JPS6141661B2 - - Google Patents

Info

Publication number
JPS6141661B2
JPS6141661B2 JP8535779A JP8535779A JPS6141661B2 JP S6141661 B2 JPS6141661 B2 JP S6141661B2 JP 8535779 A JP8535779 A JP 8535779A JP 8535779 A JP8535779 A JP 8535779A JP S6141661 B2 JPS6141661 B2 JP S6141661B2
Authority
JP
Japan
Prior art keywords
ingot
traction
mold
casting
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8535779A
Other languages
Japanese (ja)
Other versions
JPS569050A (en
Inventor
Katsuyoshi Wakamoto
Eiichi Myatsu
Toshihiko Mori
Kazuhisa Masutani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8535779A priority Critical patent/JPS569050A/en
Publication of JPS569050A publication Critical patent/JPS569050A/en
Publication of JPS6141661B2 publication Critical patent/JPS6141661B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/128Accessories for subsequent treating or working cast stock in situ for removing
    • B22D11/1287Rolls; Lubricating, cooling or heating rolls while in use

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は例えば横型連続鋳造で健全な鋳塊を
得るための鋳造方式及びけん引方式に改善を加え
た連続鋳造法に関するものである。 従来、連続鋳造を実施する装置として第1図に
示すものがあつた。図において1は保温炉、6は
鋳型、2は鋳型の冷却装置、3はけん引装置、4
は電気信号により断続駆動をするけん引ロール、
5は油圧により鋳塊とけん引ロール4とを押えつ
け、けん引駆動力を正確に鋳塊に伝える、押えロ
ールである。 次に動作について説明する。けん引ロール4
は、プログラムされた断続の電気信号により、正
転、停止、逆転、停止の動作を押えロール5と共
に引き出された鋳塊に伝える働をする。この動作
により保温炉1にある溶湯は鋳型6の冷却装置2
内で、停止時に凝固され、正転時にけん引されな
がら連続して鋳造される。 けん引ロールの逆転は鋳塊10は伝わり鋳塊1
0が引き出し方向と逆進することから、鋳塊表面
に付着した蒸発金属、不純物、逆偏析した金属等
を冷却装置2の内の鋳型6の表面からはずし取る
目的で使用される事がある。 従来の断続的なけん引方式では、第3図にばね
用りん青銅の例を示す様に、停止時(第3図の右
側約3分の1の部分)と正転駆動時(同残りの部
分)の組織が異なる。又、写真には写つていない
が、停止部には逆偏析金属や高溶質濃度の金属が
結晶粒界に存在する。更に又正転駆動の終端には
逃散する事の出来なかつた溶存ガスが残存しやす
い。これらの結晶粒界に残存する金属およびガス
は、その後の加工時に割れ、あるいはキズの原因
となる。この様に従来の断続鋳造では健全な鋳塊
が得られにくく、又品質が不安定なものであつ
た。 この発明は上記のような従来の方式の欠点を除
去するためになされたものである。すなわちこの
発明は、鋳塊に往復運転及び微少振動を加えるこ
とにより、均一微細な組織、偏析の少ない組織、
又溶存ガスの逃散を助長した健全な鋳塊を得るこ
とのできる、鋳造けん引方式を特徴とした連続鋳
造方法を提供することを目的としている。 この発明の一実施例を示す第2図について説明
する。1は保温炉、2は鋳型の冷却装置、3はけ
ん引装置、4はけん引ロール、5は押えロール、
6は鋳型、7はけん引ロール4と押えロール5か
らなるけん引装置3を鋳塊の引出し軸と平行して
鋳塊を微少振動させる揺動装置で、往復運動の振
巾を生む偏芯カム8と振動を生ずるモータ、油圧
などの動力源9より成つている。 偏芯カム8の回転に伴ないけん引装置3全体
が、一定の振巾と振動数により微少振動を繰り返
す。又、けん引ロール4は一定の正転を連続して
行なう事で、鋳塊10は直後微少振動されながら
前方へとけん引される。 条件を幾つか違えかつ従来方法とこの発明の方
法によつて鋳造したものについて、鋳肌の状況、
加工性、健全性及び鋳型の寿命について調べたと
ころ、次表の結果を得た。なお、いずれも、引出
し鋳造速度は130mm/minで実施した。
The present invention relates to a continuous casting method in which improvements are made to the casting method and towing method for obtaining a sound ingot in, for example, horizontal continuous casting. Conventionally, there has been an apparatus shown in FIG. 1 for carrying out continuous casting. In the figure, 1 is a heat retention furnace, 6 is a mold, 2 is a cooling device for the mold, 3 is a traction device, and 4
is a traction roll that is driven intermittently by electric signals,
Reference numeral 5 denotes a presser roll that presses down the ingot and the traction roll 4 using hydraulic pressure and accurately transmits the traction drive force to the ingot. Next, the operation will be explained. Tow roll 4
functions to transmit forward rotation, stop, reverse rotation, and stop operations to the ingot pulled out together with the presser roll 5 by programmed intermittent electric signals. Through this operation, the molten metal in the insulating furnace 1 is transferred to the cooling device 2 of the mold 6.
Inside, it solidifies when stopped and is continuously cast while being towed during normal rotation. The reversal of the traction roll is transmitted to the ingot 10, and the ingot 1
Since the 0 moves in the opposite direction to the drawing direction, it is sometimes used for the purpose of removing evaporated metal, impurities, reversely segregated metal, etc. attached to the surface of the ingot from the surface of the mold 6 in the cooling device 2. In the conventional intermittent traction system, as shown in Figure 3, which shows an example of phosphor bronze for springs, there are ) have different organizations. Furthermore, although not shown in the photograph, reverse segregation metals and metals with high solute concentration exist at the grain boundaries in the stop portion. Furthermore, dissolved gas that cannot escape tends to remain at the end of normal rotation drive. Metal and gas remaining at these grain boundaries cause cracks or scratches during subsequent processing. As described above, in conventional intermittent casting, it is difficult to obtain a sound ingot, and the quality is unstable. This invention was made in order to eliminate the drawbacks of the conventional system as described above. In other words, this invention creates a uniform fine structure, a structure with little segregation, and
Another object of the present invention is to provide a continuous casting method characterized by a casting traction system, which can produce a healthy ingot that facilitates the escape of dissolved gases. FIG. 2, which shows an embodiment of the present invention, will be explained. 1 is a heat retention furnace, 2 is a mold cooling device, 3 is a traction device, 4 is a traction roll, 5 is a presser roll,
6 is a mold, 7 is a swinging device that slightly vibrates the ingot in parallel with the drawing axis of the ingot using a traction device 3 consisting of a traction roll 4 and a presser roll 5, and an eccentric cam 8 that generates the amplitude of reciprocating motion. It consists of a power source 9 such as a motor and hydraulic pressure that generate vibrations. As the eccentric cam 8 rotates, the entire traction device 3 repeats minute vibrations with a constant amplitude and frequency. Furthermore, by continuously rotating the towing roll 4 in a constant normal direction, the ingot 10 is immediately pulled forward while being slightly vibrated. The condition of the casting surface, the condition of the casting surface of the castings cast by the conventional method and the method of this invention under several different conditions.
The workability, soundness, and life of the mold were investigated, and the results shown in the table below were obtained. In both cases, the draw casting speed was 130 mm/min.

