JP4594336B2 - Solidification method - Google Patents

Solidification method Download PDF

Info

Publication number
JP4594336B2
JP4594336B2 JP2007009513A JP2007009513A JP4594336B2 JP 4594336 B2 JP4594336 B2 JP 4594336B2 JP 2007009513 A JP2007009513 A JP 2007009513A JP 2007009513 A JP2007009513 A JP 2007009513A JP 4594336 B2 JP4594336 B2 JP 4594336B2
Authority
JP
Japan
Prior art keywords
ultrasonic vibration
molten metal
contact
liquid
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007009513A
Other languages
Japanese (ja)
Other versions
JP2008173668A (en
Inventor
雄一 古川
好樹 恒川
禎仁 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota School Foundation
Toyota Motor Corp
Original Assignee
Toyota School Foundation
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota School Foundation, Toyota Motor Corp filed Critical Toyota School Foundation
Priority to JP2007009513A priority Critical patent/JP4594336B2/en
Publication of JP2008173668A publication Critical patent/JP2008173668A/en
Application granted granted Critical
Publication of JP4594336B2 publication Critical patent/JP4594336B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、溶融状態の金属や樹脂等の液体の凝固方法に関する。より詳細には、凝固組織(液体を凝固することにより得られる結晶組織)の微細化技術に関する。   The present invention relates to a method for solidifying a liquid such as a molten metal or resin. More specifically, the present invention relates to a technique for refining a solidified structure (crystal structure obtained by solidifying a liquid).

一般に、金属材料はその結晶組織が均一かつ微細であるほど靭性に優れることから、結晶組織を均一微細化するための種々の方法が検討されている。   In general, since the metal material is more excellent in toughness as the crystal structure is more uniform and finer, various methods for uniformly refining the crystal structure have been studied.

従来、金属材料の凝固組織(凝固により得られる結晶組織)の微細化を図る最も簡便な方法としては、溶融金属の冷却速度を大きくすることにより結晶粒が粗大化する前に凝固させる方法が挙げられる。
しかし、この方法は、溶融金属を凝固して得られるインゴットの表面近傍にデンドライト組織が形成され、インゴットの表面から離れた内部では等軸状組織が形成されるため、インゴットの表面近傍から内部まで均一な凝固組織を得ることが困難である。
Conventionally, the simplest method for miniaturizing the solidification structure of a metal material (crystal structure obtained by solidification) is to solidify before the crystal grains are coarsened by increasing the cooling rate of the molten metal. It is done.
However, in this method, a dendrite structure is formed in the vicinity of the surface of the ingot obtained by solidifying the molten metal, and an equiaxed structure is formed in the interior away from the surface of the ingot. It is difficult to obtain a uniform solidified structure.

このような問題を解消する方法の一つとして、凝固過程の溶融金属に振動子を浸漬して超音波振動を付与することにより、溶融金属内の核生成を促進する方法が知られている。例えば、特許文献1に記載の如くである。   As one method for solving such a problem, there is known a method of accelerating nucleation in molten metal by immersing a vibrator in molten metal in a solidification process and applying ultrasonic vibration. For example, as described in Patent Document 1.

しかし、この方法は、以下の問題点を有する。   However, this method has the following problems.

第一に、振動子を溶融金属に浸漬すると振動子が溶融金属に接触するため、溶融金属により侵食され、損耗する。また、振動子を構成する材料が溶融金属に混入して溶融金属を汚染する。
より詳細には、振動子の超音波振動により溶融金属内にキャビテーション(気泡)が発生し、当該キャビテーションにより溶融金属の液面に生成された酸化膜等が除去され、振動子と溶融金属とが酸化膜を介さずに接触する結果、溶融金属と振動子の間の反応(化学反応を含む)が促進され、振動子が損耗する。
また、鋳型の上型を振動子として用いる場合、上型の内周面(溶融金属との接触面)に塗布された離型剤がキャビテーションにより除去されてしまうため、凝固過程で溶融金属が振動子に強固に固着する。
このような問題を解消する方法としては、固着したインゴットを上型から剥がすための押し出しピン等の機構を設けることが考えられるが、上型を振動子として超音波振動させるための機構と干渉するため、設けるのが容易でない。
First, when the vibrator is immersed in the molten metal, the vibrator comes into contact with the molten metal, and is therefore eroded and worn by the molten metal. Further, the material constituting the vibrator is mixed into the molten metal and contaminates the molten metal.
More specifically, cavitation (bubbles) is generated in the molten metal due to the ultrasonic vibration of the vibrator, and an oxide film or the like generated on the liquid surface of the molten metal is removed by the cavitation. As a result of contact without passing through the oxide film, the reaction (including chemical reaction) between the molten metal and the vibrator is promoted, and the vibrator is worn out.
Also, when the upper mold of the mold is used as a vibrator, the mold release agent applied to the inner peripheral surface (contact surface with the molten metal) of the upper mold is removed by cavitation, so the molten metal vibrates during the solidification process. Firmly adheres to the child.
As a method for solving such a problem, it is conceivable to provide a mechanism such as an extrusion pin for peeling the fixed ingot from the upper mold, but it interferes with a mechanism for ultrasonically vibrating the upper mold as a vibrator. Therefore, it is not easy to provide.

第二に、溶融金属に振動子を浸漬した場合、溶融金属の全体に超音波振動を付与するためには超音波振動の出力(振動エネルギー)を大きくする必要がある。例えば、溶融状態のアルミニウム合金に振動子を浸漬して20kHzの超音波振動を付与する場合、その出力を200kW程度に設定する必要がある。   Second, when the vibrator is immersed in the molten metal, it is necessary to increase the output (vibration energy) of the ultrasonic vibration in order to apply ultrasonic vibration to the entire molten metal. For example, when a 20 kHz ultrasonic vibration is applied by immersing the vibrator in a molten aluminum alloy, the output needs to be set to about 200 kW.

