JPS646833B2 - - Google Patents

Info

Publication number
JPS646833B2
JPS646833B2 JP9533281A JP9533281A JPS646833B2 JP S646833 B2 JPS646833 B2 JP S646833B2 JP 9533281 A JP9533281 A JP 9533281A JP 9533281 A JP9533281 A JP 9533281A JP S646833 B2 JPS646833 B2 JP S646833B2
Authority
JP
Japan
Prior art keywords
catalytic
dephosphorization
aqueous solution
treated
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9533281A
Other languages
Japanese (ja)
Other versions
JPS57209682A (en
Inventor
Mutsuko Osanai
Kazuo Shimada
Izumi Hirasawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP9533281A priority Critical patent/JPS57209682A/en
Publication of JPS57209682A publication Critical patent/JPS57209682A/en
Publication of JPS646833B2 publication Critical patent/JPS646833B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、上水、下水、し尿系汚水、工業用
水、工場排水、ボイラー用水、その他あらゆる液
体中に存在するリン酸塩類を除去する方法、詳し
くは接触脱リン材を用いて溶解性リン酸塩類を除
去する際に使用する接触脱リン材の能力を向上さ
せて処理する方法に関するものである。 一般に自然水系に排出される上記の各種液体中
には、無機性のリン酸塩としてオルトリン酸塩や
各種の縮合リン酸塩さらに有機性リン酸塩などが
様々な状態で存在しておりこれらのリン酸塩類の
存在が湖沼、内海、内湾などの閉鎖水域乃至は停
滞水域の「あおこ」、「赤湖」発生の誘起因子とな
り、さらに各種の用水として使用する場合に装
置、配管内に生物学的なスライムが発生し、また
化学的なスケールが形成されて、事故発生の重大
な原因となつている。 したがつて、これら液中に存在するリン酸塩を
除去する必要から、各種のリン除去方法が検討さ
れているが、その一つとして本発明者等は従来に
なり新規な処理方法として一定の粒径をもつリン
酸カルシウムを含有する接触脱リン材を筒状ある
いは錐状の脱リン塔に充填し、被処理液のPHを6
〜11の範囲に調整し、さらに被処理液中に含まれ
ている溶解性リン酸塩類の濃度に対応して塩化カ
ルシウムななどのカルシウム剤を加え、これを一
定の流速除件で通過接触せしめることにより、充
填されている接触脱リン材の表面にカルシウムハ
イドロキシアパタイトの結晶を晶出、固着せしめ
て溶解性リン酸塩類を除去する方法を提案した。
この方法における接触脱リン材表面での代表的な
化学反応は次の通りである。 5Ca2+×7OH-+3H2PO4 - =Ca5(OH)(PO43+6H2O …(1) このような新規な脱リン方法を適用すれば、カ
ルシウムハイドロキシアパタイトが固着した接触
脱リン材の分離、脱水が極めて容易であり、従来
の化学的凝集沈澱法によるいわゆる凝沈汚泥と比
較すると、濃縮装置、脱水機、乾燥装置などの既
成概念による汚泥処理施設をまつたく必要としな
いだけでなく、資源としてのリンを回収すること
ができる優れた脱リン技術である。 しかしながら、この新しい接触脱リン法では、
液中に含まれている溶解性リン酸塩類をカルシウ
ムハイドロキシアパタイト〔Ca5(OH)(PO43
の結晶として固定するために、適当なPH条件下で
カルシウム剤としてCaCl2、Ca(OH)2、CaSO4
どが添加されるが、被処理液中にアルカリ度成分
が含まれていることを次に示すような反応式にし
たがつて炭酸カルシウムが生成される。 Ca2++HCO3 -+OH-→CaCO3+H2O …(2) この炭酸カルシウムは、液のPHがカルシウムハ
イドロキシアパタイトが生成されるに適したPH範
囲にあるか、あるいは調整されていれば、アパタ
イトの生成速度のほうが炭酸カルシウムの生成速
度よりも大きいために生成されないが、現実の実
際処理装置では完全なPHコントロールは難しく、
またアルカリ度成分が濃厚な場合には、カルシウ
ム剤を添加した瞬間に前記(2)式の反応がある程度
進行することは避けられない。 このような条件下で生成される炭酸カルシウム
の結晶は極めて少量であるが、長期間中に徐徐に
炭酸カルシウムの結晶が接触脱リン材の表面に固
着成長する。その結果、接触脱リン材の表面活性
が劣化し、脱リン機能は低減し、当初ほどの脱リ
ン効果は期待できなくなる。 本発明は、このように接触脱リン法において脱
リン機能の低下した接触脱リン材の脱リン能力を
向上させて効率よくリン除去ができる方法を提供
することを目的とするものである。 即ち、本発明は、リン酸カルシウムを含有する
接触脱リン材に被処理液を通液することにより、
液中に存在するリン酸塩類を除去する方法におい
て、前記接触脱リン材を酸水溶液と接触処理した
後、さらにアルカリ水溶液と接触処理し、該接触
脱リン材の脱リン能力を向上せしめて処理するこ
とを特徴とするものである。 以下に本発明の一実施態様をいわゆる下水の二
次処理水を対象として、図面に基づき説明すれ
ば、まず、この二次処理水中に多量の浮遊物質が
存在する場合には、この浮遊物質を沈殿槽又は
過槽などを通して予め除去する。 このような前処理操作により、予め浮遊物質を
除去された原水は、必要に応じて原水中の溶解性
リン酸塩濃度に対応してカルシウム剤が添加され
た後、酸酸又はアルカリのPH調整剤でPHを6.0〜
11.0に調整し、原水流入管1から脱リン塔2の上
部へ導入する。この脱リン塔2内には、リン酸カ
ルシウムを含有するリン酸塩鉱物を破砕し篩分し
て一定の粒径(0.42〜1.0mm)としたものを接触
脱リン剤として充填してあり、原水はこの接触脱
リン材3と接触しながら下降し、処理水流出管4
から塔外へ導出させる。 前記接触脱リン材3として、リン酸塩鉱物に代
えて、骨炭、サンゴ砂、砂などの表面にリン酸カ
ルシウムを担持させたもの等でも利用できる。 かかる脱リン操作において、接触脱リン材3上
には、炭酸カルシウムが生成すること、および原
水中の不純物が付着すること等により接触脱リン
材3の表面活性が劣化し、脱リン機能が低下する
ので、脱リン塔2への原水の通水と同時又は一定
期間経過後、塔内の接触脱リン材3は、連続的又
は間欠的に取出管5から反応槽6に送り込まれ、
該接触脱リン材は反応槽6において、まずタンク
16からポンプ7で導入された酸水溶液と撹拌機
8で時々撹拌されて接触処理される。反応終了
後、酸水溶液は排水管9により排出される。続い
て、反応槽6に洗浄水として水道水導入管10よ
り水道水が導入され、該接触脱リン材3は洗浄廃
水のPHが低下しなくなるまで洗浄され、洗浄廃水
は排水管9より排出される。 次に、洗浄が終了した接触脱リン材3は、反応
槽6内でさらにタンク17からポンプ11により
導入されるアルカリ水溶液と撹拌機8で時時撹拌
されて接触処理されるが、このアルカリ水溶液
は、PH8〜9.5に調整するのがよい。しかし反応
槽6中の液のPHは時間が経つと低下するのでアル
カリ水溶液でPHを8〜9.5に調整しながら脱リン
材3と反応させるのが望ましい。反応が終了した
接触脱リン材3は反応液と分離した後、ポンプ1
3により脱リン塔2に返送され、繰り返し使用さ
れる。 接触処理において使用する酸は、鉱酸でも有機
酸でもよく、酸の濃度は0.2〜20%が適当で、接
触時間は30〜60分で十分であり、他方アルカリは
苛性ソーダでも、消石灰でも使用でき、接触時間
は最低1時間、最大3日で賦活することができ
る。 また該接触脱リン材3をアルカリ水溶液と接触
処理する場合、そのPHを8〜9.5に維持しながら
アルカリ水溶液にタンク18からポンプ12によ
つてカルシウムイオンを添加することにより接触
脱リン材3の賦活効果を高めることもできる。こ
の場合カルシウムイオンの供給源としては
CaCl2、Ca(OH)2、CaSO4のいずれでも使用する
ことができる。 なおアルカリ水溶液との接触処理に先だつて接
触脱リン材3を清水で洗浄することによりアルカ
リの使用量を節減することができる。 また、接触脱リン材3を塔外へ導出することな
く、脱リン塔2内で、前記筒外の接触処理におけ
る反応槽6と同様の操作を行なうことにより接触
脱リン材3の脱リン能力を高めることができる。
この場合、接触処理に用いる酸水溶液及び/又は
アルカリ水溶液を脱リン塔2に流入管14から流
出管15へと上向流に通水させ、接触脱リン材3
が膨張、流動化するような条件で接触させれば更
に効果的である。 なお、接触脱リン材を酸水溶液およびアルカリ
水溶液と接触処理するのは、被処理液の通水によ
り接触脱リン材の脱リン効果が低下した場合にお
いてのみでなく、被処理液の通水前の接触脱リン
材調整時においても可能である。即ち、前記のよ
うに接触脱リン材には種々のものがあり、その種
類によつてはその表面に炭酸カルシウムが沈積し
ているもの又は有機物が付着しているものがあ
り、このようなものについては脱リン塔に被処理
液を通水する以前に、予め接触処理を施すことに
よつて、当初から脱リン能力を良好な状態に維持
できる。 以上述べたように本発明方法によれば、脱リン
操作中に接触脱リン材を必要に応じて、酸水溶液
と接触処理した後、アルカリ水溶液と接触処理す
ることにより、接触脱リン材の脱リン効果を長期
間良好な状態に維持することができ、安定した脱
リン処理が可能とつた。 次に本発明方法の実施例を示す。 実施例 1 直径0.5m、有効深さ2.5mの円筒状の脱リン塔
にリン鉱石を破砕、篩分し、粒径0.42〜0.54mmの
ものを充填した。 粗大固形物を大別分離した下水を従来技術とし
