JPS645263B2 - - Google Patents

Info

Publication number
JPS645263B2
JPS645263B2 JP4254080A JP4254080A JPS645263B2 JP S645263 B2 JPS645263 B2 JP S645263B2 JP 4254080 A JP4254080 A JP 4254080A JP 4254080 A JP4254080 A JP 4254080A JP S645263 B2 JPS645263 B2 JP S645263B2
Authority
JP
Japan
Prior art keywords
voltage
life
test
resistor
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4254080A
Other languages
Japanese (ja)
Other versions
JPS56140270A (en
Inventor
Masako Okamoto
Masahiko Hayashi
Hoki Haba
Shinji Hirano
Misuzu Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP4254080A priority Critical patent/JPS56140270A/en
Publication of JPS56140270A publication Critical patent/JPS56140270A/en
Publication of JPS645263B2 publication Critical patent/JPS645263B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2688Measuring quality factor or dielectric loss, e.g. loss angle, or power factor
    • G01R27/2694Measuring dielectric loss, e.g. loss angle, loss factor or power factor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ZoOを主成分とする非直線抵抗体な
どの寿命試験方法に関する。 従来の寿命試験方法は、実使用条件よりも過酷
な温度及び電圧のもとに一定時間実課電し、この
実課電による劣化程度から実使用条件での寿命を
推定する加速試験方法によるものであつた。従つ
て、試験に供した抵抗体素子には必ず劣化が起き
る破壊試験になり、サンプリングによる寿命評価
しかできない欠点があつた。また、過酷条件下で
の試験のため、抵抗体素子電流による素子自体の
発熱量が高く、一定温度の雰囲気中にあつても素
子自体の温度条件を合わせるのが難しく、高い確
度の温度条件での寿命評価が困難であつた。 本発明は、非直線抵抗体の誘電特性からその寿
命特性や劣化状態を評価することにより、正確か
つ短時間の非破壊寿命試験を可能とした試験方法
を提供することを目的とする。 第1図は本発明の試験方法に使用する測定装置
を示す。2は発振装置で、この発振装置2内には
可変電圧、可変周波数の交流電源部3と、誘電特
性を測定するためのブリツジ要素部7が含まれて
いる。4は試供品で、直流電源1からの直流電圧
と、発振装置2からの交流電圧が同時に印加され
るように構成され、直流電源1からの直流電流は
電流計5で読取られる。 また試供品4は瞬時充電電流抑制用抵抗6を通
して試供品4への電圧印加回路が構成される。コ
ンデンサ8は発振器2に流れ込む直流分をカツト
するためのものである。試供品4は恒温層など温
度制御可能な雰囲気中に配置される。 こうした測定装置に接続して例えば−200゜〜
200℃の任意の測定温度に制御した試供品4には
まず第2図に示すように試供品4の対電極4Aか
ら主電極4B方向に直流電源1から例えば
500V/mm以下の直流電圧を印加し、電流が平衡
状態(定常漏れ電流)になつたことを電流計5の
変化から見出す。平衡状態に達した後、発振装置
2側から、例えば10-1〜106Hz内で数V/mmの交
流電圧を加え、試供品4の誘電特性(静電容量
C、誘電正接tanδ等)の電界依存性及び周波数依
存性を測定し、この測定結果から試供品4の寿命
を評価する。 この評価は印加電圧変化に対する素子の静電容
量C又は誘電正接tanδの変化量から寿命予測す
る。この試験方法による寿命評価が可能な例とし
て下記表に示す4つの素子A,B,C,Dでの静
電容量特性を第3図に、誘電正接特性を第4図に
示す。表において、予測寿命は素子A,B,C,
Dと同じロツト番号の素子に従来の加速試験をし
た寿命時間予測値であり、各素子間の寿命の大小
はA<B<C≪Dにあることを示す。これら素子
A,B,C,Dの静電容量変化特性C/Cpは、第
3図から寿命の短い素子ほど電圧印加に対しての
安定性に欠け、低い電圧(Vbias/mm)で容量の
増加が始まる。この傾向は高温・低周波の条件で
顕著となる。なお、Cpは電圧無印加時の静電容量
である。同様に、素子A,B,C,Dの誘電正接
tanδの変化特性は、第4図に示されるように、寿
命の長いものほど変化量が少なく、増加も高い電
圧で始まる。なお、tanδpは電圧無印加時の誘電
正接である。
TECHNICAL FIELD The present invention relates to a life testing method for a non-linear resistor etc. whose main component is Z o O. The conventional life test method is an accelerated test method in which power is actually applied for a certain period of time under harsher temperatures and voltages than the actual usage conditions, and the lifespan under the actual usage conditions is estimated from the degree of deterioration due to the actual power application. It was hot. Therefore, the resistor element subjected to the test was a destructive test in which deterioration was inevitable, and there was a drawback that the lifespan could only be evaluated by sampling. In addition, because the test is conducted under harsh conditions, the amount of heat generated by the resistor element itself is high due to the resistor element current, and it is difficult to match the temperature conditions of the element itself even in a constant temperature atmosphere. It was difficult to evaluate the lifespan of the SUMMARY OF THE INVENTION An object of the present