JPH0578790B2 - - Google Patents

Info

Publication number
JPH0578790B2
JPH0578790B2 JP60263176A JP26317685A JPH0578790B2 JP H0578790 B2 JPH0578790 B2 JP H0578790B2 JP 60263176 A JP60263176 A JP 60263176A JP 26317685 A JP26317685 A JP 26317685A JP H0578790 B2 JPH0578790 B2 JP H0578790B2
Authority
JP
Japan
Prior art keywords
time
current
capacitive element
value
charging current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60263176A
Other languages
Japanese (ja)
Other versions
JPS62123367A (en
Inventor
Naoji Suzuki
Norimitsu Sako
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP60263176A priority Critical patent/JPS62123367A/en
Publication of JPS62123367A publication Critical patent/JPS62123367A/en
Publication of JPH0578790B2 publication Critical patent/JPH0578790B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は例えばコンデンサのような容量素子
の絶縁抵抗を測定する場合に用いることができる
容量素子の充電電流測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for measuring charging current of a capacitive element that can be used, for example, to measure the insulation resistance of a capacitive element such as a capacitor.

「従来の技術」 従来容量素子の絶縁抵抗は第4図及び第5図に
示すような測定回路によつて測定している。第4
図に示す測定回路はJIS−C5102で規定された測
定方法を示す。また第5図に示す測定回路はJIS
−C1303で規定された測定回路である。
"Prior Art" Conventionally, the insulation resistance of a capacitive element has been measured using a measuring circuit as shown in FIGS. 4 and 5. Fourth
The measurement circuit shown in the figure shows the measurement method specified in JIS-C5102. In addition, the measurement circuit shown in Figure 5 is JIS
-This is a measurement circuit specified in C1303.

第4図に示す測定回路において1は被測定体、
2は保護抵抗器、3は標準抵抗器、4は直流電
源、5は検流計、6は分流器、S1は検流計5をシ
ヨートしておくシヤントスイツチ、S2は切替スイ
ツチをそれぞれ示す。
In the measurement circuit shown in FIG. 4, 1 is the object to be measured;
2 is a protective resistor, 3 is a standard resistor, 4 is a DC power supply, 5 is a galvanometer, 6 is a shunt, S1 is a shunt switch that switches off galvanometer 5, and S2 is a changeover switch. .

測定時はシヤントスイツチS1をオフにし、切替
スイツチS2を接点9に投入する。このときの検流
計5の振れをd0とする。またこのときの分流器6
の分流比をS0とする。次に切替スイツチS2を接点
bに倒す。このときの検流計5の振れをdx、分流
器6の分流比をSx、標準抵抗器3の抵抗値をRS
とすると、被測定体1の絶縁抵抗Rは R=RS・d0/dx・S0/Sx によつて求められる。
When measuring, turn off the shunt switch S1 and turn on the changeover switch S2 to contact 9. The deflection of the galvanometer 5 at this time is defined as d 0 . Also, at this time, the flow divider 6
Let the dividing ratio of S 0 be S 0 . Next, flip the selector switch S2 to contact b. At this time, the deflection of the galvanometer 5 is d x , the shunt ratio of the shunt 6 is S x , and the resistance value of the standard resistor 3 is R S
Then, the insulation resistance R of the object to be measured 1 is determined by R= RS ·d 0 /d x ·S 0 /S x .

第5図に示す測定回路において1は被測定体、
3は標準抵抗器、4は直流電源、7は例えばデイ
ジボルのような入力インピーダンスが高い電圧測
定器、S2は切替スイツチを示す。
In the measurement circuit shown in FIG. 5, 1 is the object to be measured;
3 is a standard resistor, 4 is a DC power supply, 7 is a voltage measuring device with high input impedance, such as a Digivol, and S 2 is a changeover switch.