ての活性汚泥法で処理した二次処理水を被処理液
とし苛性ソーダ(消石灰でも同等の効果が得られ
た)により被処理液のPHを9.0付近に調整し、ま
た、カルシウム剤として塩化カルシウムを使用
し、被処理液中の溶解性リン酸塩類の濃度に対応
して、Ca/PO4のモル重量比が1.0〜1.5の範囲と
なるように添加した。 この被処理液を前記脱リン塔に導き上方より下
向にLV=2.5m/Hの流側で通水した。 接触脱リン材は月に1回全量を脱リン塔から取
り出し0.2%の塩酸水溶液1m3中に約1時間浸漬
した後、該接触脱リン材を水道水で洗浄し、PHを
8.5〜9.0に保持した苛性ソーダ水溶液に約1時間
浸漬し、次いででこの接触脱リン材をPH約9に保
つた2%の塩化カルシウム溶液1m3中に約24時間
浸漬して、接触処理を終了し、脱リン塔へ返送し
た。 上記操作を定期的に行ないながら、PHを9付近
に調整しカルシウムを添加した二次処理水を被処
理液としてLV=2.55(m/H)で約12ケ月の通水
実験を行つた。 結果を表−1に示す。 表−1より明らかなように、充填した接触脱リ
ン材を1ケ月に1回全量を取り出して酸処理しな
がら、通水した処理水のリン濃度は、12ケ月径過
しても0.27mg/であり、脱リン効果の低減は全
く認められなかつた。 一方比較例として、接触脱リン材の処理を行な
わず他はすべて同一条件で12ケ月間処理を継続し
た場合の結果は同じく表−1に示す通りで、通水
当初の脱リン効果は顕著であつても通水開始後12
ケ月の処理水リン濃度は約1.2mg/となり、脱
リン効果は著しく悪化した。
The present invention provides a method for removing phosphates present in tap water, sewage, human waste water, industrial water, factory wastewater, boiler water, and all other liquids. The present invention relates to a method for improving the ability of a catalytic dephosphorizing material used to remove salts. Generally, in the various liquids mentioned above that are discharged into natural water systems, inorganic phosphates such as orthophosphates, various condensed phosphates, and organic phosphates exist in various states. The presence of phosphates is a factor that induces the formation of "blue water" and "red lake" in closed or stagnant waters such as lakes, inland seas, and inner bays, and when water is used for various purposes, living organisms may be present in equipment and piping. Chemical slime is generated and chemical scale is formed, which is a major cause of accidents. Therefore, various phosphorus removal methods are being considered in order to remove the phosphates present in these liquids. A cylindrical or conical dephosphorization tower is filled with a catalytic dephosphorization material containing calcium phosphate having a particle size, and the pH of the liquid to be treated is set to 6.
-11, and then add a calcium agent such as calcium chloride depending on the concentration of soluble phosphates contained in the liquid to be treated, and let it pass through and come into contact with it at a constant flow rate. Therefore, we proposed a method to remove soluble phosphates by crystallizing and fixing calcium hydroxyapatite crystals on the surface of the catalytic dephosphorization material.
A typical chemical reaction on the surface of the catalytic dephosphorizing material in this method is as follows. 5Ca 2 + _ _ _ _ _ _ Separation and dewatering of phosphorus materials is extremely easy, and compared to so-called flocculated sludge produced by conventional chemical coagulation and sedimentation methods, there is no need for preconceived sludge treatment facilities such as thickeners, dehydrators, and dryers. It is also an excellent dephosphorization technology that can recover phosphorus as a resource. However, in this new catalytic dephosphorization method,
The soluble phosphates contained in the liquid are called calcium hydroxyapatite [Ca 5 (OH) (PO 4 ) 3 ].
In order to fix it as a crystal, calcium agents such as CaCl 2 , Ca(OH) 2 , CaSO 4 etc. are added under appropriate pH conditions. Calcium carbonate is produced according to the reaction formula shown below. Ca 2+ +HCO 3 - +OH - →CaCO 3 +H 2 O...(2) This calcium carbonate can be used if the pH of the liquid is in the pH range suitable for producing calcium hydroxyapatite or if it has been adjusted. Apatite is not produced because the production rate is higher than that of calcium carbonate, but complete PH control is difficult in actual processing equipment.
Furthermore, if the alkalinity component is concentrated, it is inevitable that the reaction of formula (2) will proceed to some extent the moment the calcium agent is added. Although the amount of calcium carbonate crystals produced under such conditions is extremely small, the calcium carbonate crystals gradually grow fixedly on the surface of the catalytic dephosphorization material over a long period of time. As a result, the surface activity of the catalytic dephosphorization material deteriorates, the dephosphorization function decreases, and the dephosphorization effect cannot be expected to be as high as initially. An object of the present invention is to provide a method that can efficiently remove phosphorus by improving the dephosphorizing ability of a catalytic dephosphorizing material whose dephosphorizing function has deteriorated in the catalytic dephosphorizing method. That is, in the present invention, by passing a liquid to be treated through a catalytic dephosphorization material containing calcium phosphate,