第三に、溶融金属に振動子を浸漬して高出力で超音波振動を付与すると、振動子の近傍領域では振動が強過ぎるため、超音波振動により生成した結晶核が再び溶解する。よって、効率良く溶融金属中の結晶核を増やし、ひいては凝固組織の微細化を図ることが困難である。   Thirdly, when an ultrasonic vibration is applied at high output by immersing the vibrator in molten metal, since the vibration is too strong in the region near the vibrator, crystal nuclei generated by the ultrasonic vibration are dissolved again. Therefore, it is difficult to efficiently increase the number of crystal nuclei in the molten metal and thereby refine the solidification structure.

また、振動子を溶融金属に浸漬することによる振動子の損耗を防止する方法として、溶融金属および振動子との間で化学的に反応しない材質からなる溶融塩等に振動子を浸漬し、当該溶融塩等を溶融金属に接触させることにより溶融金属に超音波振動を付与する方法も知られている。例えば、特許文献2に記載の如くである。
しかし、この方法は、溶融金属の凝固後に溶融塩等を除去する工程等が必要であり、生産性が良くないこと、および溶融塩が溶融金属に溶解しなくても溶融金属中に巻き込まれて凝固するおそれがあること、という問題がある。
Further, as a method of preventing the vibrator from being worn by immersing the vibrator in the molten metal, the vibrator is immersed in a molten salt or the like made of a material that does not chemically react with the molten metal and the vibrator. A method of applying ultrasonic vibration to a molten metal by bringing a molten salt or the like into contact with the molten metal is also known. For example, as described in Patent Document 2.
However, this method requires a step of removing the molten salt after solidification of the molten metal, and the productivity is not good, and even if the molten salt does not dissolve in the molten metal, it is caught in the molten metal. There is a problem that it may solidify.

また、上記問題を解消する別の方法として、振動子を用いずに高周波誘導により凝固過程の溶融金属に電流および磁場を印加して溶融金属に振動を付与する方法も知られている。例えば、特許文献3および特許文献4に記載の如くである。
特許第3555485号公報 特公平7−84626号公報 特開2004−98111号公報 特許第3007947号公報
As another method for solving the above problem, there is also known a method for applying vibration to a molten metal by applying a current and a magnetic field to the molten metal in a solidification process by high frequency induction without using a vibrator. For example, as described in Patent Document 3 and Patent Document 4.
Japanese Patent No. 3555485 Japanese Examined Patent Publication No. 7-84626 JP 2004-98111 A Japanese Patent No. 3007947

本発明は以上の如き状況に鑑み、振動子の損耗を防止しつつ微細な凝固組織を得ることが可能な凝固方法を提供するものである。   In view of the above situation, the present invention provides a solidification method capable of obtaining a fine solidified structure while preventing wear of a vibrator.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.

即ち、請求項1においては、
凝固過程の液体の液面から所定の距離を空けて配置した振動子により、前記液体に超音波振動を付与する非接触超音波振動工程と、
前記凝固過程の液体の液面に形成された凝固部に接触しているが溶湯には接触していない振動子により、前記液体に超音波振動を付与する接触超音波振動工程と、
を具備するものである。
That is, in claim 1,
A non-contact ultrasonic vibration step for applying ultrasonic vibration to the liquid by a vibrator arranged at a predetermined distance from the liquid surface of the liquid in the solidification process;
A contact ultrasonic vibration step of applying ultrasonic vibration to the liquid by a vibrator that is in contact with the solidified portion formed on the liquid surface of the liquid in the solidification process but not in contact with the molten metal ;
It comprises.

請求項2においては、
前記非接触超音波振動工程における所定の距離を、超音波振動の共振が生じる第二ピーク距離とするものである。
In claim 2,
The predetermined distance in the non-contact ultrasonic vibration step is a second peak distance at which resonance of ultrasonic vibration occurs.

請求項3においては、
前記振動子の振動方向を液面に略垂直な方向とするものである。
In claim 3,
The vibration direction of the vibrator is a direction substantially perpendicular to the liquid surface.

請求項4においては、
前記接触超音波振動工程において、前記液体を加圧するものである。
In claim 4,
In the contact ultrasonic vibration step, the liquid is pressurized.

本発明においては、振動子の損耗を防止しつつ微細な凝固組織を得ることができる。   In the present invention, a fine solidified structure can be obtained while preventing the vibrator from being worn.

以下では、図1から図6を用いて本発明に係る凝固方法の実施の一形態について説明する。
図1および図2に示す如く、本発明に係る凝固方法の実施の一形態は、溶融状態のAl−Si−Mg合金(AC4CH)である溶湯1を凝固する方法であり、主として非接触超音波振動工程S100、接触超音波振動工程S200を具備する。
本実施例における溶湯1は、自動車用の車輪や航空機用エンジン等のいわゆる高級鋳物に用いられるアルミニウム合金であるAl−Si−Mg合金(AC4CH)を溶融状態としたものからなるが、本発明はこれに限定されず、種々の液体状(溶融状態)の材料、例えば金属材料や樹脂材料を凝固する用途に適用可能である。
Below, one Embodiment of the solidification method which concerns on this invention is described using FIGS. 1-6.
As shown in FIGS. 1 and 2, one embodiment of the solidification method according to the present invention is a method of solidifying a molten metal 1 that is a molten Al—Si—Mg alloy (AC4CH). A vibration step S100 and a contact ultrasonic vibration step S200 are provided.
Although the molten metal 1 in the present embodiment is made of a molten state of an Al—Si—Mg alloy (AC4CH), which is an aluminum alloy used in so-called high-grade castings such as automobile wheels and aircraft engines, the present invention However, the present invention is not limited to this, and the present invention can be applied to applications for solidifying various liquid (molten) materials such as metal materials and resin materials.