【表】 上記表から判るとおり、この発明の方法による
ときは、特に振動数を高くしたときに鋳型寿命が
やや悪くなるが、鋳造組織の方はすぐれたものと
なつている。 この発明による連続鋳造法で鋳造した組織の例
を第4図に示す。第4図は、上記表の#7のもの
を示しているが、均一で微細な組織となつている
ことが認められる。なお、従来例として示した第
3図は上記表の#10のものを示したものである。 この発明によれば、直接鋳塊を揺動することで
凝固界面に加えられた微小振動が熱流の方向に成
長しようとする樹枝状晶の先端を切断すること
で、結晶の核は増大し均一で微細な組織になる。
均一で微細な組織は不均一な鋳造時の歪がない事
より、その後の加工において割れにくい効果があ
る。又凝固界面の微少振動は樹枝状晶の二次アー
ム間につかまえられた溶存ガスを逃散解放する効
果がある。溶存ガスの少ない鋳塊は展伸加工後、
ブローホール等のキズの発生が少ない。 更に凝固界面の微少振動は断続鋳造時の逆転駆
動と同等の働きで鋳塊表面への付着物を除去する
効果がある。 なお、縦型連続鋳造では、従来より鋳塊を連続
引出しながら、鋳型を上下に振動させる方法があ
る。この方法でも鋳塊自体を振動させることが出
来ないため安定した品質が得られにくい。 以上のように、この発明によれば鋳塊の引出し
軸と同じ方向に微少な振動を加えて凝固界面を微
少振動させながら鋳造するようにしたので、均一
微細な組織化と逆偏析や溶存ガスの残存を防止す
ることで健全な鋳塊を得られる効果がある。
[Table] As can be seen from the above table, when the method of the present invention is used, the life of the mold is slightly worse, especially when the vibration frequency is increased, but the cast structure is superior. FIG. 4 shows an example of a structure cast by the continuous casting method according to the present invention. FIG. 4 shows #7 in the above table, and it can be seen that it has a uniform and fine structure. Incidentally, FIG. 3 shown as a conventional example shows #10 in the above table. According to this invention, micro-vibrations applied to the solidification interface by directly shaking the ingot cut the tips of dendrites that try to grow in the direction of heat flow, thereby increasing the size of crystal nuclei and making them uniform. becomes a fine structure.
The uniform and fine structure eliminates distortion during uneven casting, making it less likely to crack during subsequent processing. Furthermore, the microvibration at the solidification interface has the effect of escaping and releasing the dissolved gas trapped between the secondary arms of the dendrites. After the ingot with little dissolved gas is stretched,
Fewer scratches such as blowholes occur. Furthermore, the micro-vibration at the solidification interface has the same effect as the reverse rotation drive during intermittent casting, and has the effect of removing deposits on the surface of the ingot. In vertical continuous casting, there is a conventional method in which the mold is vibrated up and down while continuously drawing out the ingot. Even with this method, it is difficult to obtain stable quality because the ingot itself cannot be vibrated. As described above, according to the present invention, casting is performed while slightly vibrating the solidification interface by applying minute vibrations in the same direction as the drawing axis of the ingot, resulting in a uniform fine structure, reverse segregation, and dissolved gas. This has the effect of obtaining a healthy ingot by preventing the remaining of.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の横型連続鋳造装置の概略を示す
配置図、第2図はこの発明を実施するための横型
連続鋳造装置の概略を示す配置図、第3図は従来
の方法による鋳塊の鋳造方向に沿つた切断面組織
を示す10倍拡大の顕微鏡写真、第4図はこの発明
の方法による鋳塊について示す第3図と同様の写
真である。 図中、1は保温炉、2は鋳型の冷却装置、3は
けん引装置、6は鋳型、7は揺動装置である。
Fig. 1 is a layout diagram schematically showing a conventional horizontal continuous casting device, Fig. 2 is a layout diagram schematically showing a horizontal continuous casting device for carrying out the present invention, and Fig. 3 is a layout diagram showing an outline of a horizontal continuous casting device for carrying out the present invention. FIG. 4 is a 10 times enlarged micrograph showing the structure of a cut surface along the casting direction, and is a photo similar to FIG. 3 showing an ingot produced by the method of the present invention. In the figure, 1 is a heat retention furnace, 2 is a mold cooling device, 3 is a traction device, 6 is a mold, and 7 is a swing device.