この測定回路では切替スイツチS2を平素は接点
aに接触させておき被測定体1の電荷を放出して
おく、測定時は切替スイツチS2を接点bに切替え
直流電源4から被測定体1と標準抵抗3から成る
直列回路に直流電圧を印加する。被測定体1に対
する充電電流がゼロになつた時点で標準抵抗器3
の両端に発生している電圧を電圧測定器7によつ
て測定する。その測定値をV0とすれば絶縁抵抗
値Rは R=RS/V0・(VB・V0) で求められる。ここでVBは直流電源4の電圧、
RSは標準抵抗器3の抵抗値である。
In this measurement circuit, the changeover switch S 2 is normally kept in contact with the contact a to release the charge on the object to be measured 1. During measurement, the changeover switch S 2 is switched to the contact b and the DC power supply 4 is connected to the object to be measured 1. A DC voltage is applied to a series circuit consisting of a standard resistor 3 and a standard resistor 3. When the charging current to the object to be measured 1 becomes zero, the standard resistor 3
A voltage measuring device 7 measures the voltage generated across the terminal. If the measured value is V 0 , the insulation resistance value R can be obtained as R=R S /V 0 ·(V B ·V 0 ). Here, V B is the voltage of DC power supply 4,
R S is the resistance value of the standard resistor 3.

「発明が解決しようとする問題点」 第4図に示す測定方法において検流計5の振れ
dxを読取るタイミングは被測定体1を流れる充電
電流がゼロに達した時点でなければならない。こ
のためJIS−C5102では切替スイツチS2を接点b
に切替た直後から1分±5秒後に読取つた値を採
用している。
"Problem to be solved by the invention" In the measurement method shown in Fig. 4, the deflection of the galvanometer 5
The timing to read dx must be when the charging current flowing through the object to be measured 1 reaches zero. Therefore, in JIS-C5102, changeover switch S 2 is set to contact b.
The value read 1 minute ± 5 seconds after the switch was made is used.

従つて測定に少なくとも1分程度の時間を必要
とするためコンデンサの製造工場において製造さ
れるコンデンサを全量検査しようとすると1個当
りの検査時間が長くなるため多くの検査員を配置
して掛らなければ検査が間に合なくなる不都合が
ある。第5図に示す測定回路でも同様の欠点があ
る。また容量が大きいコンデンサの場合は1分を
経過しても未だ充電電流が流れていることもあ
り、容量の大きいコンデンサに対して正確な絶縁
抵抗値を測定できない不都合もある。
Therefore, it takes at least 1 minute for the measurement, so if a capacitor manufacturing factory were to inspect all the capacitors manufactured, the inspection time per unit would be long and many inspectors would have to be assigned. Otherwise, there is an inconvenience that the inspection may not be completed in time. The measuring circuit shown in FIG. 5 has similar drawbacks. In addition, in the case of a capacitor with a large capacity, charging current may still be flowing even after one minute has passed, and there is also the disadvantage that accurate insulation resistance values cannot be measured for a capacitor with a large capacity.

このような理由から容量素子に充電電流を流し
始めた直後の短かい時間内において複数のタイミ
ングにおいて充電電流値を測定し、その複数の電
流測定値によつて所望時間後の電流値を予測して
算出できると都合がよい。
For this reason, the charging current value is measured at multiple timings within a short period of time immediately after charging current starts flowing through the capacitive element, and the current value after a desired time is predicted based on the multiple current measurement values. It would be convenient to be able to calculate the

この発明の目的は容量素子を流れる充電電流の
定常状態に達した状態の電流値を短時間に測定す
ることができる容量素子の充電電流測定方法を提
案しようとするものである。
An object of the present invention is to propose a method for measuring the charging current of a capacitive element, which can measure the current value of the charging current flowing through the capacitive element when it reaches a steady state in a short time.

「問題点を解決するための手段」 この発明では容量素子を流れる充電電流の流れ
始めから所定時間経過した時点を先頭に一定時間
毎の少なくとも三点の電流値を測定し、この少な
くとも三つの電流値から所望時間後の電流値を予
測して算出するようにしたものである。
"Means for Solving the Problem" In the present invention, current values are measured at at least three points at fixed time intervals starting from the point in time when a predetermined period of time has elapsed from the start of the charging current flowing through the capacitive element, and the current values of the at least three current points are measured. The current value after a desired time is predicted and calculated based on the current value.

つまりこの発明では充電電流の流れ始めからわ
ずかな時間内に三点の電流値を測定し、その三点
の電流測定値により流れ始めから充分時間が経過
して容量を流れる充電電流が0に至る時点の定常
状態の電流値を予測して算出する方法を提案する
ものである。
In other words, in this invention, the current values at three points are measured within a short time after the charging current begins to flow, and the current values at the three points indicate that the charging current flowing through the capacitor reaches 0 after a sufficient period of time has passed since the charging current started flowing. This paper proposes a method of predicting and calculating the steady state current value at a given point in time.