図1および図2に示す如く、非接触超音波振動工程S100は凝固過程の溶湯1の液面から所定の距離Rを空けて配置した上型2により、非接触で溶湯1に超音波振動を付与する工程である。   As shown in FIGS. 1 and 2, the non-contact ultrasonic vibration step S <b> 100 performs ultrasonic vibration on the molten metal 1 in a non-contact manner by the upper mold 2 arranged at a predetermined distance R from the liquid surface of the molten metal 1 in the solidification process. It is a process of giving.

上型2は本発明に係る凝固方法における振動子の実施の一形態であり、所定の周波数で超音波振動するものである。本実施例では、上型2は溶湯1を所定の形状に成型するための鋳型10の上半部を成す可動型(鋳型の構成部材のうち、移動可能なもの)を兼ねている。   The upper die 2 is an embodiment of a vibrator in the coagulation method according to the present invention, and vibrates ultrasonically at a predetermined frequency. In the present embodiment, the upper mold 2 also serves as a movable mold (movable of the mold constituent members) forming the upper half of the mold 10 for molding the molten metal 1 into a predetermined shape.

図2に示す如く、非接触超音波振動工程S100において、まず溶湯1を鋳型10の下半部を成す固定型である下型3に注ぎ入れ、凝固過程におく。
ここで、「凝固過程」とは、(α)液体の周囲の温度(本実施例の場合、下型3の温度)を液体の凝固点(または、初晶の晶出温度)以下の温度に保持する、または、(β)液体の周囲の温度を凝固点以下で経時的に下げる(冷却する)ことにより、所定の時間経過後には液体が凝固し得る状態(言い換えれば、液体が凝固するための駆動力が発生している状態)を指す。
As shown in FIG. 2, in the non-contact ultrasonic vibration step S100, first, the molten metal 1 is poured into the lower mold 3 which is a fixed mold constituting the lower half of the mold 10 and is subjected to a solidification process.
Here, “solidification process” means that (α) the temperature around the liquid (in this embodiment, the temperature of the lower mold 3) is kept at a temperature below the solidification point of the liquid (or the crystallization temperature of the primary crystal). Or (β) A state in which the liquid can solidify after a predetermined time has elapsed by lowering (cooling) the ambient temperature of the liquid below the freezing point (in other words, driving to solidify the liquid) State where force is generated).

次に、溶湯1の液面から上型2の下面までの距離がRとなる位置に上型2を配置し、これを20kHzの周波数で超音波振動させ、非接触で溶湯1に超音波振動を付与する。
このときの上型2の超音波振動の出力は20kW程度であり、溶湯に振動子を浸漬する従来の凝固方法における超音波振動の出力(200kW程度)の約10分の1である。
Next, the upper mold 2 is disposed at a position where the distance from the liquid surface of the molten metal 1 to the lower surface of the upper mold 2 is R, and this is ultrasonically vibrated at a frequency of 20 kHz, and the molten metal 1 is ultrasonically vibrated without contact. Is granted.
At this time, the output of the ultrasonic vibration of the upper mold 2 is about 20 kW, which is about one tenth of the output (about 200 kW) of the ultrasonic vibration in the conventional solidification method in which the vibrator is immersed in the molten metal.

図3に示す如く、溶湯1に超音波振動が付与されると、溶湯1の液面近傍領域が振動するとともに、溶湯1の液面と上型2の間で空気の対流が起こって溶湯1の液面が冷却される。そのため、上型2に対向する溶湯1の液面の近傍領域において多数の結晶核1a・1a・・・が核生成する。また、溶湯1に付与される超音波振動により、溶湯1の内部に液面から底部に向かう緩やかな強制対流が発生する。
その結果、溶湯1の液面近傍において核生成した多数の結晶核1a・1a・・・は再溶解することなく強制対流に乗って溶湯1の底部に搬送され、そこで沈降する。
As shown in FIG. 3, when ultrasonic vibration is applied to the molten metal 1, the region near the liquid surface of the molten metal 1 vibrates and air convection occurs between the liquid surface of the molten metal 1 and the upper mold 2. The liquid level is cooled. Therefore, a large number of crystal nuclei 1a, 1a,... Nucleate in the vicinity of the liquid surface of the molten metal 1 facing the upper mold 2. In addition, due to ultrasonic vibration applied to the molten metal 1, gentle forced convection is generated in the molten metal 1 from the liquid surface to the bottom.
As a result, a large number of crystal nuclei 1a, 1a,... Nucleated near the liquid surface of the molten metal 1 are transported to the bottom of the molten metal 1 by forced convection without remelting, and settle there.