In a method for removing phosphates present in a liquid, the catalytic dephosphorizing material is contacted with an acid aqueous solution and then further contacted with an alkaline aqueous solution to improve the dephosphorizing ability of the catalytic dephosphorizing material. It is characterized by: An embodiment of the present invention will be described below with reference to the drawings, targeting so-called secondary treated sewage water. First, if there is a large amount of suspended solids in this secondary treated water, the suspended solids will be removed. Remove in advance through a sedimentation tank or overtank. Raw water from which suspended solids have been removed in advance through such pre-treatment operations is treated with acidic acid or alkali pH adjustment after a calcium agent is added according to the concentration of soluble phosphate in the raw water as necessary. PH to 6.0 with agent
11.0, and introduce it into the upper part of the dephosphorization tower 2 from the raw water inlet pipe 1. This dephosphorization tower 2 is filled with a catalytic dephosphorization agent containing crushed and sieved phosphate minerals containing calcium phosphate to a certain particle size (0.42 to 1.0 mm). It descends while contacting this contact dephosphorizing material 3, and the treated water flows out from the pipe 4.
and lead it out of the tower. As the catalytic dephosphorizing material 3, instead of phosphate minerals, bone char, coral sand, sand, etc., which have calcium phosphate supported on their surfaces, can also be used. In such a dephosphorization operation, the surface activity of the catalytic dephosphorizing material 3 deteriorates due to the formation of calcium carbonate and the adhesion of impurities in the raw water on the catalytic dephosphorizing material 3, and the dephosphorizing function decreases. Therefore, at the same time as the raw water is passed through the dephosphorization tower 2, or after a certain period of time has elapsed, the catalytic dephosphorization material 3 in the tower is continuously or intermittently fed into the reaction tank 6 from the take-out pipe 5,
In the reaction tank 6, the catalytic dephosphorizing material is first subjected to a contact treatment with an aqueous acid solution introduced from a tank 16 by a pump 7 and occasionally stirred by a stirrer 8. After the reaction is completed, the acid aqueous solution is discharged through the drain pipe 9. Next, tap water is introduced into the reaction tank 6 as washing water through the tap water introduction pipe 10, and the catalytic dephosphorizing material 3 is washed until the pH of the washing wastewater no longer decreases, and the washing wastewater is discharged from the drain pipe 9. Ru. Next, the catalytic dephosphorization material 3 that has been washed is further stirred from time to time by the stirrer 8 and subjected to a contact treatment with an alkaline aqueous solution introduced from the tank 17 by the pump 11 in the reaction tank 6. It is best to adjust the pH to 8 to 9.5. However, since the pH of the liquid in the reaction tank 6 decreases over time, it is desirable to adjust the pH to 8 to 9.5 with an alkaline aqueous solution while reacting with the dephosphorizing material 3. After the reaction has finished, the catalytic dephosphorization material 3 is separated from the reaction liquid and then pumped to the pump 1.
3, it is returned to the dephosphorization tower 2 and used repeatedly. The acid used in the contact treatment may be either a mineral acid or an organic acid, with an appropriate acid concentration of 0.2 to 20% and a contact time of 30 to 60 minutes.On the other hand, caustic soda or slaked lime can be used as the alkali. Activation can be achieved with a minimum contact time of 1 hour and a maximum of 3 days. When the catalytic dephosphorizing material 3 is subjected to contact treatment with an alkaline aqueous solution, calcium ions are added to the alkaline aqueous solution from the tank 18 by the pump 12 while maintaining the pH at 8 to 9.5. It is also possible to enhance the activation effect. In this case, the source of calcium ions is