この発明の電流測定方法によれば測定開始から
わずかな時間内において三点の時点で充電電流値
I0,I1,I2を測定し、その充電電流値I0,I1,I2
よつて定常状態における電分値Ixを Ix=I1 2−I0・I2/2I1−I2−I0 によつて算出する。
According to the current measuring method of the present invention, charging current values are measured at three points within a short time from the start of measurement.
Measure I 0 , I 1 , and I 2 , and calculate the electric charge value I x in steady state using the charging current values I 0 , I 1 , and I 2 as I x = I 1 2 −I 0・I 2 /2I Calculated by 1 −I 2 −I 0 .

この結果定常状態に達する時間より前の状態で
結果を算出することができ、定常状態における電
流値が求められることにより容量素子の絶縁抵抗
値を容易に求めることができる。
As a result, the result can be calculated before the time when the steady state is reached, and by finding the current value in the steady state, the insulation resistance value of the capacitive element can be easily found.

よつてこの発明の充電電流測定方法によれば短
時間に定常状態の電流値を求めることができ、こ
れにより短時間に容量素子の絶縁抵抗値等を算出
することができる。
Therefore, according to the charging current measuring method of the present invention, a steady state current value can be determined in a short time, and thereby the insulation resistance value of a capacitive element, etc. can be calculated in a short time.

「実施例」 第1図にこの発明による充電電流測定方法の概
要を示す。第1図において11は或る容量素子の
充電電流波形を示す。時点t=0から電流が流れ
始め時間T0が経過した時点t0において電流I0を測
定する。
"Example" FIG. 1 shows an overview of the charging current measuring method according to the present invention. In FIG. 1, reference numeral 11 indicates a charging current waveform of a certain capacitive element. The current starts flowing from time t=0, and the current I 0 is measured at time t 0 when time T 0 has elapsed.

時点t0から時間KT0(K=1,2,3…)経過
した時点t1において電流I1を測定し、更に時点t1
から時間K・T0経過した時点t2で電流I2を測定す
る。ここまでの時間t0+2KT0は短い時間内に選
定する。
The current I 1 is measured at time t 1 after time KT 0 (K=1, 2, 3...) has elapsed from time t 0 , and then at time t 1
The current I 2 is measured at time t 2 after a time K·T 0 has passed since then. The time t 0 +2KT 0 up to this point is selected within a short time.

この発明によればこれらの電流測定値I0,I1
I2を使つて容量12Aを流れる充電電流が0に至
る時間Tx後の電流値Ixを次式によつて求める。
According to the invention, these current measurements I 0 , I 1 ,
Using I 2 , the current value I x after a time T x for the charging current flowing through the capacitor 12A to reach 0 is determined by the following equation.

Ix=I1 2−I0・I2/2I1−I2−I0 以下にIxの式の算出過程を説明する。 I x = I 1 2 −I 0 · I 2 /2I 1 −I 2 −I 0 The calculation process of the formula for I x will be explained below.

容量素子の電気的な等価回路を第2図に示す。
第2図において12は容量素子を指すものとす
る。12Aは容量素子12の容量を示し、その容
量値をCとする。12Bは直列抵抗を示しその抵
抗値をR1とする。12Cは絶縁抵抗を示し、そ
の抵抗値をR2とする。
FIG. 2 shows an electrical equivalent circuit of the capacitive element.
In FIG. 2, 12 indicates a capacitive element. 12A indicates the capacitance of the capacitive element 12, and C is the capacitance value. 12B represents a series resistor, and its resistance value is R1 . 12C indicates insulation resistance, and its resistance value is R 2 .