なお、非接触で超音波振動を付与する場合、媒質による振動エネルギーの損失を考慮すると液体の液面から振動子までの距離を極力短くすることが望ましい。しかし、溶融金属の液面からの輻射熱による振動子の劣化や、溶融金属が跳ねて振動子に付着することを防止するという観点からは、液体の液面から振動子までの距離を長くすることが望ましい。
また、振動子は点ではなく、所定の面積を有し、液面に対向する面から振動を発することから、超音波振動の共振が起こり、液体の液面から振動子までの距離によっては超音波振動が増幅され、あるいは相殺される。
従って、非接触超音波振動工程における振動子と液体の液面との間の所定の距離は、(1)超音波振動の共振が起こり超音波振動が増幅される距離であって、かつ、(2)振動子の劣化等の影響が抑えられる範囲内で極力短いこと、が望ましい。
When applying ultrasonic vibration in a non-contact manner, it is desirable to reduce the distance from the liquid surface to the vibrator as much as possible in consideration of the loss of vibration energy due to the medium. However, from the viewpoint of preventing deterioration of the vibrator due to radiant heat from the liquid surface of the molten metal and preventing the molten metal from splashing and adhering to the vibrator, the distance from the liquid surface to the vibrator should be increased. Is desirable.
In addition, since the vibrator has a predetermined area, not a point, and oscillates from the surface facing the liquid surface, resonance of ultrasonic vibration occurs, and depending on the distance from the liquid surface to the vibrator, Sonic vibration is amplified or canceled out.
Accordingly, the predetermined distance between the vibrator and the liquid surface in the non-contact ultrasonic vibration step is (1) a distance at which resonance of the ultrasonic vibration occurs and the ultrasonic vibration is amplified, and ( 2) It is desirable that the length be as short as possible within a range in which the influence of deterioration of the vibrator or the like can be suppressed.

ここで、超音波振動の共振が起こり、超音波振動が増幅される距離を「第nピーク距離(n:正の整数)」という。第nピーク距離Rnは、超音波の波長λを用いて、Rn=(n/2)×λで表される。   Here, the distance at which the resonance of the ultrasonic vibration occurs and the ultrasonic vibration is amplified is referred to as “nth peak distance (n: positive integer)”. The n-th peak distance Rn is expressed by Rn = (n / 2) × λ using the ultrasonic wavelength λ.

本実施例の場合、上型2の超音波振動の周波数は20kHz、音速は約320m/secであるから、波長λ=(320×103)/(20×103)=16[mm]である。
従って、本実施例における第一ピーク距離R1は8mm、第二ピーク距離R2は16mmである。
In the present embodiment, the ultrasonic vibration frequency of the upper mold 2 is 20 kHz and the sound velocity is about 320 m / sec, so that the wavelength λ = (320 × 10 3 ) / (20 × 10 3 ) = 16 [mm]. is there.
Therefore, the first peak distance R1 in this embodiment is 8 mm, and the second peak distance R2 is 16 mm.

しかし、本実施例では、上型2(の下面)と溶湯1の液面との間の距離Rを第一ピーク距離である8mmとした場合には溶湯1の液面近傍における核生成の促進効果があまり見られず、第二ピーク距離である16mmとした場合には溶湯1の液面近傍における核生成の促進効果が顕著に見られた。
従って、上型2(の下面)と溶湯1の液面との間の距離Rを第二ピーク距離(16mm)とすることが凝固組織の微細化の観点から望ましい。
なお、第一ピーク距離で核生成の促進効果があまり見られなかった理由としては、超音波の直進性が高いために距離が短いと共振が起こりにくいことが考えられる。
However, in this embodiment, when the distance R between the upper mold 2 (the lower surface thereof) and the liquid level of the molten metal 1 is 8 mm which is the first peak distance, the nucleation is promoted near the liquid level of the molten metal 1. When the second peak distance was set to 16 mm, the effect of promoting nucleation in the vicinity of the liquid surface of the molten metal 1 was noticeable.
Therefore, it is desirable from the viewpoint of miniaturization of the solidified structure that the distance R between the upper mold 2 (the lower surface thereof) and the liquid surface of the molten metal 1 is the second peak distance (16 mm).
The reason why the effect of promoting nucleation was not so much observed at the first peak distance may be that resonance is less likely to occur if the distance is short because of the high straightness of ultrasonic waves.

図4に示す如く、溶湯1への超音波振動の付与を開始してから所定時間が経過すると、溶湯1の液面に凝固部1bが形成される。凝固部1bは溶湯1の内部に生成した結晶核1a・1a・・・が多数集合し、液面にて凝固して固体状態または半溶融状態となったものである。
凝固部1bが形成されたら非接触超音波振動工程S100を終了し、接触超音波振動工程S200に移行する。
As shown in FIG. 4, when a predetermined time has elapsed since the start of application of ultrasonic vibration to the molten metal 1, a solidified portion 1 b is formed on the liquid surface of the molten metal 1. In the solidified portion 1b, a large number of crystal nuclei 1a, 1a,... Generated inside the molten metal 1 are collected and solidified on the liquid surface to be in a solid state or a semi-molten state.
If the coagulation | solidification part 1b is formed, non-contact ultrasonic vibration process S100 will be complete | finished and it will transfer to contact ultrasonic vibration process S200.

本実施例では非接触超音波振動工程S100における上型2の超音波振動の周波数を20kHzとしたが、本発明に係る凝固方法はこれに限定されず、例えば液体の種類(組成)、液体の量、液体の温度、液体の粘度、液体を充填する容器の形状等の種々の条件に応じて振動子の周波数を適宜選択することが可能である。   In this embodiment, the frequency of ultrasonic vibration of the upper mold 2 in the non-contact ultrasonic vibration step S100 is 20 kHz. However, the solidification method according to the present invention is not limited to this, for example, the type (composition) of the liquid, the liquid The frequency of the vibrator can be appropriately selected according to various conditions such as the amount, the temperature of the liquid, the viscosity of the liquid, and the shape of the container filled with the liquid.