invention is to provide a test method that enables an accurate and short-term non-destructive life test by evaluating the life characteristics and deterioration state of a non-linear resistor from its dielectric properties. FIG. 1 shows a measuring device used in the test method of the present invention. Reference numeral 2 denotes an oscillation device, and the oscillation device 2 includes a variable voltage, variable frequency AC power supply section 3 and a bridge element section 7 for measuring dielectric characteristics. Reference numeral 4 denotes a sample product, which is configured so that a DC voltage from a DC power supply 1 and an AC voltage from an oscillation device 2 are applied simultaneously, and the DC current from the DC power supply 1 is read by an ammeter 5. Further, in the sample 4, a circuit for applying a voltage to the sample 4 is configured through the instantaneous charging current suppressing resistor 6. The capacitor 8 is for cutting off the DC component flowing into the oscillator 2. The sample 4 is placed in an atmosphere whose temperature can be controlled, such as in a constant temperature layer. For example, by connecting to such a measuring device,
First, as shown in Fig. 2, the sample 4, which has been controlled to an arbitrary measurement temperature of 200°C, is supplied with a DC power supply 1, for example, from the counter electrode 4A to the main electrode 4B of the sample 4.
A DC voltage of 500 V/mm or less is applied, and it is determined from the change in the ammeter 5 that the current has reached an equilibrium state (steady leakage current). After reaching an equilibrium state, an AC voltage of several V/mm within, for example, 10 -1 to 10 6 Hz is applied from the oscillator 2 side, and the dielectric properties (capacitance C, dielectric loss tangent tan δ, etc.) of the sample 4 are measured. The electric field dependence and frequency dependence of are measured, and the life of sample 4 is evaluated from the measurement results. In this evaluation, life is predicted from the amount of change in capacitance C or dielectric loss tangent tan δ of the element with respect to changes in applied voltage. As an example in which life can be evaluated by this test method, the capacitance characteristics of four elements A, B, C, and D shown in the table below are shown in FIG. 3, and the dielectric loss tangent characteristics are shown in FIG. 4. In the table, the predicted lifetimes of elements A, B, C,
This is a predicted life time obtained by performing a conventional accelerated test on an element with the same lot number as D, and shows that the magnitude of the life between each element is A<B<C<<D. The capacitance change characteristics C/C p of these elements A, B, C, and D are shown in Figure 3. The shorter the life of the element, the less stable it is to voltage application, and the capacitance change characteristics C/C p of these elements A, B, C, and D are shown in Figure 3. begins to increase. This tendency becomes remarkable under high temperature and low frequency conditions. Note that C p is the capacitance when no voltage is applied. Similarly, the dielectric loss tangent of elements A, B, C, and D
As shown in FIG. 4, the change characteristics of tan δ are such that the longer the life, the smaller the amount of change, and the increase starts at a higher voltage. Note that tan δ p is the dielectric loss tangent when no voltage is applied.