Any of CaCl 2 , Ca(OH) 2 and CaSO 4 can be used. Note that the amount of alkali used can be reduced by washing the catalytic dephosphorizing material 3 with clean water prior to the contact treatment with the aqueous alkali solution. In addition, the dephosphorization capacity of the catalytic dephosphorizing material 3 can be increased by performing the same operation as in the reaction tank 6 in the contact treatment outside the cylinder in the dephosphorizing tower 2 without leading the catalytic dephosphorizing material 3 out of the tower. can be increased.
In this case, the acid aqueous solution and/or alkaline aqueous solution used for the contact treatment is passed through the dephosphorization tower 2 in an upward flow from the inflow pipe 14 to the outflow pipe 15, and the catalytic dephosphorization material 3
It is more effective if the contact is carried out under conditions such that the particles expand and become fluidized. The contact treatment of the catalytic dephosphorizing material with an acid aqueous solution and an alkaline aqueous solution is carried out not only when the dephosphorizing effect of the catalytic dephosphorizing material decreases due to the passage of the liquid to be treated, but also before the passage of the liquid to be treated. This is also possible when adjusting the catalytic dephosphorization material. That is, as mentioned above, there are various types of catalytic dephosphorization materials, and depending on the type, some have calcium carbonate deposited on the surface or organic matter attached to the surface. By performing a contact treatment in advance before passing the liquid to be treated through the dephosphorization tower, the dephosphorization ability can be maintained in a good state from the beginning. As described above, according to the method of the present invention, the catalytic dephosphorizing material is subjected to a contact treatment with an acid aqueous solution and then an alkaline aqueous solution as necessary during the dephosphorization operation, thereby dephosphorizing the catalytic dephosphorizing material. The phosphorus effect could be maintained in good condition for a long period of time, making it possible to perform stable dephosphorization treatment. Next, examples of the method of the present invention will be shown. Example 1 A cylindrical dephosphorization tower with a diameter of 0.5 m and an effective depth of 2.5 m was filled with crushed and sieved phosphate rock having a particle size of 0.42 to 0.54 mm. Sewage from which coarse solids have been roughly separated is treated using the conventional activated sludge method, and secondary treatment water is used as the liquid to be treated, and the pH of the liquid to be treated is brought to around 9.0 with caustic soda (the same effect was obtained with slaked lime). In addition, calcium chloride was used as the calcium agent, and the molar weight ratio of Ca/PO 4 was adjusted to be in the range of 1.0 to 1.5, depending on the concentration of soluble phosphates in the liquid to be treated. Added. This liquid to be treated was introduced into the dephosphorization tower and passed from above to below on the flow side at LV=2.5 m/H. Once a month, the entire amount of catalytic dephosphorization material is taken out from the dephosphorization tower and immersed in 1 m3 of 0.2% hydrochloric acid aqueous solution for about 1 hour, and then the catalytic dephosphorization material is washed with tap water to reduce the pH.
The contact treatment was completed by immersing it in a caustic soda aqueous solution maintained at a pH of 8.5 to 9.0 for about 1 hour, and then immersing it in 1 m 3 of a 2% calcium chloride solution maintained at a pH of about 9 for about 24 hours. and sent it back to the dephosphorization tower. While performing the above operations periodically, a water flow experiment was conducted for approximately 12 months at LV = 2.55 (m/H) using secondary treated water with pH adjusted to around 9 and calcium added as the liquid to be treated. The results are shown in Table-1. As is clear from Table 1, the phosphorus concentration of the treated water was 0.27mg/d after 12 months when the filled catalytic dephosphorization material was taken out once a month and treated with acid. Therefore, no reduction in the dephosphorization effect was observed at all. On the other hand, as a comparative example, when treatment was continued for 12 months under the same conditions without catalytic dephosphorization, the results are shown in Table 1, and the dephosphorization effect at the beginning of water flow was significant. 12 days after starting water flow
The phosphorus concentration in Kezuki's treated water was approximately 1.2mg/, and the dephosphorization effect deteriorated significantly.

