JPS644573B2 - - Google Patents

Info

Publication number
JPS644573B2
JPS644573B2 JP7514984A JP7514984A JPS644573B2 JP S644573 B2 JPS644573 B2 JP S644573B2 JP 7514984 A JP7514984 A JP 7514984A JP 7514984 A JP7514984 A JP 7514984A JP S644573 B2 JPS644573 B2 JP S644573B2
Authority
JP
Japan
Prior art keywords
electrodes
mold
electrode
arc
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7514984A
Other languages
Japanese (ja)
Other versions
JPS60218437A (en
Inventor
Shunichi Tanaka
Hiroichi Nomura
Mitsuzo Tamaki
Taizo Yoshida
Akya Ozeki
Yoshiro Hosoda
Kiminari Kawakami
Kinya Inamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP7514984A priority Critical patent/JPS60218437A/en
Publication of JPS60218437A publication Critical patent/JPS60218437A/en
Publication of JPS644573B2 publication Critical patent/JPS644573B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Furnace Details (AREA)

Description

【発明の詳細な説明】 この発明はアーク溶解法に関する。[Detailed description of the invention] This invention relates to an arc melting method.

アーク溶解法は高度の質を要求される鋼や合金
の溶解に用いられており、VAR(Vacuum Arc
Remelting)法が一般に広く用いられている。
The arc melting method is used to melt steel and alloys that require a high level of quality.
The remelting method is generally widely used.

このVAR法は第1図に示すように、消耗電極
50を水冷銅鋳型51内に挿入し真空中で電極5
0と鋳型51底部との間にアークAを発生させ、
該電極50を溶解しその金属を精錬する方法であ
る。
In this VAR method, as shown in FIG. 1, a consumable electrode 50 is inserted into a water-cooled copper mold 51, and the electrode
0 and the bottom of the mold 51,
This is a method of melting the electrode 50 and refining the metal.

しかし、この方法の場合、溶解プールの温度が
高く、しかも鋳型51が水冷されているため鋳造
された金属の内部の温度勾配が大きく、粗大化し
た粒状晶が生成し、その後の加工性を著しく損な
う欠点があつた。またNb―Ti等の高融点金属の
合金を作る場合、電極の製造にコストがかかる欠
点があつた。更に熱応力による電極50の反り等
により水冷銅鋳型51の側壁との間にサイドアー
クを発生し易く、鋳型51の焼損及び冷却水と溶
融金属の反応による爆発等が生ずる危険があつ
た。またアークの特性上鋳型51の形状が円筒形
に限られるため、円筒形のインゴツトしか得られ
ず、そのためこれをスラブにする際の歩留低下が
著しい欠点があつた。
However, in the case of this method, since the temperature of the melting pool is high and the mold 51 is water-cooled, there is a large temperature gradient inside the cast metal, resulting in the formation of coarse granular crystals, which significantly impairs subsequent workability. There were flaws that damaged it. Also, when making alloys of high-melting point metals such as Nb-Ti, there was a drawback that manufacturing the electrodes was expensive. Furthermore, side arcs are likely to occur between the electrode 50 and the side wall of the water-cooled copper mold 51 due to warping of the electrode 50 due to thermal stress, and there is a risk of burnout of the mold 51 and explosion due to reaction between cooling water and molten metal. Furthermore, because the shape of the mold 51 is limited to a cylindrical shape due to the characteristics of the arc, only cylindrical ingots can be obtained, which has the drawback of significantly lowering the yield when making slabs.

一方、第2図に示すように非水冷鋳型53上で
一対の消耗電極52,52を水平方向に対向させ
て設置し、この電極間に真空中でアークAを発生
させ、その熱により電極を溶解させるVADER
(Vacuum Arc Double Electrode Remelting)
法が知られている。この方法の場合、上記VAR
法に比し鋳型との間にアークが発生する危険がな
く、また鋳型の形状に制限がなく任意形状のイン
ゴツトを得られる利点がある。また電極が溶ける
とすぐ液滴が落下するため過熱度が少ない状態で
凝固し、そのため結晶組織は細かく加工性は良い
が、融点の高い金属では十分に溶解せず、オコシ
状にポイドが残る危険がある。また液滴、溶融プ
ールの温度制度が難しい等の欠点がある。
On the other hand, as shown in FIG. 2, a pair of consumable electrodes 52, 52 are placed horizontally opposite each other on a non-water-cooled mold 53, and an arc A is generated between the electrodes in a vacuum, and the heat causes the electrodes to VADER to dissolve
(Vacuum Arc Double Electrode Remelting)
The law is known. In this method, the above VAR
Compared to the method, there is no risk of arcing between the ingot and the mold, and there is no restriction on the shape of the mold, which has the advantage that ingots of arbitrary shapes can be obtained. In addition, when the electrode melts, droplets fall immediately, so it solidifies with a low degree of superheating. Therefore, the crystal structure is fine and workability is good, but metals with a high melting point may not melt sufficiently, and there is a risk of leaving a pock-like shape. There is. In addition, there are drawbacks such as difficulty in controlling the temperature of the droplets and molten pool.