【表】 従つて、素子に印加する電圧の変化に対する静
電容量変化又は誘電正接変化特性を測定すること
によつて、素子の寿命の良否、程度の判程が可能
となる。この評価方法では素子を劣化も含めて破
壊することなく、しかも電流増加による素子の温
度上昇を考慮する事なしに、設定温度における測
定ができる。 この誘電特性による寿命評価において、同程度
の寿命と判定された複数素子の優劣を正確に評価
するには極く短時間の直流印加試験後に誘電特性
を測定することでできる。第5図aは寿命試験を
課す前の電圧−静電容量特性から同程度の寿命と
判定された2種類の素子特性EとFを示し、この
2種類の素子に短時間の試験を課した後の電圧−
静電容量特性は第5図bに示すように素子間に大
きな差が現われ同図では素子Fよりも素子Eの寿
命が長いと評価できる。これは第5図cに示す周
波数−誘電正接特性の差異にも現われ、素子Eと
Fの正確な寿命評価ができることを意味する。な
お、上述の評価を得るために施すと同じ直流印加
試験前後での従来評価方法による電圧−電流特性
は第5図dに示すように素子E,F共に著しい差
異が現われない。 従つて、初期の誘電特性からの寿命の優劣が判
定しにくい素子は短時間の直流印加試験を施した
後に誘電特性を測定することで容易に判定でき、
これは従来の電圧−電流特性からは測定できない
微小な劣化も本発明方法による誘電特性からの測
定で可能となることを意味する。 以上のとおり、本発明による寿命試験方法は、
誘電特性の変化から素子寿命予測値を得るため、
素子自体に加速試験を施すことなく短時間測定で
その寿命評価が可能となるし、素子の劣化の微小
なものまで測定可能となる。
[Table] Therefore, by measuring the capacitance change or dielectric loss tangent change characteristics with respect to changes in the voltage applied to the element, it is possible to determine whether or not the life of the element is good or bad. This evaluation method allows measurement at a set temperature without destroying or deteriorating the device, and without considering the temperature rise of the device due to an increase in current. In this life evaluation based on dielectric properties, in order to accurately evaluate the superiority or inferiority of multiple elements that have been determined to have similar lifespans, it is possible to measure the dielectric properties after an extremely short DC application test. Figure 5a shows two types of element characteristics E and F, which were determined to have similar lifetimes from the voltage-capacitance characteristics before the life test was applied, and these two types of elements were subjected to a short-time test. Later voltage -
There is a large difference in capacitance characteristics between the elements as shown in FIG. This also appears in the difference in frequency-dissipation factor characteristics shown in FIG. 5c, and means that accurate life evaluation of elements E and F can be performed. Note that the voltage-current characteristics obtained by the conventional evaluation method before and after the same direct current application test performed to obtain the above evaluation show no significant difference between elements E and F, as shown in FIG. 5d. Therefore, for devices whose lifetime is difficult to determine based on their initial dielectric properties, it can be easily determined by measuring their dielectric properties after conducting a short-time direct current application test.
This means that minute deterioration that cannot be measured from conventional voltage-current characteristics can be measured from dielectric characteristics using the method of the present invention. As described above, the life test method according to the present invention is
In order to obtain predicted element life from changes in dielectric properties,
It becomes possible to evaluate the life of the element in a short period of time without subjecting it to accelerated testing, and it becomes possible to measure even minute deterioration of the element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の寿命試験方法に使用する試験
装置回路図、第2図は非直線抵抗体の断面図、第
3図〜第5図は本発明方法での寿命評価を説明す
るための特性図である。 1……直流電源、2……発振装置、4……試供
品、5……電流計。
Fig. 1 is a circuit diagram of a test device used in the life test method of the present invention, Fig. 2 is a cross-sectional view of a nonlinear resistor, and Figs. It is a characteristic diagram. 1... DC power supply, 2... Oscillator, 4... Sample, 5... Ammeter.