第3図に測定回路の原理図を示す。第3図にお
いて13は既知の電圧値Vを発生する直流源、1
4は直流源13の内部抵抗を示し、その抵抗値を
rとする。測定開始に先立つてスイツチ15を接
点Aに接触させ容量素子12の両端を短絡し、容
量12Aに充電されている電荷を放出させる。電
荷の放出が完了した時点でスイツチ15を接点B
に転接し、直流源13から容量素子12に電圧V
を印加する。容量素子12には電流測定手段16
が直列に接続され、時間の経過に従つて電流値を
測定する。この電流測定手段16は例えばマイク
ロコンピユータ等を組込んだ電圧電流測定器を使
うことができ、AD変換器によつて電流値をAD
変換し、そのデイジタル信号をマイクロコンピユ
ータによつて所定の時間毎に取込む構造とするこ
とができる。
Figure 3 shows a diagram of the principle of the measurement circuit. In FIG. 3, 13 is a DC source that generates a known voltage value V;
4 represents the internal resistance of the DC source 13, and its resistance value is r. Prior to the start of measurement, the switch 15 is brought into contact with the contact point A to short-circuit both ends of the capacitive element 12, thereby discharging the charge stored in the capacitor 12A. When the discharge of charge is completed, switch 15 is closed to contact B.
voltage V from the DC source 13 to the capacitive element 12.
Apply. A current measuring means 16 is provided in the capacitive element 12.
are connected in series and measure the current value over time. This current measuring means 16 can use, for example, a voltage/current measuring device incorporating a microcomputer or the like, and the current value is measured by an AD converter.
The digital signal can be converted and the digital signal can be taken in by a microcomputer at predetermined intervals.

スイツチ15が接点Bに転接したときの電流Ix
は Ix=V/r+R2+V/r+R1ε-t/C(R1+r) (R1・R2≫r) となる。
Current I x when switch 15 connects to contact B
I x =V/r+R 2 +V/r+R 1 ε -t/C(R1+r) (R 1・R 2 ≫r).

時点t=T0のときのIxをI0 t=T1=T0+TaのときのIxをI1 t=T2=T0+2TaのときのIxをI2とする
と、 I0=V/r+R2+V/r+R1ε-T0/〓 …(1) I1=V/r+R2+V/r+R1ε-1/(T0+Ta) …(2) I2=V/r+R2+V/r+R1ε-1/(T0+2Ta) …(3) となる。尚τ=C(R1+r)である。
Let I x at time t = T 0 be I 0 I x at time t = T 1 = T 0 + T a be I 1 I x at time t = T 2 = T 0 + 2T a be I 2 , I 0 =V/r+R 2 +V/r+R 1 ε -T0/ 〓 …(1) I 1 =V/r+R 2 +V/r+R 1 ε -1/(T0+Ta) …(2) I 2 =V/ r+R 2 +V/r+R 1 ε -1/(T0+2Ta) ...(3). Note that τ=C(R 1 +r).

電流Ixの一般式は Ix=V/r+R2+V/r+R1ε-1/(T0+xTa) ここでTaの値をTa=KT0とすると Ix=V/r+R2+V/r+R1ε-1/t0(1+xk)……(4) A=ε-1/t0とおくと Ix=V/r+R2+V/r+R1A(1+xk) ……(5) (1),(2),(3)式をこの様に書き直すと I0=V/r+R2+V/r+R1A ……(6) I1=rV r+R2+V r+R1A(1+k) ……(7) I2=rV r+R2+V r+R1A(1+2k) ……(8) I1−I0=V/r+R1A(Ak−1) ……(9) I2−I1=V/r+R1AAk(Ak−1) ……(10) (10)式を(9)式で割算すると、 Ak=I2−I1/I1−I0 ……(11) (5)式と(6)式から Ix−I0=V/r+R1A(Axk−1) ……(12) (9)式より V/r+R1A=I1−I0/Ak−1 (11)式より Ak−1=I2−I1/I1−I0−1 =I2−2I1+I0/I1−I0 V/r+R1A=(I1−I0)(I1−I0)/I2−2I
1+I0 =(I1−I02/I2−2I1+I0 (12)式に代入すると Ix−I0=(I1−I02/I2−2I1+I0(Axk−1
) =(I1−I02/2I1−I2−I0(1−Axk) Ix=(I1−I02/2I1−I2−I0(1−Axk)+I
0……(13) これにより容量12Aを流れる充電電流が0に
なる時間Tx後の電流Ixが算出できる。
The general formula for current I x is I x =V/r+R 2 +V/r+R 1 ε -1/(T0+xTa) Here, if the value of Ta is T a = KT 0 , then I x =V/r+R 2 +V /r+R 1 ε -1/t0(1+xk) ……(4) If A=ε -1/t0 , then I x =V/r+R 2 +V/r+R 1 A (1+xk) ……( ( 1+ _ _ _ _ _ k) ……(7) I 2 =rV r+R 2 +V r+R 1 A (1+2k) ……(8) I 1 −I 0 =V/r+R 1 A(A k −1) ……(9) I 2 −I 1 =V/r+R 1 AA k (A k −1) ……(10) When formula (10) is divided by formula (9), A k =I 2 −I 1 /I 1 −I 0 ...(11) From equations (5) and (6) I x −I 0 = V/r+R 1 A (A xk -1) ...(12) From equation (9) V/r+R 1 A=I 1 −I 0 /A k −1 From formula (11), A k −1=I 2 −I 1 /I 1 −I 0 −1 = I 2 −2I 1 +I 0 /I 1 −I 0 V/r+R 1 A =(I 1 −I 0 )(I 1 −I 0 )/I 2 −2I
1 +I 0 = (I 1 −I 0 ) 2 /I 2 −2I 1 +I 0 Substituting into equation (12), I x −I 0 = (I 1 −I 0 ) 2 /I 2 −2I 1 +I 0 ( A xk −1
) = (I 1 −I 0 ) 2 /2I 1 −I 2 −I 0 (1−A xk ) I x = (I 1 −I 0 ) 2 /2I 1 −I 2 −I 0 (1−A xk )+I
0 ...(13) With this, the current I x after the time T x when the charging current flowing through the capacitor 12A becomes 0 can be calculated.