なお、このVADERでは電極を2本用いている
ため、各電極に異種金属を使用すれば別々に液滴
が発生し、原理的にはプールで合金化させること
は可能であるが、プールの温度が低いため均一な
合金化は難しく、現実的にはこのVADERはあく
まで同一成分金属の再溶解法である。
Note that this VADER uses two electrodes, so if different metals are used for each electrode, separate droplets will be generated, and in principle it is possible to alloy them in a pool, but depending on the temperature of the pool Because of the low metallurgy, uniform alloying is difficult, and in reality, VADER is only a method of remelting metals with the same composition.

本発明は上記した従来技術の欠点を改善するた
めになされたもので、複雑な前処理を必要とせず
に均一な溶解が可能で溶融プール温度を任意に制
御することができ、結晶組織を自由に制御すると
同時に合金の成分精密制御を可能にしたアーク溶
解法を提供しようとするものである。
The present invention has been made to improve the above-mentioned drawbacks of the conventional technology, and allows for uniform melting without the need for complicated pretreatment, the ability to arbitrarily control the temperature of the melt pool, and the ability to freely control the crystal structure. The purpose of this project is to provide an arc melting method that allows accurate control of alloy composition.

この目的のために、本発明は複数の消耗電極を
鋳型上でその延長線が交わるように水平または下
向きに対向させ、真空下或は不活性ガス雰囲気中
で各電極間及び各電極と鋳型及び再溶解インゴツ
ト間にアークを発生させることを基本的な特徴と
するものである。
For this purpose, the present invention arranges a plurality of consumable electrodes horizontally or downwardly facing each other on a mold so that their extension lines intersect, and connects each electrode to the mold and the mold in a vacuum or an inert gas atmosphere. The basic feature is that an arc is generated between the remelted ingots.

第3図により本発明法を詳説する。 The method of the present invention will be explained in detail with reference to FIG.

1,2は夫々消耗型電極であり水冷銅鋳型3上
に配置してある。電極1,2はその延長線が互い
に交わるように斜め下方に対向させて設置してあ
る。この例では2本の電極としているが、必要に
応じて3本、4本と増しても良い。この電極1,
2はその長手方向にスライド可能となつており、
溶解に伴つて電極先端を繰出すと共に電極間のギ
ヤツプを調整し得るように構成されている。また
電極1,2は上下方向に移動可能で、鋳型3の底
部30または再溶解インゴツト4との間のギヤツ
プを調整し得るようになつている。
1 and 2 are consumable electrodes, respectively, which are placed on a water-cooled copper mold 3. The electrodes 1 and 2 are placed obliquely downward and facing each other so that their extension lines intersect with each other. In this example, there are two electrodes, but the number may be increased to three or four if necessary. This electrode 1,
2 can be slid in its longitudinal direction,
It is constructed so that the tip of the electrode can be drawn out as it melts and the gap between the electrodes can be adjusted. Further, the electrodes 1 and 2 are movable in the vertical direction, so that the gap between them and the bottom 30 of the mold 3 or the remelted ingot 4 can be adjusted.

またこの実施例では、鋳型3底部30に引抜機
構5を設け、インゴツト4を溶解の進行に従つて
底部から徐々に引抜くように構成している。これ
は本発明法では複数の電極を用いているため、電
極を鋳型3内に挿入せずその上方に配置してある
ためインゴツト4と電極間のギヤツプを所定値に
制御するためにはこのように構成するのが好まし
いからである。
Further, in this embodiment, a pull-out mechanism 5 is provided at the bottom 30 of the mold 3, so that the ingot 4 is gradually pulled out from the bottom as melting progresses. This is because the method of the present invention uses a plurality of electrodes, and the electrodes are not inserted into the mold 3 but placed above it. This is because it is preferable to configure it as follows.

以上の配置において、真空中または不活性ガス
雰囲気中で電極間及び電極とインゴツト4間にア
ークを発生させ溶解する。この時電極1,2間の
ギヤツプ或は電極1,2とインゴツト4間のギヤ
ツプ、更に電極間或は電極とインゴツト間の電
圧、電流を調整することにより溶解プール温度等
の制御を行う。
In the above arrangement, an arc is generated between the electrodes and between the electrodes and the ingot 4 in a vacuum or an inert gas atmosphere to melt the ingot. At this time, the temperature of the melting pool, etc. is controlled by adjusting the gap between the electrodes 1 and 2 or the gap between the electrodes 1 and 2 and the ingot 4, as well as the voltage and current between the electrodes or between the electrodes and the ingot.

たとえば、電極1,2間のアークと電極―イン
ゴツト間のアークを別々に制御すれば、液滴温度
とプール温度を制御でき、従来のVAR及び
VADERの欠点を改善できる。
For example, if the arc between electrodes 1 and 2 and the arc between the electrodes and the ingot are controlled separately, the droplet temperature and pool temperature can be controlled, which is different from conventional VAR and
The shortcomings of VADER can be improved.

なお、いうまでもなく電極―インゴツト間にの
みアークを発生させてVARと同一の機能を行わ
せることも可能であるし、複数の電極間にのみア
ークを発生させてVADERと同一機能とすること
も可能である。
Needless to say, it is also possible to perform the same function as VAR by generating an arc only between electrodes and ingots, or it is possible to perform the same function as VADER by generating an arc only between multiple electrodes. is also possible.

このように本発明法では溶融温度を最適に制御
することができ、その結果、結晶組織の制御も容
易になり、インゴツト内のボイドも防ぐことが出
来る。また組織、内質共に健全なインゴツトを得
ることができる。
As described above, in the method of the present invention, the melting temperature can be optimally controlled, and as a result, the crystal structure can be easily controlled and voids within the ingot can be prevented. In addition, you can obtain ingots with healthy structure and internal quality.

更に本発明法では高融点金属の合金製造も可能
である。即ち、2種以上の合金を作る場合、通常
各金属が同一融点のことはなく、たとえばNb―
Ti合金の場合Nb:2500℃、Ti:1700℃と融点
800℃の差がある。このような異種金属を従来の
VADERにより消耗電極として溶解すると、Tiの
方が速くかつ多く溶解するため所要の合金成分と
することが難しい。本発明法では、Nb電極とイ
ンゴツト4間のギヤツプを短くするか、或はこの
間の電流電圧を高くし、融点の高いNbを速く溶
解させることができるから合金成分を精密に調整
することができる。また溶融プールの温度を高温
に保つことができるから均一の合金とすることが
できる。なお合金製造に際し、溶融プールを高温
に保持して電極と同種または異種の金属を粉末或
はワイヤー状で添加しても良い。
Furthermore, the method of the present invention also allows the production of alloys of high melting point metals. In other words, when making an alloy of two or more metals, each metal usually does not have the same melting point; for example, Nb-
In case of Ti alloy, melting point is Nb: 2500℃, Ti: 1700℃
There is a difference of 800℃. These dissimilar metals can be
When dissolved as a consumable electrode using VADER, Ti dissolves faster and in larger amounts, making it difficult to form the required alloy component. In the method of the present invention, by shortening the gap between the Nb electrode and the ingot 4 or by increasing the current voltage therebetween, Nb, which has a high melting point, can be melted quickly, making it possible to precisely adjust the alloy composition. . Furthermore, since the temperature of the molten pool can be maintained at a high temperature, a uniform alloy can be obtained. Note that during alloy production, the molten pool may be maintained at a high temperature and metal of the same type or different type as the electrode may be added in the form of powder or wire.

なお本発明では再溶解インゴツトの形状は丸で
ある必要はなく、角、中空等のNNS(Near Net
Shape)鋳造が可能である。また鋳型3と電極
1,2は接触する虞れがなく、サイドアークも発
生しない等VAR法の欠点が解消される。
Note that in the present invention, the shape of the remelted ingot does not have to be round, but can be square, hollow, etc.
Shape) Can be cast. Furthermore, there is no risk of contact between the mold 3 and the electrodes 1 and 2, and the drawbacks of the VAR method, such as no side arcs, are eliminated.

第4図は本発明を実施する場合の電極とインゴ
ツトの結線図である。図中、イ,ロ,ハは第3図
における電極1,2及びインゴツト4の端子を示
している。第4図Aは直流電源を用いており、ト
ランジスタ等のスイツチング素子からなるスイツ
チSW1,SW2を連動して動作させ、イ―ロ間及び
イ―ハ又はロ―ハ間に交互に電圧をかけるように
構成されている。スイツチSW1,SW2の動作速度
はアークが消滅し、次いで再点弧する際に容易に
点弧できる程度とする。なおVR1,VR2は可変抵
抗である。
FIG. 4 is a wiring diagram of electrodes and ingots when carrying out the present invention. In the figure, A, B and C indicate the terminals of the electrodes 1 and 2 and the ingot 4 in FIG. Figure 4A uses a DC power supply, and switches SW 1 and SW 2 , which are made up of switching elements such as transistors, are operated in conjunction to alternately apply voltage between E and Lo and between E and H or LO. It is configured to be used. The operating speed of the switches SW 1 and SW 2 shall be such that the arc can be easily ignited when it is extinguished and then re-ignited. Note that VR 1 and VR 2 are variable resistors.

第4図B,Cは3相交流を用いた場合を示すも
ので、Bはスター接続、Cはデルタ接続の変圧器
を用いた場合である。WTは可変リアクトルで、
これにより電流調整を独立して行い得るように構
成されている。なお第4図は結線の一例であり、
これに限定されるものではない。また回路のイ,
ロ,ハを3本の電極に接続して使用することも可
能である。
FIGS. 4B and 4C show the case where three-phase alternating current is used; B is the case where a star connection transformer is used, and FIG. 4C is a case where a delta connection transformer is used. WT is a variable reactor,
This allows the current to be adjusted independently. In addition, Figure 4 is an example of wiring,
It is not limited to this. Also, circuit a,
It is also possible to use B and C by connecting them to three electrodes.

以上述べたように本発明のアーク溶解法によれ
ば、VARとVADERの欠点を解消でき、均一な
溶解、結晶組織の自由な制御、合金の成分精密制
御等が可能となる。
As described above, according to the arc melting method of the present invention, the drawbacks of VAR and VADER can be overcome, and uniform melting, free control of crystal structure, precise control of alloy components, etc. are possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は従来技術の説明図、第3図は
本発明法の説明図、第4図は本発明法を実施する
場合の電源の結線図である。
1 and 2 are explanatory diagrams of the prior art, FIG. 3 is an explanatory diagram of the method of the present invention, and FIG. 4 is a wiring diagram of a power supply when implementing the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 複数の消耗電極を鋳型上でその延長線が交わ
るように水平または下向きに対向させ、真空下或
は不活性ガス雰囲気中で各電極間及び各電極と再
溶解インゴツト間にアークを発生させることを特
徴とするアーク溶解法。
1. Arranging multiple consumable electrodes horizontally or downwardly facing each other on a mold so that their extension lines intersect, and generating an arc between each electrode and between each electrode and the remelted ingot in a vacuum or inert gas atmosphere. Arc melting method characterized by:
JP7514984A 1984-04-16 1984-04-16 Arc melting method Granted JPS60218437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7514984A JPS60218437A (en) 1984-04-16 1984-04-16 Arc melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7514984A JPS60218437A (en) 1984-04-16 1984-04-16 Arc melting method

Publications (2)

Publication Number Publication Date
JPS60218437A JPS60218437A (en) 1985-11-01
JPS644573B2 true JPS644573B2 (en) 1989-01-26

Family

ID=13567850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7514984A Granted JPS60218437A (en) 1984-04-16 1984-04-16 Arc melting method

Country Status (1)

Country Link
JP (1) JPS60218437A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238339A (en) * 1986-04-07 1987-10-19 Nippon Kokan Kk <Nkk> Melting method for alloy
JPS6362832A (en) * 1986-09-02 1988-03-19 Nippon Kokan Kk <Nkk> Production of alloy

Also Published As

Publication number Publication date
JPS60218437A (en) 1985-11-01

Similar Documents

Publication Publication Date Title
Bomberger et al. The melting of titanium
GB1242351A (en) Process and apparatus for purifying metals by submerged arc casting
US3469968A (en) Electroslag melting
EP0073585A1 (en) Alloy remelting process
US3723630A (en) Method for the plasma-ac remelting of a consumable metal bar in a controlled atmosphere
US4681627A (en) Process for preparing an ingot from metal scrap
JPS644573B2 (en)
US4167963A (en) Method and apparatus for feeding molten metal to an ingot during solidification
JPS55149770A (en) Molding method for crude ingot of active metal or high- melting-point metal or alloy of these metals
JPH0639635B2 (en) Electroslag remelting method for copper and copper alloys
US4184869A (en) Method for using flux and slag deoxidizer in ESR process
US4764209A (en) Method for manufacturing alloy
US3516476A (en) Electrode and method of improving soundness of ingots
US4161398A (en) Method for electroslag remelting of a copper-nickel alloy
JPH05285632A (en) Method for electrically melting slag
RU2792515C1 (en) Method for smelting nickel-titanium alloys
CN112792323B (en) Electroslag remelting feeding process for nickel-based material
JPS63259031A (en) Electroslag re-melting of metal
US3997332A (en) Steelmaking by the electroslag process using prereduced iron or pellets
JPS6334214B2 (en)
JPS6160835A (en) Electroslag remelting furnace
SU488871A1 (en) Flux
US3952792A (en) Method and apparatus for casting a plurality of ingots
SU359964A1 (en) Unit for electroslag remelting
SU1765222A1 (en) Method of electro-slag ferrotitanium melting