold was continuously taken out from the other end of the mold. The thus obtained ingot was examined for its cross-sectional crystal structure, and was also subjected to hot rolling to determine the number of defects. The results are shown in Table 1. In Table 1, l 1 indicates the maximum length of the mold cross section (83 mm), and l 2 indicates the distance between the tip of the ultrasonic transmission horn and the mold opening.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、製品品質上好まし
い組織、即ち表面近傍が微細な等軸晶で内部が柱
状晶からなる鋳塊が容易に得られ、熱間圧延加工
における欠陥発生を減少し、製品品質を改善する
ことができる等顕著な効果を奏するものである。
As described above, according to the present invention, an ingot having a structure preferable in terms of product quality, that is, consisting of fine equiaxed crystals near the surface and columnar crystals inside, can be easily obtained, reducing the occurrence of defects during hot rolling, This has remarkable effects such as being able to improve product quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一例を示す説明図であ
る。 1……鋳型用回転輪、2……凹溝、3……金属
製無端ベルト、4……プレツシヤーホイール、5
……鋳型、6……ノズル、7……溶湯、8……超
音波振動子、9……超音波伝達ホーン、10……
鋳塊。
FIG. 1 is an explanatory diagram showing an example of the method of the present invention. 1... Rotating wheel for mold, 2... Concave groove, 3... Metal endless belt, 4... Pressure wheel, 5
... Mold, 6 ... Nozzle, 7 ... Molten metal, 8 ... Ultrasonic vibrator, 9 ... Ultrasonic transmission horn, 10 ...
Ingot.

Claims (1)

【特許請求の範囲】 1 外周面に凹溝を設けた鋳型用回転輪と、該回
転輪の一部外周面と接動する金属製無端ベルトに
より、一端が回転輪の上部で水平方向に開口する
鋳型を形成し、該開口部に取付けたノズルを通し
てCu又はCu合金溶湯を水平方向から鋳型内に注
湯し、凝固した鋳塊を他端より取出す方法におい
て、ノズル内の溶湯中に超音波ホーンを挿入し、
鋳型断面の最大長さをl1、ホーン先端と鋳型間の
距離をl2とすると、 5.5≧l2/l1≧0.9 となるようにホーン先端を鋳型開口部の手前に位
置させて鋳塊表面近傍の結晶を形成しつつある凝
固界面に超音波振動を作用させることを特徴とす
るCu及びCu合金の連続鋳造方法。
[Scope of Claims] 1. A mold rotating ring with a concave groove on its outer circumferential surface, and a metal endless belt that comes into contact with a part of the outer circumferential surface of the rotating ring, with one end opening horizontally at the top of the rotating ring. In this method, Cu or Cu alloy molten metal is horizontally poured into the mold through a nozzle attached to the opening, and the solidified ingot is taken out from the other end. insert the horn,
Assuming that the maximum length of the mold cross section is l 1 and the distance between the horn tip and the mold is l 2 , the ingot is placed with the horn tip positioned in front of the mold opening so that 5.5≧l 2 /l 1 ≧0.9. A continuous casting method for Cu and Cu alloys, characterized by applying ultrasonic vibration to the solidification interface where crystals are forming near the surface.
JP4079681A 1981-03-20 1981-03-20 Continuous casting method for cu and cu alloy Granted JPS57154353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4079681A JPS57154353A (en) 1981-03-20 1981-03-20 Continuous casting method for cu and cu alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4079681A JPS57154353A (en) 1981-03-20 1981-03-20 Continuous casting method for cu and cu alloy

Publications (2)

Publication Number Publication Date
JPS57154353A JPS57154353A (en) 1982-09-24
JPS646857B2 true JPS646857B2 (en) 1989-02-06

Family

ID=12590577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4079681A Granted JPS57154353A (en) 1981-03-20 1981-03-20 Continuous casting method for cu and cu alloy

Country Status (1)

Country Link
JP (1) JPS57154353A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101850362A (en) * 2010-06-17 2010-10-06 中南大学 Ultrasonic external field continuous casting and rolling machine
CN102189103B (en) * 2011-03-01 2013-05-08 大连理工大学 Light alloy electromagnetic ultrasonic casting and rolling integration device and method

Also Published As

Publication number Publication date
JPS57154353A (en) 1982-09-24

Similar Documents

Publication Publication Date Title
JP4594336B2 (en) Solidification method
JPH08503418A (en) Metal strip casting
JPH07106434B2 (en) Continuous casting method for metal ribbon
ES477002A1 (en) Method and apparatus for continuously casting a hollow metal blank, and the resulting blank
JPS646857B2 (en)
US3891024A (en) Method for the continuous casting of metal ingots or strips
JP2003266151A (en) Continuous casting apparatus and its method
JPS586754A (en) Continuous casting method for al or al alloy
JPS646858B2 (en)
JPS6123557A (en) Continuous casting machine
JPH0243569B2 (en)
JPH03133543A (en) Continuous casting method
JPS57154350A (en) Continuous casting method for metal
JPS5956952A (en) Continuous casting method of metal
JP2017060975A (en) Manufacturing method for aluminum-based hypoeutectic alloy ingot
JPS6213243A (en) Continuous casting method with heated casting mold
JPS5825846A (en) Horizontal and continuous casting method
SU599426A2 (en) Method of producing shaped castings
JPS6141661B2 (en)
JPS5666371A (en) Die casting method of aluminum alloy casting
JPS61195761A (en) Production of continuously cast ingot having good surface characteristic
JPS58224045A (en) Continuous casting method of molten steel at low temperature
JPS62230456A (en) Production of clad ingot having clean interface
JPS58217665A (en) Preparation of creep resistant aluminum alloy conductor
JPS5855153A (en) Continuous casting method for steel