上型2の振動方向は上下方向、すなわち溶湯1の液面に略垂直な方向である。
このように構成することにより、振動子が液面に略平行な方向に振動する場合に比べて効率良く液体に超音波振動を付与することが可能であり、ひいては液体中における結晶核の核生成を促進して凝固組織を微細化することが可能である。
The vibration direction of the upper mold 2 is a vertical direction, that is, a direction substantially perpendicular to the liquid surface of the molten metal 1.
With this configuration, it is possible to apply ultrasonic vibration to the liquid more efficiently than when the vibrator vibrates in a direction substantially parallel to the liquid surface, and thus nucleation of crystal nuclei in the liquid. It is possible to refine the solidified structure by promoting the above.

図1および図5に示す如く、接触超音波振動工程S200は凝固過程の溶湯1の液面に形成された凝固部1bに接触した上型2により、溶湯1に超音波振動を付与する工程である。   As shown in FIGS. 1 and 5, the contact ultrasonic vibration step S <b> 200 is a step of applying ultrasonic vibration to the molten metal 1 by the upper mold 2 in contact with the solidified portion 1 b formed on the liquid surface of the molten metal 1 in the solidification process. is there.

接触超音波振動工程S200においては、まず、上型2を下降して凝固部1bに接触させる。
この際、(1)非接触超音波振動工程S100が終了した時点で一度上型2の超音波振動を停止し、上型2を凝固部1bに接触させてから超音波振動を再開しても良く、(2)非接触超音波振動工程S100から接触超音波振動工程S200に移行する間、上型2の超音波振動を継続しても良い。
In the contact ultrasonic vibration step S200, first, the upper mold 2 is lowered and brought into contact with the solidified portion 1b.
At this time, even if (1) the non-contact ultrasonic vibration step S100 is completed, the ultrasonic vibration of the upper mold 2 is once stopped, and the ultrasonic vibration is resumed after the upper mold 2 is brought into contact with the solidified portion 1b. The (2) ultrasonic vibration of the upper mold 2 may be continued during the transition from the non-contact ultrasonic vibration step S100 to the contact ultrasonic vibration step S200.

図5に示す如く、上型2が凝固部1bに接触した状態で上型2を液面に略垂直な方向に超音波振動させると、凝固部1bを介して溶湯1に超音波振動が付与される。
その結果、凝固部1bの近傍領域においてさらに多数の結晶核1a・1a・・・が生成され、凝固部1bの近傍領域において微細な結晶粒からなる凝固組織が形成され始める。
また、凝固部1bの近傍領域における多数の結晶核1a・1a・・・の核生成および液面から底部に向かう強制対流も維持され、引き続き凝固部1bの近傍領域において核生成した結晶核1a・1a・・・が強制対流に乗って溶湯1の底部に搬送され、そこで沈降する。そして、溶湯1の底部に沈降した結晶核1a・1a・・・が成長して下型3の底部でも微細な結晶粒からなる凝固組織が形成され始める。
このように、接触超音波振動工程S200においては溶湯1の上部(液面近傍)からも下部(底部)からも微細な結晶粒からなる凝固組織が形成されるため、溶湯1の周囲温度がそれほど低くない(凝固の駆動力があまり大きくない)場合にはデンドライト組織が形成されないうちに溶湯1の全てが等軸状の微細な結晶粒からなる凝固組織で占められることとなる。
As shown in FIG. 5, when the upper mold 2 is ultrasonically vibrated in a direction substantially perpendicular to the liquid surface while the upper mold 2 is in contact with the solidified portion 1b, ultrasonic vibration is imparted to the molten metal 1 through the solidified portion 1b. Is done.
As a result, a larger number of crystal nuclei 1a, 1a,... Are generated in the region near the solidified portion 1b, and a solidified structure composed of fine crystal grains starts to be formed in the region near the solidified portion 1b.
Further, nucleation of a large number of crystal nuclei 1a, 1a... In the region near the solidified part 1b and forced convection from the liquid surface to the bottom are maintained, and the crystal nuclei 1a. 1a... Rides on forced convection and is transported to the bottom of the molten metal 1 and settles there. Then, the crystal nuclei 1a, 1a,..., Settled on the bottom of the molten metal 1 grow and a solidified structure composed of fine crystal grains begins to be formed at the bottom of the lower mold 3 as well.
In this way, in the contact ultrasonic vibration step S200, a solidified structure composed of fine crystal grains is formed from the upper part (near the liquid surface) and the lower part (bottom part) of the molten metal 1, so that the ambient temperature of the molten metal 1 is not much. If not low (the driving force for solidification is not so great), all of the molten metal 1 is occupied by a solidified structure composed of equiaxed fine crystal grains before the dendrite structure is formed.

また、接触超音波振動工程S200においては、上型2は固体状態または半溶融状態の凝固部1bに接触しているが溶湯1には接触していない。そのため、溶湯1との接触により上型2が侵食され、損耗することが防止(または大幅に抑制)される。   Further, in the contact ultrasonic vibration step S200, the upper mold 2 is in contact with the solidified part 1b in a solid state or semi-molten state, but not in contact with the molten metal 1. Therefore, the upper mold | type 2 is eroded by contact with the molten metal 1, and it prevents that it wears out (or suppresses significantly).

なお、仮に凝固部1bが生成した後も接触超音波振動工程S200に移行せず、上型2を凝固部1bに接触させずに凝固部1bから所定の距離を空けて上型2を超音波振動させた場合、上型2の損耗は防止できるが、凝固部1bを介して溶湯1に効率良く付与することができず、それ以降の結晶核1a・1a・・・の核生成が抑制されることとなる。   Even after the solidified part 1b is generated, the ultrasonic wave is not transferred to the contact ultrasonic vibration step S200, and the upper mold 2 is ultrasonically separated from the solidified part 1b without contacting the upper mold 2 with the solidified part 1b. When vibrated, the upper mold 2 can be prevented from being worn, but cannot be efficiently applied to the molten metal 1 through the solidified portion 1b, and subsequent nucleation of the crystal nuclei 1a, 1a,. The Rukoto.