Claims (1)

【特許請求の範囲】[Claims] 1 保温炉から鋳型を介して横型水平に引出され
る鋳塊の上面に押えロールを、下面にけん引ロー
ルを接触させ上記鋳塊の引出し軸と平行方向に往
復運動をさせるけん引装置を、上記方向と同じ方
向に微少な振動を加えて上記鋳塊の凝固界面を微
少振動させながら鋳造することを特徴とする連続
鋳造法。
1. A traction device that makes reciprocating motion in a direction parallel to the drawing axis of the ingot by bringing a presser roll into contact with the upper surface of the ingot and a traction roll into contact with the lower surface of the ingot being pulled out horizontally from the ingot through the mold from the heat-retaining furnace in the above-mentioned direction. A continuous casting method characterized in that casting is performed while slightly vibrating the solidification interface of the ingot by applying a slight vibration in the same direction as the ingot.
JP8535779A 1979-07-05 1979-07-05 Continuous casting method Granted JPS569050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8535779A JPS569050A (en) 1979-07-05 1979-07-05 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8535779A JPS569050A (en) 1979-07-05 1979-07-05 Continuous casting method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP17416087A Division JPS6393449A (en) 1987-07-13 1987-07-13 Continuous casting method

Publications (2)

Publication Number Publication Date
JPS569050A JPS569050A (en) 1981-01-29
JPS6141661B2 true JPS6141661B2 (en) 1986-09-17

Family

ID=13856441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8535779A Granted JPS569050A (en) 1979-07-05 1979-07-05 Continuous casting method

Country Status (1)

Country Link
JP (1) JPS569050A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393449A (en) * 1987-07-13 1988-04-23 Mitsubishi Electric Corp Continuous casting method
JP5565734B2 (en) * 2011-04-05 2014-08-06 昭和電工株式会社 Aluminum alloy continuous casting rod, continuous casting rod casting method, continuous casting equipment
JP5574301B2 (en) * 2012-05-28 2014-08-20 昭和電工株式会社 Aluminum alloy continuous casting rod

Also Published As

Publication number Publication date
JPS569050A (en) 1981-01-29

Similar Documents

Publication Publication Date Title
JPH08503418A (en) Metal strip casting
JPS6141661B2 (en)
JPH04284950A (en) Method for continuously casting metal strip
CN207756897U (en) A kind of vibrating device used in vacuum pressing and casting alloy process
US2897557A (en) Metal casting
JPS6393449A (en) Continuous casting method
JPS60148651A (en) Continuous casting machine
JPS5588974A (en) Method and apparatus for horizontal circular vibration casting
JPS6211940B2 (en)
CN106282869B (en) A kind of device and method of light-alloy melt magneto vibration solidification
JPH03111104A (en) Ingot cutting method
JPS646857B2 (en)
RU2087251C1 (en) Method of vibration treatment of crystallizing metal and device for its embodiment
SU971572A1 (en) Method for treating solidifying alloy with ultrasonic oscillations
JPH0337455B2 (en)
JPH01309760A (en) Continuous casting method
CN208427715U (en) Shake desanding device
SU1509175A1 (en) Method of working ingots
JPH0740019A (en) Method for reducing center segregation in cast slab in continuous casting for steel
JPH06262321A (en) Method for driving mold for continuous casting and mold device for continuous casting
SU1470446A1 (en) Method of producing steel billets
SU1678521A1 (en) Method for treating ingot of semikilled steel
JPS586754A (en) Continuous casting method for al or al alloy
SU1731412A1 (en) Method for moving mold during continuous casting of metal
SU1560389A1 (en) Method of producing castings from high-alloyed steels inclined to scab-formation