【表】 参考例 1 実施例と同一条件で調整した下水の二次処理水
を12ケ月通水し、リン除去性能の低下した接触脱
リン材を脱リン塔より抜き出し、濃度約2%の塩
酸、硫酸、硝酸、リン酸の各水溶液中に1時間浸
漬して無機性の酸水溶液と接触処理した。 一方、濃度10%の酢酸、くえん酸、酒石酸の各
水溶液中に上記接触脱リン材を一時間浸漬して有
機性の酸水溶液と接触処理した。この場合接触脱
リン材は500gずつ用い、酸水溶液は1使用し
た。 酸処理した接触脱リン材は水道水で洗浄後、内
径25mmの脱リン塔に充填し、実施例1と同一の条
件でLV=2.5(m/H)で約1ケ月通水リン除去
性能を比較した。 結果を表−2に示す。 表−2より明らかなように、接触脱リン材の酸
処理に使用する酸は無機性の酸(塩酸、硫酸、硝
酸、リン酸)でも有機性の酸(酢酸、くえん酸、
酒石酸)でもリン除去性能は殆んど変らず、いず
れの酸でも使用可能であることを確認することが
できた。
[Table] Reference Example 1 Secondary treated sewage water prepared under the same conditions as in Example was passed through the water for 12 months, and the catalytic dephosphorization material with reduced phosphorus removal performance was extracted from the dephosphorization tower and treated with hydrochloric acid with a concentration of approximately 2%. , sulfuric acid, nitric acid, and phosphoric acid for 1 hour to contact treatment with an inorganic acid aqueous solution. On the other hand, the catalytic dephosphorization material was immersed in each aqueous solution of acetic acid, citric acid, and tartaric acid at a concentration of 10% for one hour, and was subjected to contact treatment with an organic acid aqueous solution. In this case, 500 g each of the catalytic dephosphorization material and one acid aqueous solution were used. After washing the acid-treated catalytic dephosphorization material with tap water, it was packed into a dephosphorization tower with an inner diameter of 25 mm, and the phosphorus removal performance was maintained under the same conditions as in Example 1 at LV = 2.5 (m/H) for about 1 month. compared. The results are shown in Table-2. As is clear from Table 2, the acids used for acid treatment of catalytic dephosphorization materials include inorganic acids (hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid) and organic acids (acetic acid, citric acid,
Even with tartaric acid), the phosphorus removal performance remained almost unchanged, confirming that any acid could be used.