本実施例の場合、接触超音波振動工程S200において上型2を下型3の上面の開口部に下方に押し込むことにより、溶湯1に超音波振動が付与されるとともに溶湯1が加圧される。
そして、加圧されるとともに超音波振動が付与された状態を保持しつつ、溶湯1の周囲を冷却することにより、溶湯1が全て凝固する。
In the case of the present embodiment, the ultrasonic vibration is applied to the molten metal 1 and the molten metal 1 is pressurized by pushing the upper mold 2 downward into the opening on the upper surface of the lower mold 3 in the contact ultrasonic vibration step S200. .
And all the molten metal 1 solidifies by cooling the circumference | surroundings of the molten metal 1 holding the state to which the ultrasonic vibration was provided while being pressurized.

加圧することにより、鋳型10の略中央部において凝固せずに残っている溶湯1にさらに効率良く超音波振動を付与し、結晶核1a・1a・・・の核生成を促進することが可能である。
その結果、図6に示す如く、鋳型10に対応する所定の形状を有し、表面から内部に至るまで数10μm程度の等軸状の微細な結晶粒からなる凝固組織を有するインゴット4が得られる。
インゴット4の凝固組織は表面から内部まで等軸晶からなり、そのビッカース硬度はHV68である。これに対して、従来の凝固方法により得られるインゴット(超音波振動を全く用いず、冷却のみで得られるインゴット)の凝固組織は表面近傍にデンドライト組織が発達し、全体的にも結晶粒が粗大である(100μm程度)とともに、ビッカース硬度がHV57であり本実施例よりも硬度が低い。
By applying pressure, it is possible to more efficiently apply ultrasonic vibration to the molten metal 1 that has not solidified in the substantially central portion of the mold 10 and promote nucleation of the crystal nuclei 1a, 1a,. is there.
As a result, as shown in FIG. 6, an ingot 4 having a predetermined shape corresponding to the mold 10 and having a solidified structure made of equiaxed fine crystal grains of about several tens of μm from the surface to the inside is obtained. .
The solidified structure of the ingot 4 consists of equiaxed crystals from the surface to the inside, and its Vickers hardness is HV68. In contrast, the solidified structure of an ingot obtained by a conventional solidification method (ingot obtained by cooling alone without using ultrasonic vibration at all) develops a dendrite structure near the surface, and the crystal grains are coarse overall. (About 100 μm) and Vickers hardness is HV57, which is lower than that of the present example.

なお、溶融金属の種類や容器(鋳型)の内部の形状(大きさ)等によっては、接触超音波振動工程において液体を加圧せずに常圧で凝固しても良い。   Depending on the type of molten metal and the shape (size) of the inside of the container (mold), the liquid may be solidified at normal pressure without pressurizing the liquid in the contact ultrasonic vibration step.

本実施例では上型2が溶湯1を充填する容器である鋳型10の一部を兼ねる構成としたが、本発明はこれに限定されず、液体が充填される容器と振動子とが別体でも良い。   In the present embodiment, the upper mold 2 serves as a part of the mold 10 which is a container for filling the molten metal 1. However, the present invention is not limited to this, and the container filled with the liquid and the vibrator are separated. But it ’s okay.

本実施例では接触超音波振動工程S200において上型2(上型)のみを超音波振動させる構成としたが、本発明はこれに限定されず、接触超音波振動工程において下型も合わせて超音波振動させる構成としても良い。   In this embodiment, only the upper die 2 (upper die) is ultrasonically vibrated in the contact ultrasonic vibration step S200. However, the present invention is not limited to this, and the lower die is also superposed in the contact ultrasonic vibration step. A configuration in which sound waves are vibrated may be used.

本実施例では非接触超音波振動工程S100、接触超音波振動工程S200のいずれも同一の上型2により超音波振動を付与する構成としたが、本発明はこれに限定されず、工程毎にそれぞれ別の振動子を用いて超音波振動を付与する構成としても良い。   In this embodiment, both the non-contact ultrasonic vibration step S100 and the contact ultrasonic vibration step S200 are configured to apply ultrasonic vibration by the same upper mold 2, but the present invention is not limited to this, and each step is performed. It is good also as a structure which provides ultrasonic vibration using a respectively different vibrator | oscillator.

本実施例では非接触超音波振動工程S100、接触超音波振動工程S200のいずれも超音波振動の周波数を20kHzとしたが、本発明はこれに限定されず、工程毎にそれぞれ異なる周波数の超音波振動を付与する構成としても良い。
なお、非接触超音波振動工程において溶融金属からの輻射熱により振動子が劣化することを防止するという観点からは、振動子の超音波振動の周波数を極力低くすることにより超音波振動の共振が起こり、超音波振動が増幅される距離(第nピークとなる距離)を長くすることが望ましいが、あまり周波数を低くすると人間の可聴域と重なり、周囲の作業環境が悪化するという問題がある。従って、振動子の超音波振動の周波数の下限は15kHz程度とすることが望ましい。
In this embodiment, the frequency of ultrasonic vibration is set to 20 kHz in both the non-contact ultrasonic vibration step S100 and the contact ultrasonic vibration step S200. However, the present invention is not limited to this, and ultrasonic waves having different frequencies for each process. It is good also as a structure which provides a vibration.
From the viewpoint of preventing the vibrator from being deteriorated by radiant heat from the molten metal in the non-contact ultrasonic vibration process, resonance of the ultrasonic vibration occurs by making the frequency of the ultrasonic vibration of the vibrator as low as possible. Although it is desirable to increase the distance at which the ultrasonic vibration is amplified (distance that becomes the n-th peak), there is a problem that if the frequency is too low, it overlaps with the human audible range and the surrounding work environment deteriorates. Therefore, the lower limit of the ultrasonic vibration frequency of the vibrator is desirably about 15 kHz.