Claims (1)

【特許請求の範囲】 1 非直線抵抗体に印加する直流電圧変化に対す
る該抵抗体の誘電性の変化から該抵抗体の寿命を
判定することを特徴とする寿命試験方法。 2 特許請求の範囲第1項において、非直線抵抗
体の電極間に短時間直流電圧を印加した後の該抵
抗体の電圧−誘電特性から寿命を判定する寿命試
験方法。
[Scope of Claims] 1. A lifespan test method, characterized in that the lifespan of a non-linear resistor is determined from changes in dielectric properties of the resistor in response to changes in DC voltage applied to the non-linear resistor. 2. A lifespan test method according to claim 1, in which the lifespan is determined from the voltage-dielectric characteristics of a non-linear resistor after applying a DC voltage between the electrodes of the resistor for a short time.
JP4254080A 1980-04-01 1980-04-01 Method of life test of nonlinear resistance body Granted JPS56140270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4254080A JPS56140270A (en) 1980-04-01 1980-04-01 Method of life test of nonlinear resistance body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4254080A JPS56140270A (en) 1980-04-01 1980-04-01 Method of life test of nonlinear resistance body

Publications (2)

Publication Number Publication Date
JPS56140270A JPS56140270A (en) 1981-11-02
JPS645263B2 true JPS645263B2 (en) 1989-01-30

Family

ID=12638894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4254080A Granted JPS56140270A (en) 1980-04-01 1980-04-01 Method of life test of nonlinear resistance body

Country Status (1)

Country Link
JP (1) JPS56140270A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888671A (en) * 1981-11-24 1983-05-26 Meidensha Electric Mfg Co Ltd Method for life test of zinc oxide element
CN103399232B (en) * 2013-07-31 2016-05-04 国家电网公司 A kind of power transmission line dynamic capacity increase service data acquiring and processing method

Also Published As

Publication number Publication date
JPS56140270A (en) 1981-11-02

Similar Documents

Publication Publication Date Title
Tobazeon et al. On the measurement of the conductivity of highly insulating liquids
Khalife et al. Heating liquid dielectrics by time dependent fields
Bartnikas et al. Electrical Properties of Solid Insulating Materials
US2961606A (en) Capacitor testing device
CN106990337B (en) Detection device and method for measuring partial discharge under temperature gradient
JPS645263B2 (en)
Washabaugh et al. Dielectric measurements of semi-insulating liquids and solids
US3320529A (en) Method for testing a dielectric liquid
US3496461A (en) Method of measuring the volume resistivity of thin,solid dielectric material utilizing the decay rates of a number of measured decay intervals
Joshi et al. Dielectric diagnosis of EHV current transformer using frequency domain spectroscopy (FDS) & polarization and depolarization current (PDC) techniques
US4213087A (en) Method and device for testing electrical conductor elements
US3414811A (en) Method and apparatus for testing the resistance characteristics of selfheated electrical resistors
US2679027A (en) Measurement of dissolved water content of liquids
RU2195002C2 (en) Procedure establishing electrical strength, relaxation time and conductance of insulation of electric wires and cables
Hebner Jr et al. Temperature dependence of the electro‐optic Kerr coefficient of nitrobenzene
US3508146A (en) Measurement of voltage-leakage in capacitors
US3317822A (en) Method and apparatus for measurement of high voltage
US4360774A (en) Apparatus for measuring the surface insulation characteristics of coatings on magnetic materials
Saha et al. Investigating some important parameters of the PDC measurement technique for the insulation condition assessment of power transformer
SE7706789L (en) PROCEDURE AND DEVICE FOR DETERMINING CRITICAL TEMPERATURES FOR CORROSION
RU2076331C1 (en) Device testing electric strength of insulation
SU997143A1 (en) Method of determining chemical current source capacity
Duplessis et al. A smart way to minimize test time for transformer dielectric measurements
Raju et al. Application of Weibull distribution for high temperature breakdown data
SU1318885A1 (en) Method of measuring thermal conductivity of material