【表】【table】

【表】 参考例 2 実施例1と同様に12ケ月脱リン処理に使用し
て、リン除去性能が低下した接触脱リン材各500
gを濃度、0.2%、5%、10%の塩酸水溶液中に
それぞれ1時間浸漬して接触処理した。一方、濃
度が5%、10%、20%の酢酸水溶液中に接触脱リ
ン材を1時間浸漬して接触処理した。 酸処理した各接触脱リン材は水道水で洗浄した
後、内径2.5mmの脱リン塔にそれぞれ充填し、実
施例1と同一条件でLV=2.5(m/H)で約1ケ
月通水し、リン除去性能を比較した。 結果を表−3に示す。 表−3より明らかなように塩酸で処理した接触
脱リン材の30日後の処理水リン濃度はいずれも同
じで塩酸の濃度の差によるリン除去性能の有意差
は難められず、0.2%の稀薄な濃度でも高濃度と
同じ接触処理が可能であることを確認できた。 従つて、酸処理する場合の塩酸の濃度は0.2〜
5%の範囲で適当に稀釈すればよい。 一方有機性の酸である酢酸の場合は塩酸と異な
り、30日通水した処理水のリン濃度は10%の濃度
で処理した場合が最低であるところから濃度条件
がリン除去性能に有位差をあたえることが明らか
となり酢酸で接触処理する場合の濃度は約10%が
最適条件であり、この条件を守ることにより効率
よく酸処理することができる。
[Table] Reference Example 2 500 each of catalytic dephosphorization materials whose phosphorus removal performance decreased after being used for 12 months of dephosphorization treatment in the same manner as in Example 1.
The samples were immersed in 0.2%, 5%, and 10% aqueous hydrochloric acid solutions for 1 hour, respectively, for contact treatment. On the other hand, contact treatment was performed by immersing the catalytic dephosphorization material in aqueous acetic acid solutions having concentrations of 5%, 10%, and 20% for 1 hour. After each acid-treated catalytic dephosphorization material was washed with tap water, it was filled into a dephosphorization tower with an inner diameter of 2.5 mm, and water was passed through it at LV = 2.5 (m/H) for about 1 month under the same conditions as in Example 1. , the phosphorus removal performance was compared. The results are shown in Table-3. As is clear from Table 3, the phosphorus concentration in the treated water after 30 days for the catalytic dephosphorization materials treated with hydrochloric acid is the same, and there is no significant difference in phosphorus removal performance due to the difference in the concentration of hydrochloric acid. It was confirmed that the same contact treatment as with high concentrations is possible even at dilute concentrations. Therefore, the concentration of hydrochloric acid in acid treatment is 0.2~
It may be diluted appropriately within a range of 5%. On the other hand, in the case of acetic acid, which is an organic acid, unlike hydrochloric acid, the phosphorus concentration of treated water that has been passed for 30 days is the lowest when treated at a concentration of 10%, so the concentration conditions have a significant difference in phosphorus removal performance. It has become clear that the optimum concentration for contact treatment with acetic acid is approximately 10%, and by maintaining this condition, acid treatment can be carried out efficiently.