本実施例では非接触超音波振動工程S100、接触超音波振動工程S200のいずれも超音波振動の振幅(振動エネルギー)を同じとしたが、本発明はこれに限定されず、工程毎にそれぞれ異なる振幅の超音波振動を付与する構成としても良い。   In the present embodiment, the amplitude (vibration energy) of the ultrasonic vibration is the same in both the non-contact ultrasonic vibration step S100 and the contact ultrasonic vibration step S200, but the present invention is not limited to this, and is different for each step. It is good also as a structure which provides the ultrasonic vibration of an amplitude.

また、本発明は凝固組織の全てを均一に微細化することをその主目的とするものであるが、非接触超音波振動工程および接触超音波振動工程における超音波振動の振幅や超音波振動を付与する時間、周囲温度等を適宜調整することにより、凝固組織の制御を行うことも可能である。例えば、インゴットの上部と下部で凝固組織の平均結晶粒径を変えたり、下部は等軸晶からなる凝固組織として上部はデンドライト組織とする等が挙げられる。   In addition, the main purpose of the present invention is to uniformly refine all of the solidified tissue, but the amplitude of ultrasonic vibration and ultrasonic vibration in the non-contact ultrasonic vibration process and the contact ultrasonic vibration process are reduced. It is also possible to control the solidified tissue by appropriately adjusting the application time, ambient temperature, and the like. For example, the average crystal grain size of the solidified structure is changed between the upper part and the lower part of the ingot, the lower part is a solidified structure composed of equiaxed crystals, and the upper part is a dendrite structure.

本発明に係る溶融金属の凝固方法の実施の一形態を示すフロー図。The flowchart which shows one Embodiment of the solidification method of the molten metal which concerns on this invention. 本発明に係る溶融金属の凝固方法の実施の一形態の非接触超音波振動工程の初期段階を示す側面断面模式図。The side surface cross-sectional schematic diagram which shows the initial stage of the non-contact ultrasonic vibration process of one Embodiment of the solidification method of the molten metal which concerns on this invention. 本発明に係る溶融金属の凝固方法の実施の一形態の非接触超音波振動工程の中期段階を示す側面断面模式図。The side surface cross-sectional schematic diagram which shows the intermediate stage of the non-contact ultrasonic vibration process of one Embodiment of the solidification method of the molten metal which concerns on this invention. 本発明に係る溶融金属の凝固方法の実施の一形態の非接触超音波振動工程の終期段階を示す側面断面模式図。The side surface cross-sectional schematic diagram which shows the final stage of the non-contact ultrasonic vibration process of one Embodiment of the solidification method of the molten metal which concerns on this invention. 本発明に係る溶融金属の凝固方法の実施の一形態の接触超音波振動工程の初期段階を示す側面断面模式図。The side surface cross-sectional schematic diagram which shows the initial stage of the contact ultrasonic vibration process of one Embodiment of the solidification method of the molten metal which concerns on this invention. 本発明に係る溶融金属の凝固方法の実施の一形態の接触超音波振動工程の終期段階を示す側面断面模式図。The side surface cross-sectional schematic diagram which shows the final stage of the contact ultrasonic vibration process of one Embodiment of the solidification method of the molten metal which concerns on this invention.

1 溶湯(液体)
1a 結晶核
1b 凝固部
2 上型(振動子)
1 Molten metal (liquid)
1a Crystal nucleus 1b Solidification part 2 Upper mold (vibrator)

Claims (4)

凝固過程の液体の液面から所定の距離を空けて配置した振動子により、前記液体に超音波振動を付与する非接触超音波振動工程と、
前記凝固過程の液体の液面に形成された凝固部に接触しているが溶湯には接触していない振動子により、前記液体に超音波振動を付与する接触超音波振動工程と、
を具備することを特徴とする凝固方法。
A non-contact ultrasonic vibration step for applying ultrasonic vibration to the liquid by a vibrator arranged at a predetermined distance from the liquid surface of the liquid in the solidification process;
A contact ultrasonic vibration step of applying ultrasonic vibration to the liquid by a vibrator that is in contact with the solidified portion formed on the liquid surface of the liquid in the solidification process but not in contact with the molten metal ;
A coagulation method comprising:
前記非接触超音波振動工程における所定の距離を、超音波振動の共振が生じる第二ピーク距離とすることを特徴とする請求項1に記載の溶融金属の凝固方法。   2. The molten metal solidification method according to claim 1, wherein the predetermined distance in the non-contact ultrasonic vibration step is a second peak distance at which resonance of ultrasonic vibration occurs. 前記振動子の振動方向を液面に略垂直な方向とすることを特徴とする請求項1または請求項2に記載の凝固方法。   The coagulation method according to claim 1 or 2, wherein a vibration direction of the vibrator is a direction substantially perpendicular to a liquid surface. 前記接触超音波振動工程において、前記液体を加圧することを特徴とする請求項1から請求項3までのいずれか一項に記載の凝固方法。   The coagulation method according to any one of claims 1 to 3, wherein the liquid is pressurized in the contact ultrasonic vibration step.
JP2007009513A 2007-01-18 2007-01-18 Solidification method Expired - Fee Related JP4594336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007009513A JP4594336B2 (en) 2007-01-18 2007-01-18 Solidification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007009513A JP4594336B2 (en) 2007-01-18 2007-01-18 Solidification method

Publications (2)

Publication Number Publication Date
JP2008173668A JP2008173668A (en) 2008-07-31
JP4594336B2 true JP4594336B2 (en) 2010-12-08