k=1(t2−t1=t1−t0=t0)のときは Ix=(I1−I02/2I1−I2−I0(1−Ax)+I0
…(14) (13)式においてAxk≪1のときは Ix=(I1−I02/2I1−I2−I0+I0 =I1 2−I0I2/2I1−I2−I0 ……(15) の様に簡単な式となる。
When k = 1 (t 2 - t 1 = t 1 - t 0 = t 0 ), I x = (I 1 - I 0 ) 2 /2I 1 - I 2 - I 0 (1 - A x ) + I 0
…(14) In equation (13), when A xk ≪1, I x = (I 1 − I 0 ) 2 /2I 1 −I 2 −I 0 +I 0 =I 1 2 −I 0 I 2 /2I 1 −I 2 −I 0 ……(15) becomes a simple formula.

ここでAxk≦1条件は、 (11)式より Axk=(I2−I1/I1−I0x 第1図から明らかなようにI1−I2<I0−I1であ
るから I2−I1/I1−I0=I1−I2/I0−I1<1 Axk≪1であるためには約 I1−I2/I0−I1≦1/2 でなければならない。ここで求める電流値の時間
txを測定時間間隔KT0の10倍以上(x≧10)に探
るものとすると、 Axk≦(1/2)10=1.9×10-3≪1となり(15)式
が 成り立つ ここでI1−I2/I0−I1≦1/2となる条件を求める 2(I1−I2)≦I0−I1 I0≧3I1−2I2 ……(16) (6),(7),(8)式を I0=K0+αA I1=K0+αA(1+k) I2=K0+αA(1+2k) とかき直すと(16)式は K0+αA≧3{K0+αA(1+k)}−2{K0+αA(1+2k)} 2αA(1+2k)−3αA(1+k)+αA≧0 2A2k−3Ak+1≧0 (2Ak−1)(Ak−1)≧0 Ak=ε−KT0/τであるからAk≧1となるが時間 T0がT0≦0となり(k≠0)解ではない ゆえにAk≦1/2 ε−k/τT0≦1/2 −K/τT0≦ln1/2 KT0≧τln1/2=C(R1+r)ln1/2 KT0≧0.69C(R1+r) これは次の式の様な事を意味する。第1図にお
いて、スイツチ15を時点t=0で接点Bに転換
した後、時間T0後の時点t0における電流I0、時点
t0から時間KT0後の電流I1,2KT0後の電流I2を測
定すると、Tx=T0+xKT0後の電流Ixは Ix=(I1−I02/2I1−I2−I0{1−I2−I1/I1
I0x+I0 で計算することができる。
Here , the A xk ≦1 condition is, from equation (11), A xk = (I 2 I 1 / I 1 I 0 ) Therefore, since I 2 −I 1 /I 1 −I 0 =I 1 −I 2 /I 0 −I 1 <1 A xk ≪1, approximately I 1 −I 2 /I 0 −I 1 ≦ Must be 1/2. The time for the current value found here
Assuming that t x is to be searched for at least 10 times the measurement time interval KT 0 (x≧10), A xk ≦ (1/2) 10 = 1.9×10 -3 ≪1, and equation (15) holds.Here, I Find the condition that 1 −I 2 /I 0 −I 1 ≦1/2 2(I 1 −I 2 )≦I 0 −I 1 I 0 ≧3I 1 −2I 2 ...(16) (6), Rewriting equations (7) and (8) as I 0 =K 0 +αA I 1 =K 0 +αA (1+k) I 2 =K 0 +αA (1+2k) , equation (16) becomes K 0 +αA≧ 3 {K 0 +αA (1+k) }−2{K 0 +αA (1+2k) } 2αA (1+2k) −3αA (1+k) +αA≧0 2A 2k −3A k +1≧0 (2A k −1) (A k −1) ≧ 0 Since A k = ε−KT 0 /τ, A k ≧ 1, but time T 0 is T 0 ≦ 0 (k≠0), so it is not a solution. Therefore, A k ≦1/2 ε−k/τT 0 ≦1/2 −K/τT 0 ≦ln1/2 KT 0 ≧τln1/2=C(R 1 +r)ln1/2 KT 0 ≧0.69C(R 1 +r) This means something like the following expression. In FIG. 1, after switching the switch 15 to contact B at time t=0, the current I 0 at time t 0 after time T 0 ,
When measuring the current I 1 after time KT 0 from t 0 and the current I 2 after 2KT 0 , the current I x after T x = T 0 + xKT 0 is I x = (I 1 − I 0 ) 2 /2I 1 −I 2 −I 0 {1−I 2 −I 1 /I 1
It can be calculated as I 0 } x + I 0 .

さらにKT0を KT0≧0.69C(R1+r) に選べば Ix=I1 2−I0I2/2I1−I2−I0 で計算することができる。 Furthermore, if KT 0 is chosen to satisfy KT 0 ≧0.69C (R 1 +r), it is possible to calculate I x = I 1 2 −I 0 I 2 /2I 1 −I 2 −I 0 .

「発明の作用効果」 上述したようにこの発明によれば電流測定の時
間間隔kt0を容量12Aの容量値Cと直列抵抗1
2B及び直流源3の内部抵抗4の各抵抗値R1
rで決まる時定数C(R1+r)の約70%の時間に
選定し、この時間間隔で三点の電流値I0,I1,I2
を測定することにより、時定数の例えば10倍の時
間経過した時点における電流値を予測して算出す
ることができる。
"Operations and Effects of the Invention" As described above, according to the present invention, the time interval kt 0 of current measurement is set by the capacitance value C of the capacitance 12A and the series resistance 1
2B and the internal resistance 4 of the DC source 3 and the time constant of about 70% of the time constant C (R 1 + r) determined by r, the current values I 0 , I 1 , I2
By measuring the current value, it is possible to predict and calculate the current value at the time when, for example, 10 times the time constant has elapsed.

時間T0を充分小さい値に選定することにより
測定に要する時間は約1.4C(R1+r)で終了する
ことができる。つまり時定数の約1.4倍の時間で
測定を終了し、時定数の10倍の時間経過した時点
の電流値を予測して算出することができる。時定
数C(R1+r)は充放電波形11が約70%低下す
るまでの時間に対応する。よつて時間T0を小さ
い値に選定すれば電流I1を測定する時点t1が大凡
時定数C(R1+r)に対応する。例えばC=1μF,
R1+r=10Ωとした倍、時定数は10μ秒となる。
この時定数の場合に電流I0,I1,I2を測定するに
必要な時間(T0+2KT0)は約14μとなる。14μ秒
の測定時間によつて時定数の10倍の時間経過した
約100μ秒後における電流値を予測して算出する
ことができるから短時間に充電電流の定常状態に
おける電流の測定を終了することができる。容量
12Aの値が大きい場合にはその容量値Cに応じ
て測定時間間隔KT0≧0.96C(R1+r)に選定す
るから容量値Cが大きい場合でも定常状態の電流
値を正確に求めることができる。
By selecting the time T 0 to a sufficiently small value, the measurement can be completed in about 1.4C (R 1 +r). In other words, the measurement can be completed in approximately 1.4 times the time constant, and the current value at the time 10 times the time constant has elapsed can be predicted and calculated. The time constant C (R 1 +r) corresponds to the time until the charge/discharge waveform 11 drops by about 70%. Therefore, if the time T 0 is selected to be a small value, the time t 1 at which the current I 1 is measured roughly corresponds to the time constant C(R 1 +r). For example, C=1μF,
When R 1 +r=10Ω, the time constant becomes 10 μsec.
With this time constant, the time (T 0 +2KT 0 ) required to measure the currents I 0 , I 1 , and I 2 is approximately 14 μ. With a measurement time of 14 μs, it is possible to predict and calculate the current value after about 100 μs, which is 10 times the time constant, so it is possible to complete the measurement of the current in the steady state of the charging current in a short time. I can do it. If the value of the capacitance 12A is large, the measurement time interval KT 0 ≧0.96C (R 1 +r) is selected according to the capacitance value C, so even if the capacitance value C is large, the steady state current value can be accurately determined. I can do it.

充電電流の定常状態における電流を短時間に知
ることができることにより例えば容量素子の絶縁
抵抗も短時間に測定できる。よつてコンデンサの
製造工程においてコンデンサを全量チエツクする
ようにしても、製品を高速度で試験することがで
きる利点が得られる。
By being able to know the charging current in a steady state in a short time, for example, the insulation resistance of a capacitive element can also be measured in a short time. Therefore, even if all capacitors are checked during the capacitor manufacturing process, there is an advantage that the product can be tested at high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の要部の動作を説明するため
のグラフ、第2図は被測定対象であるコンデンサ
の等価回路を示す接続図、第3図はこの発明の一
実施例を説明するための接続図、第4図及び第5
図は従来の回路を説明するためのブロツク図であ
る。 11……充電電流波形、12……容量素子、1
2A……容量、12B……直列抵抗、12C……
絶縁抵抗、13……直流源、14……直流源の内
部抵抗、15……スイツチ、16……電流測定手
段。
Fig. 1 is a graph for explaining the operation of the main part of this invention, Fig. 2 is a connection diagram showing an equivalent circuit of a capacitor to be measured, and Fig. 3 is for explaining an embodiment of this invention. Connection diagram, Figures 4 and 5
The figure is a block diagram for explaining a conventional circuit. 11...Charging current waveform, 12...Capacitive element, 1
2A...Capacity, 12B...Series resistance, 12C...
Insulation resistance, 13... DC source, 14... Internal resistance of the DC source, 15... Switch, 16... Current measuring means.

Claims (1)

【特許請求の範囲】 1 容量に対して絶縁抵抗が並列接続された電気
的等価回路を具備した容量素子に既知の電圧Vを
印加し、上記容量を流れる充電電流がゼロの状態
に到る時間Tx後に上記容量素子を流れる電流値Ix
を測定して上記容量素子の絶縁抵抗値を求めるた
めの容量素子の充電電流測定方法において、 上記容量素子に上記既知の電圧Vを印加した直
後の上記時間Txの1/100程度の極く短い時間T0
経過した時点t0を先頭に上記時間T0に関連した時
間間隔KT0(K=1,2,3…)で規定される三
つの時点t0,t1,t2において、上記容量素子を流
れる電流値I0,I1,I2を測定し、この三つの電流
測定値I0,I1,I2から上記時間Tx後の電流値IxをIx
=(I1 2−I0・I2)/(2I1−I2−I0)によつて算出
し、上記時間Txより短い時間内に上記容量素子
の絶縁抵抗値を求めるための電流値Ixを得るよう
にした容量素子の充電電流測定方法。
[Claims] 1. A known voltage V is applied to a capacitive element having an electrical equivalent circuit in which an insulation resistance is connected in parallel to a capacitor, and the time required for the charging current flowing through the capacitor to reach a zero state. Current value I x flowing through the above capacitive element after T x
In the method for measuring the charging current of a capacitive element for determining the insulation resistance value of the capacitive element by measuring, At three time points t 0 , t 1 , t 2 defined by the time interval KT 0 ( K=1, 2, 3...) related to the above time T 0 , starting from the time t 0 after a short time T 0 has elapsed. , measure the current values I 0 , I 1 , I 2 flowing through the capacitive element, and calculate the current value I x after the above time T x from these three current measurement values I 0 , I 1 , I 2 by I x
= (I 1 2 − I 0 · I 2 )/(2I 1 − I 2 − I 0 ), and the current for determining the insulation resistance value of the capacitive element within a time shorter than the above time T x A method for measuring the charging current of a capacitive element to obtain the value I x .
JP60263176A 1985-11-22 1985-11-22 Measurement of charging and discharging currents of capacitive element Granted JPS62123367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60263176A JPS62123367A (en) 1985-11-22 1985-11-22 Measurement of charging and discharging currents of capacitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60263176A JPS62123367A (en) 1985-11-22 1985-11-22 Measurement of charging and discharging currents of capacitive element

Publications (2)

Publication Number Publication Date
JPS62123367A JPS62123367A (en) 1987-06-04
JPH0578790B2 true JPH0578790B2 (en) 1993-10-29

Family

ID=17385825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60263176A Granted JPS62123367A (en) 1985-11-22 1985-11-22 Measurement of charging and discharging currents of capacitive element

Country Status (1)

Country Link
JP (1) JPS62123367A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180625A (en) * 2008-01-31 2009-08-13 Toyota Motor Corp Coil inspection apparatus and coil inspection method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172766A (en) * 1987-12-28 1989-07-07 Advantest Corp Apparatus for measuring leak current of capacitive substance
JPH01172765A (en) * 1987-12-28 1989-07-07 Advantest Corp Apparatus for measuring leak current of capacitive substance
US6043665A (en) * 1996-12-05 2000-03-28 Murata Manufacturing Co., Ltd. Capacitor charging current measurement method
JP4336006B2 (en) * 1999-10-18 2009-09-30 日置電機株式会社 Insulation resistance meter for product inspection line
JP6177139B2 (en) * 2012-01-18 2017-08-09 トーカロ株式会社 Insulator condition determination assembly and method
JP7311380B2 (en) * 2019-10-01 2023-07-19 株式会社日立産機システム Power supply capacitor capacitance measurement device and power supply capacitor capacitance measurement method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6078359A (en) * 1983-10-05 1985-05-04 Hitachi Ltd Static leonard device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6078359A (en) * 1983-10-05 1985-05-04 Hitachi Ltd Static leonard device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180625A (en) * 2008-01-31 2009-08-13 Toyota Motor Corp Coil inspection apparatus and coil inspection method

Also Published As

Publication number Publication date
JPS62123367A (en) 1987-06-04

Similar Documents

Publication Publication Date Title
US5294889A (en) Battery operated capacitance measurement circuit
JP3006800B2 (en) Electronic tester for evaluating battery / cell capacity
US6118275A (en) Method and apparatus for measuring battery capacity using voltage response signal based on pulse current
WO2000062049A1 (en) Electronic battery tester
EP0701687A1 (en) Resistance measuring circuit, and thermal appliance, electrical thermometer and cold-generating appliance including such a measuring circuit
JPH07151792A (en) Method and device for automatically detecting and measuring amount of measurement and multimeter
JPH10221418A (en) Device and method for judging deterioration of battery
JPH0578790B2 (en)
JP3736853B2 (en) Battery recharger
US4589073A (en) Apparatus for determining prospective short circuit current
EP0096033A1 (en) Insulation analyzer apparatus and method of use.
JP3583540B2 (en) Method and apparatus for measuring equivalent series resistance of capacitive element
US5530361A (en) Method and apparatus for measuring the state of charge of an electrochemical cell pulse producing a high discharge current
US2825027A (en) Circuit for measuring the temperature or resistance change of energized alternating current apparatus
JPS5845670B2 (en) Battery tester
JPH02264874A (en) Detecting method for disconnection of analog signal input circuit
SU1568117A1 (en) Method of measuring short circuit resistance of chemical current source
US4047104A (en) Ohmmeter for circuits carrying unknown currents
SU1000881A1 (en) Chronopotentiometer
JP3421524B2 (en) How to measure capacitance
JPS6020153A (en) Insulation resistance measuring instrument
SU977126A1 (en) Apparatus for measuring amplitude values of welding current impulses
JPH0827307B2 (en) Printed wiring board test equipment
JPH08122373A (en) Insulation resistance-measuring apparatus
SU547878A1 (en) Method for measuring the short-circuit resistance of a chemical current source