【表】 実施例 2 参考例2において濃度5%の塩酸で処理した該
接触脱リン材500gを水道水で洗浄した後PHを各
7、9、11に保つた苛性ソーダ水溶液1に1時
間浸漬して接触処理した。 各PH条件でアルカリ処理した接触脱リン材をそ
れぞれ内径25mmの脱リン塔に充填し、実施例1と
同一条件でLV=2.5(m/H)で約1ケ月通水し、
リン除去性能を比較した。結果を表−4に示す。 表−4より明らかなように、酸処理した接触脱
リン材をアルカリ水溶液で処理した場合、処理水
のリン濃度はPH9付近で最低となりアルカリ水溶
液のPH条件によりリン除去性能が異なることがわ
かる。 つまり、アルカリ水溶液のPH条件は8.0〜9.5が
賦活の最適PH範囲であることを確認することがで
きた。
[Table] Example 2 500 g of the catalytic dephosphorization material treated with 5% hydrochloric acid in Reference Example 2 was washed with tap water and then immersed in caustic soda aqueous solution 1 whose pH was maintained at 7, 9, and 11 for 1 hour. contact treatment. The catalytic dephosphorization materials treated with alkali under each PH condition were packed into a dephosphorization tower with an inner diameter of 25 mm, and water was passed through it at LV = 2.5 (m/H) for about 1 month under the same conditions as in Example 1.
The phosphorus removal performance was compared. The results are shown in Table 4. As is clear from Table 4, when acid-treated catalytic dephosphorization material is treated with an alkaline aqueous solution, the phosphorus concentration of the treated water reaches its lowest around PH9, and it can be seen that the phosphorus removal performance varies depending on the PH conditions of the alkaline aqueous solution. In other words, it was confirmed that the PH condition of the aqueous alkaline solution is 8.0 to 9.5 as the optimum PH range for activation.

【表】 実施例 3 参考例2において、濃度5%の塩酸で酸処理し
た接触脱リン材500gを、カルシウムイオンとし
て各5g/、50g/になるように塩化カルシ
ウム溶液を調整し、苛性ソーダPHを約9とした溶
液1中に約24時間浸漬して接触処理を行つた。
この接触脱リン材とアルカリ水溶液のみで処理し
た接触脱リン材とをそれぞれ内径25mmの脱リン塔
に充填し、実施例1と同一条件でLV=2.5(m/
H)で約1ケ月通水し、リン除去性能を比較し
た。結果を表−5に示す。 表−5より明らかなように、本法で処理した接
触脱リン材の処理水のリン濃度は単にアルカリ水
溶液で処理した接触脱リン材のリン濃度より低
く、カルシウムイオンの添加が接触脱リン材のリ
ン除去性能を高める効果のあることがわかつた。 また添加するカルシウムイオンは5g/も50
g/もほぼ同じであり50g/以下添加すれば
よいことを確認することができた。
[Table] Example 3 In Reference Example 2, 500 g of the catalytic dephosphorization material was acid-treated with 5% hydrochloric acid, and a calcium chloride solution was adjusted to give calcium ions of 5 g/50 g/ each, and caustic soda PH was added. The contact treatment was carried out by immersing it in Solution 1, which had a concentration of about 9%, for about 24 hours.
This catalytic dephosphorization material and the catalytic dephosphorization material treated only with an alkaline aqueous solution were each packed into a dephosphorization tower with an inner diameter of 25 mm, and under the same conditions as Example 1, LV = 2.5 (m/
H) was run for about one month and the phosphorus removal performance was compared. The results are shown in Table-5. As is clear from Table 5, the phosphorus concentration in the treated water of the catalytic dephosphorization material treated by this method is lower than that of the catalytic dephosphorization material simply treated with an alkaline aqueous solution, and the addition of calcium ions is found in the catalytic dephosphorization material. It was found that it is effective in improving the phosphorus removal performance of. Also, the amount of calcium ions added is 5g/50
It was possible to confirm that the amount of water per gram was almost the same, and that it was sufficient to add 50 g/or less.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明方法の一実施例のフローシートで
ある。 1……原水流入管、2……脱リン塔、3……接
触脱リン材、4……処理水流出管、5……取出
管、6……反応槽、7……ポンプ、8……撹拌
機、9……排水管、10……水道水導入管、11
〜13……ポンプ、14……流入管、15……流
出管。
The drawing is a flow sheet of one embodiment of the method of the present invention. 1... Raw water inflow pipe, 2... Dephosphorization tower, 3... Catalytic dephosphorization material, 4... Treated water outflow pipe, 5... Output pipe, 6... Reaction tank, 7... Pump, 8... Stirrer, 9... Drain pipe, 10... Tap water introduction pipe, 11
~13...pump, 14...inflow pipe, 15...outflow pipe.

Claims (1)

【特許請求の範囲】 1 リン酸カルシウムを含有する接触脱リン材に
被処理液を通液することにより、液中に存在する
リン酸塩類を除去する方法において、前記接触脱
リン材を酸水溶液と接触処理した後、さらにアル
カリ水溶液と接触処理し、該接触脱リン材の脱リ
ン能力を向上せしめることを特徴とする接触脱リ
ン方法。 2 前記接触脱リン材と酸水溶液と接触処理する
際に、使用する酸水溶液の濃度を0.5〜20%とし
て処理する特許請求の範囲第1項記載の方法。 3 前記接触脱リン材をアルカリ水溶液で接触処
理する際に、アルカリ水溶液のPHを8〜9.5とし
て処理する特許請求の範囲第1項記載の方法。 4 前記アルカリ水溶液が、カルシウムイオンと
して50g/以下になるようにカルシウム塩を添
加されて用いられるものである特許請求の範囲第
1項、第2項又は第3項記載の方法。 5 前記接触脱リン材が、酸水溶液と接触処理さ
れた後、洗浄水で洗浄されてからアルカリ水溶液
と接触処理されるものである特許請求の範囲第2
項、第3項又は第4項記載の方法。
[Scope of Claims] 1. A method for removing phosphates present in a liquid by passing a liquid to be treated through a catalytic dephosphorizing material containing calcium phosphate, wherein the catalytic dephosphorizing material is brought into contact with an acid aqueous solution. A catalytic dephosphorization method characterized in that after the treatment, the catalytic dephosphorization material is further subjected to a contact treatment with an alkaline aqueous solution to improve the dephosphorization ability of the catalytic dephosphorization material. 2. The method according to claim 1, wherein the concentration of the acid aqueous solution used is 0.5 to 20% when contacting the catalytic dephosphorizing material with the acid aqueous solution. 3. The method according to claim 1, wherein the catalytic dephosphorization material is subjected to contact treatment with an alkaline aqueous solution at a pH of 8 to 9.5. 4. The method according to claim 1, 2, or 3, wherein the alkaline aqueous solution is used with a calcium salt added thereto so that the amount of calcium ions is 50 g or less. 5. Claim 2, wherein the catalytic dephosphorizing material is subjected to contact treatment with an acid aqueous solution, washed with washing water, and then contact treatment with an alkaline aqueous solution.
3. The method described in Section 3, Section 3 or Section 4.
JP9533281A 1981-06-22 1981-06-22 Catalytic dephosphorization Granted JPS57209682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9533281A JPS57209682A (en) 1981-06-22 1981-06-22 Catalytic dephosphorization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9533281A JPS57209682A (en) 1981-06-22 1981-06-22 Catalytic dephosphorization

Publications (2)

Publication Number Publication Date
JPS57209682A JPS57209682A (en) 1982-12-23
JPS646833B2 true JPS646833B2 (en) 1989-02-06

Family

ID=14134757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9533281A Granted JPS57209682A (en) 1981-06-22 1981-06-22 Catalytic dephosphorization

Country Status (1)

Country Link
JP (1) JPS57209682A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942087A (en) * 1982-09-02 1984-03-08 Ataka Kogyo Kk Activating method of crystallizing material for water treatment

Also Published As

Publication number Publication date
JPS57209682A (en) 1982-12-23

Similar Documents

Publication Publication Date Title
JPS6242677B2 (en)
JPS6331593A (en) Removal of phosphate ion in water
JP3977757B2 (en) Dephosphorization method of waste water
JPS6366278B2 (en)
JP2002205077A (en) Method and apparatus for treating organic sewage
JPS646833B2 (en)
JPS61101416A (en) Purification of saline water
JPS6097091A (en) Treatment of fluoride ion-containing water
JPS62250990A (en) Treatment of waste water containing phosphate ion
JP3339352B2 (en) Sludge treatment method
JPH0130554B2 (en)
JPS6230835B2 (en)
CS216522B2 (en) Method of cleaning the waste waters containing dissolved organic impurities
JP4759989B2 (en) Treatment method for wastewater containing phosphoric acid
JPS646834B2 (en)
JP6407052B2 (en) Phosphorus recovery apparatus and phosphorus recovery method
CN211712837U (en) System for removing sulfate in water and water treatment system comprising same
JPS59139994A (en) Catalytic dephosphorization
JPH0127913Y2 (en)
JPS6329599B2 (en)
RU2170708C1 (en) Method of preparing reagent for neutralization and cleaning of waste waters
JPS648598B2 (en)
SU856985A1 (en) Method of purifying phosphate-containing waste water
SU943207A1 (en) Process for purifying effluents from titanium dioxide production
JPH0220320B2 (en)