Family

ID=39701080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007009513A Expired - Fee Related JP4594336B2 (en) 2007-01-18 2007-01-18 Solidification method

Country Status (1)

Country Link
JP (1) JP4594336B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9327347B2 (en) 2008-03-05 2016-05-03 Southwire Company, Llc Niobium as a protective barrier in molten metals
US9382598B2 (en) 2010-04-09 2016-07-05 Southwire Company, Llc Ultrasonic device with integrated gas delivery system
US9481031B2 (en) 2015-02-09 2016-11-01 Hans Tech, Llc Ultrasonic grain refining
US9528167B2 (en) 2013-11-18 2016-12-27 Southwire Company, Llc Ultrasonic probes with gas outlets for degassing of molten metals
US10022786B2 (en) 2015-09-10 2018-07-17 Southwire Company Ultrasonic grain refining
US10233515B1 (en) 2015-08-14 2019-03-19 Southwire Company, Llc Metal treatment station for use with ultrasonic degassing system
US10640846B2 (en) 2010-04-09 2020-05-05 Southwire Company, Llc Ultrasonic degassing of molten metals

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5905809B2 (en) * 2012-10-09 2016-04-20 トヨタ自動車株式会社 Method for producing Al-Si casting alloy
CN104084567B (en) * 2014-06-30 2016-10-05 华南理工大学 Metal bath processing method based on power ultrasonic Yu coupling pressure
JP6384345B2 (en) * 2015-02-05 2018-09-05 トヨタ自動車株式会社 Inclusion removal method
CN110216260A (en) * 2019-06-19 2019-09-10 武汉钢铁有限公司 The method of Cleanliness of Molten Steel is improved in continuous casting process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262851A (en) * 1991-02-14 1992-09-18 Kurimoto Ltd Casting method
JP2004209487A (en) * 2002-12-27 2004-07-29 National Institute For Materials Science Method for controlling solidifying crystalline structure of aluminum cast alloy
JP2006102807A (en) * 2004-10-08 2006-04-20 Toyota Motor Corp Method for reforming metallic structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262851A (en) * 1991-02-14 1992-09-18 Kurimoto Ltd Casting method
JP2004209487A (en) * 2002-12-27 2004-07-29 National Institute For Materials Science Method for controlling solidifying crystalline structure of aluminum cast alloy
JP2006102807A (en) * 2004-10-08 2006-04-20 Toyota Motor Corp Method for reforming metallic structure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9327347B2 (en) 2008-03-05 2016-05-03 Southwire Company, Llc Niobium as a protective barrier in molten metals
US9382598B2 (en) 2010-04-09 2016-07-05 Southwire Company, Llc Ultrasonic device with integrated gas delivery system
US10640846B2 (en) 2010-04-09 2020-05-05 Southwire Company, Llc Ultrasonic degassing of molten metals
US9528167B2 (en) 2013-11-18 2016-12-27 Southwire Company, Llc Ultrasonic probes with gas outlets for degassing of molten metals
US10316387B2 (en) 2013-11-18 2019-06-11 Southwire Company, Llc Ultrasonic probes with gas outlets for degassing of molten metals
US9481031B2 (en) 2015-02-09 2016-11-01 Hans Tech, Llc Ultrasonic grain refining
US10441999B2 (en) 2015-02-09 2019-10-15 Hans Tech, Llc Ultrasonic grain refining
US10233515B1 (en) 2015-08-14 2019-03-19 Southwire Company, Llc Metal treatment station for use with ultrasonic degassing system
US10022786B2 (en) 2015-09-10 2018-07-17 Southwire Company Ultrasonic grain refining
US10639707B2 (en) 2015-09-10 2020-05-05 Southwire Company, Llc Ultrasonic grain refining and degassing procedures and systems for metal casting

Also Published As

Publication number Publication date
JP2008173668A (en) 2008-07-31

Similar Documents

Publication Publication Date Title
JP4594336B2 (en) Solidification method
JP5328569B2 (en) Al-Si alloy having fine crystal structure, method for producing the same, device for producing the same, and method for producing the casting
JP4836244B2 (en) Casting method
JP4984049B2 (en) Casting method.
JP5051636B2 (en) Casting method and casting apparatus used therefor.
JP6340893B2 (en) Method for producing aluminum alloy billet
CN101234420A (en) Ultrasound wave compression mold casting method and special-purpose equipment thereof
JP2006102807A (en) Method for reforming metallic structure
JP2013215756A (en) METHOD FOR MANUFACTURING Al-Si-BASED CASTING ALLOY
JPH1133692A (en) Manufacture of metallic slurry for semi-solidified casting
JP4601489B2 (en) Vibration solidification casting mold and casting method thereof
KR20170100221A (en) Direct chill casting for grain refiment of microstructure
JPH05329613A (en) Casting method
JP6132642B2 (en) Method for preparing semi-solid metal slurry
JP2001303150A (en) Metallic grain for casting, its producing method and injection-forming method for metal
JP7457691B2 (en) Ultrasonic enhancement of direct chill casting materials
JP5905809B2 (en) Method for producing Al-Si casting alloy
JPH10140260A (en) Method of precast forming
JPH10128516A (en) Formation of semi-molten metal
JP2017060975A (en) Manufacturing method for aluminum-based hypoeutectic alloy ingot
RU2799570C2 (en) Ultrasonic improvement of materials produced by direct cooling casting
JP2010284717A (en) Twin roll continuous caster
JP5800215B2 (en) Mold casting method
Song et al. The Influence of Ultrasonic Vibration on the Microstructure of A380 Alloy
JPS646857B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees