JPS62238339A - Melting method for alloy - Google Patents

Melting method for alloy

Info

Publication number
JPS62238339A
JPS62238339A JP7979686A JP7979686A JPS62238339A JP S62238339 A JPS62238339 A JP S62238339A JP 7979686 A JP7979686 A JP 7979686A JP 7979686 A JP7979686 A JP 7979686A JP S62238339 A JPS62238339 A JP S62238339A
Authority
JP
Japan
Prior art keywords
mold
melting
electrode
electrodes
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7979686A
Other languages
Japanese (ja)
Inventor
Akiya Ozeki
尾関 昭矢
Yoshiro Hosoda
細田 義郎
Hideaki Mizukami
秀昭 水上
Akira Kato
彰 加藤
Hirotaka Nakagawa
中川 大隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP7979686A priority Critical patent/JPS62238339A/en
Publication of JPS62238339A publication Critical patent/JPS62238339A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To produce an alloy which is free from the components remaining after melting and has a uniform compsn. by subjecting electrodes consisting of respective metals to arc melting between said electrodes and casting mold by respectively different current densities in a vacuum melting furnace at the time of producing the alloy composed of the metals having high m.p. and having a large difference between the m.p. CONSTITUTION:The bottomed cylindrical water-cooled Cu mold 11 is placed in the lower part of a chamber 10 of the vacuum arc furnace at the time of producing the Ti-Nb alloy which consists of 47% Nb and 53% Ti, has the high m.p. and has about 800 deg.C difference in the m.p. The inside of the chamber 10 and the mold 11 are evacuated to a vacuum. A round bar 17 made of pure Ti and a round bar 18 made of pure Nb are used as the electrodes. While the mold 11 is heated by a coil 12, arcs 22 are generated between the top ends of the two electrodes 17, 18 and the mold 11 by respective DC power sources 19, 20 to melt the top ends of the electrodes 17, 18. The current density of the Nb electrode 18 having the higher melting temp. is made larger than the current density of the Ti electrode 17 having the lower melting temp. in this case. The Ti-Nb alloy ingot 14 consisting of the compsn. contg. 45% Nb and 53% Ti is thus produced without allowing the high melting Nb to remain without being melted while the melting speeds of the respective electrodes are detected by a detector 21.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、ニオブ(Nb)−チタン(Ti)合金等の
合金の製造方法に関し、特に、Nb等の融点が品い方の
金属材料の溶は残りがない高品質の合金を製造ηる方法
に関J8゜ [従来の技術l Nb−Ti合金は、近時、例えば直径が10μm以下の
超伝導llI線として需要が多い。通常、構造用44石
としてのNbは、プレスによりコンパクト成形し、この
コンバク1−を消耗電極どして真空アーク炉により溶解
している。しかし、N b−Ti合金において、Nbの
含有量が10重量%以上になると、NbのΦ的比率が大
きくなり過ぎてプレスによるコンパクト成形が不可能で
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing an alloy such as a niobium (Nb)-titanium (Ti) alloy, and in particular to a method for producing an alloy such as a niobium (Nb)-titanium (Ti) alloy. Concerning a method for producing high quality alloys with no melting residue [Prior art] Nb-Ti alloys are recently in high demand as superconducting III wires with a diameter of 10 μm or less, for example. Normally, Nb as a structural stone is compactly formed by pressing, and then melted in a vacuum arc furnace using this consumable electrode as a consumable electrode. However, in the Nb-Ti alloy, when the Nb content is 10% by weight or more, the Φ ratio of Nb becomes too large, making compact molding by pressing impossible.

このため、Nb含有吊が約50%以上である超伝導用N
b−Ti合金の場合には、第4図(a)乃至(e)に示
寸ように方法で溶解されている。
For this reason, superconducting N with a Nb content of about 50% or more
In the case of b-Ti alloy, it is melted by the method shown in FIGS. 4(a) to 4(e).

先ず、第4図(a>に示ずように、Ti板1とNb板2
とを合金成分目標値に見合う形状に切断し、これらの板
を第4図(b)に示1゛ように多数重ね合わせて溶解素
材3を作る。次いで、この溶解素+43を第4図(C)
に示づように、真空アーク炉4に消耗電極5として設置
し、溶解素材3(消耗電極5)と真空アーク炉4の鋳型
6との間にア−りを形成する。これにより、電極5を溶
解して鋳型6に鋳込み、インゴット7を製造する。その
後、このインゴット7を、第4図(d>に示す゛ように
、複数個について溶接固定してブ[]ツク8を青、第4
図(e)に示1ように、このブロック8を消耗主働とし
て真空アーク炉4で再溶解する。これにより、Nb−T
i合金のインゴット9を得る。
First, as shown in FIG. 4 (a), a Ti plate 1 and a Nb plate 2 are
The molten material 3 is prepared by cutting these plates into a shape that matches the target value of the alloy composition, and stacking a large number of these plates as shown in FIG. 4(b). Next, this lysin +43 is converted to Fig. 4 (C)
As shown in FIG. 2, a consumable electrode 5 is installed in the vacuum arc furnace 4, and an arc is formed between the melted material 3 (consumable electrode 5) and the mold 6 of the vacuum arc furnace 4. Thereby, the electrode 5 is melted and cast into the mold 6, and an ingot 7 is manufactured. Thereafter, a plurality of ingots 7 are welded and fixed as shown in FIG.
As shown in FIG. 1 (e), this block 8 is remelted in a vacuum arc furnace 4 as a consumable material. As a result, Nb-T
An ingot 9 of i-alloy is obtained.

[発明が解決しようとする問題点1 しかしながら、この従来の溶解方法には、先ず、溶解素
材を必要とするために製造コストが高く、作業効率が悪
いという欠点がある。つまり、Nb板及びTi板を夫々
所定の寸法の板幅にきり揃える必要があるため、歩留ま
りが低く、元来Nb及びTiが高価であることに加えて
歩醒まりが低いことによりNb−Ti合金の製造コスト
が極めて高い。また、Nb板及びTi板を重ね合わせて
溶接で固定する必要があるため、作業が繁雑であり、溶
接時の雰囲気又は電極により合金が汚染されるおそれが
あるので、作業性が極めて低い。
[Problem to be Solved by the Invention 1] However, this conventional melting method has the disadvantages of high manufacturing cost and poor working efficiency because it requires a melting material. In other words, it is necessary to trim the Nb plate and the Ti plate to a predetermined width, so the yield is low. The manufacturing cost of the alloy is extremely high. Furthermore, since it is necessary to overlap the Nb plate and the Ti plate and fix them by welding, the work is complicated, and the alloy may be contaminated by the atmosphere or electrode during welding, so the workability is extremely low.

一方、従来の溶解方法においては、Nb及びTiを均一
に溶解させることが困難である。、Nbは王iよりも融
点が約800℃高い。このため、N[)板及びTi板を
・重ね合わせた溶[14を電極としてアーク溶解した場
合には、融点が低い1′1が選択的に溶解してしまう現
家が発生覆る6従って、Nb板がその下端で規則的に溶
解′t!す、小片等の固相のまま鋳型内に落下してしま
うことがある。
On the other hand, in conventional melting methods, it is difficult to uniformly dissolve Nb and Ti. , Nb has a melting point about 800°C higher than that of King I. For this reason, when arc melting is performed using a stack of N plates and Ti plates as an electrode, 1'1 with a low melting point is selectively melted. The Nb plate regularly melts at its lower end! In some cases, the solid phase, such as small pieces, may fall into the mold.

そう1」ると、冷却されている鋳型内に存在するNb−
Ti合金の溶融プール内で、Nb小片は溶解し難く凝固
界面に捕捉されて溶は残る。このように湿【ツ残ったN
 bは、例え、11IM以下の微粒子であっても、後工
程の二次溶解及び三次溶解において溶解されず、インゴ
ット製品に残存する。そうすると、このインゴット製品
を極細線に線引きする際に、溶は残ったNb微粒子が加
工時の破断の要因になる。
If so, the Nb-
In the molten pool of the Ti alloy, Nb particles are difficult to dissolve and are trapped at the solidification interface, leaving the molten metal behind. This is how wet [tsu remained N]
Even if the particle b is 11 IM or less, it remains in the ingot product without being dissolved in the secondary and tertiary melting steps in the subsequent steps. Then, when this ingot product is drawn into an ultra-fine wire, the fine Nb particles remaining in the melt become a cause of breakage during processing.

この発明は、かかる事情にLみてなされたものであって
、成分素材の訂【)残りが発生せずに合金組成が均一に
混合され、溶解中の汚染が抑制され、低コストで溶解す
ることができる合金の溶解方法を提供することを目的と
1−る。
This invention was made in view of the above circumstances, and it is possible to uniformly mix the alloy composition without causing any residue of component materials, suppress contamination during melting, and melt at low cost. The purpose of the present invention is to provide a method for melting alloys that allows for the melting of alloys.

1問題点を解決するための手段] この発明にかかる合金の溶解方法は、第141の金属材
料からなる電極と第2種の金属材料からなる電極とをチ
ャンバ内に設置し、これらの電極と鋳型との間にアーク
を形成し、電極先端を溶解して鋳型内に鋳込み、爾後、
各電極の電流密度を制御しつつ電極と鋳型内溶湯との間
にアークを形成することを特徴とする。
Means for Solving Problem 1] The method for melting an alloy according to the present invention includes installing an electrode made of the 141st metal material and an electrode made of the second type metal material in a chamber, and dissolving these electrodes. An arc is formed between the electrode and the mold, the tip of the electrode is melted and poured into the mold, and then
It is characterized by forming an arc between the electrodes and the molten metal in the mold while controlling the current density of each electrode.

[作用1 この発明によれば、チャンバ内で第1種の金属材料から
なる電極と、第2種の金属材料からなる電極とが同時に
アークにより溶解される。これらの金属材料の溶湯は鋳
型内で混合され、この溶湯ブールは鋳型により冷却され
て凝固し、所望の合金インゴットが製造される。この場
合に、各電極の電流密度を個別に制御することにより、
第1種の金属材料及び第2種の金属材料の溶解量を個別
に制御することができ、所望の組成の合金を得ることが
できる。従って、予め、第1種の金属材料と第2種の金
属材料とを所望の組成になるように切り11ηえて溶解
素材を用意ダるということが不要であるので、製造コス
トが低いと共に、作業が繁雑になることがない。また、
各金属H科を確実に溶解することができるので、溶は残
りが発生することがなく、線引き加工時の破断を防止す
ることができる。
[Operation 1] According to the present invention, an electrode made of the first type of metal material and an electrode made of the second type of metal material are simultaneously melted by an arc in the chamber. The molten metal materials are mixed in a mold, and the molten boule is cooled and solidified by the mold to produce a desired alloy ingot. In this case, by individually controlling the current density of each electrode,
The dissolved amounts of the first type of metal material and the second type of metal material can be individually controlled, and an alloy with a desired composition can be obtained. Therefore, it is not necessary to prepare the melted material by cutting the first type metal material and the second type metal material to have the desired composition in advance, so the manufacturing cost is low and the work is easy. is not complicated. Also,
Since each of the metals in the H group can be reliably melted, no residual melt remains, and breakage during wire drawing can be prevented.

[実施例] 以下、添付の図面を参照してこの発明の実施例について
具体的に説明ダる。第1図はこの発明の第1の実施例を
示づ一0真空アーク溶解炉のチャンバ10が、水冷され
た銅製鋳型11の上に設置されている。このチャンバ1
0は適宜の排気手段に連結されていて、チャンバ10及
び鋳型11に囲まれた空間が低圧(例えば、10″zト
ル)に保持されるようになっている。鋳型11の外側に
は、溶湯撹拌用の磁場を鋳型11内の溶湯13に印加す
るコイル12が配設されている。
[Embodiments] Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 shows a first embodiment of the invention, in which a vacuum arc melting furnace chamber 10 is placed over a water-cooled copper mold 11. This chamber 1
0 is connected to a suitable exhaust means so that the space surrounded by the chamber 10 and the mold 11 is maintained at a low pressure (for example, 10"z Torr). A coil 12 is provided that applies a magnetic field for stirring to the molten metal 13 in the mold 11.

ヂt・ンバ10の上壁には、1対の導電性支持棒15.
16がその下半部をチャンバ10内に挿入して適宜の絶
縁性部材を介1ノで支持されている。
A pair of conductive support rods 15.
16 is inserted with its lower half into the chamber 10 and supported via a suitable insulating member.

この支持棒15.16はその長手方向を鉛直にして配設
されており、下端に、夫々、純Ti丸棒であるTi電極
17及び純N I)丸棒であるNb電極18が固定いれ
ている。支持棒15.16には、人々直流電源19.2
0の負端子が接続されており、直流電源19.20の正
端子は鋳型11に接続されている。これにより、電極1
7.18と鋳型11又は溶湯13との間に直流電圧が印
加され、アーク22が形成される。アーク22の熱にに
す、電極17.18の下端が溶@すると、電極17゜1
8が適宜の駆動手段により徐々に降Fされる。
The support rods 15 and 16 are arranged with their longitudinal direction vertical, and a Ti electrode 17, which is a pure Ti round rod, and an Nb electrode 18, which is a pure Ni round rod, are fixed to their lower ends, respectively. There is. The support rod 15.16 has a direct current power supply 19.2
The negative terminal of DC power source 19 and 20 is connected to mold 11. As a result, electrode 1
A DC voltage is applied between 7.18 and the mold 11 or the molten metal 13, and an arc 22 is formed. When the lower ends of the electrodes 17 and 18 melt due to the heat of the arc 22, the electrodes 17°1
8 is gradually lowered by an appropriate driving means.

溶解速度検出装置21は支持棒15.16に転勤するロ
ーラを有し、支持棒15.16、即ち電極17.18の
降下を個別的に検出してその溶解速度を検出する。
The dissolution rate detection device 21 has a roller that is transferred to the support rod 15.16 and detects the descent of the support rod 15.16, ie the electrode 17.18, individually to determine its dissolution rate.

次に、このように構成された装置の動作について説明す
る。消耗電極18として、例えば、直径が2511のl
14Nb丸棒を設置し、消耗電極17として、例えば、
直径が36.5nIlの純Ti丸棒を設置づる。鋳型底
面にNb−Ti合金胃アーク開始板(図示せf)を載置
した後、−1ヤンバ10内を10−2 トルの真空下に
保持し、電極下端とj7−り聞始板との間にアーク22
を形成慢−る。このアーク22の熱により電極17.1
8のト端が溶融し、溶温か鋳型11に溜る。爾後、Jの
溶湯13ど電極17.18との間でアークが形成され、
電極が溶解して次第にその長さが知くなる。溶湯13は
」イル12から発生覆゛る磁場により撹拌されつつ鋳型
11により冷却されて凝固し、Nb−T1インゴット1
4が鋳造される。この場合に、電極の溶解につれて溶湯
湯面と電極下端どの間の距離が一定になるように電極が
下降駆動される。
Next, the operation of the device configured in this way will be explained. As the consumable electrode 18, for example, a diameter of 2511 l is used.
A 14Nb round bar is installed as the consumable electrode 17, for example.
A pure Ti round rod with a diameter of 36.5 nIl is installed. After placing the Nb-Ti alloy gastric arc starting plate (f not shown) on the bottom of the mold, the inside of the -1 yenbar 10 is maintained under a vacuum of 10-2 Torr, and the lower end of the electrode and the j7-yield starting plate are between arc 22
Forming and arrogant. The heat of this arc 22 causes the electrode 17.1 to
8 is melted, and the molten liquid accumulates in the mold 11. After that, an arc is formed between the molten metal 13 and the electrodes 17 and 18 of J,
As the electrode melts, its length gradually becomes known. The molten metal 13 is cooled and solidified by the mold 11 while being stirred by the surrounding magnetic field generated from the Nb-T1 ingot 1.
4 is cast. In this case, as the electrode melts, the electrode is driven downward so that the distance between the molten metal surface and the lower end of the electrode becomes constant.

溶解速度検出装置21は電極17.18の溶解速度を検
出し、この溶解速度ツメ電極17.18で同一になるよ
うに直流電源19.20からの電流密度が調節される。
The dissolution rate detection device 21 detects the dissolution rate of the electrode 17.18, and the current density from the DC power source 19.20 is adjusted so that the dissolution rate is the same at the dissolution rate claw electrode 17.18.

このようにして、Ti電極17に100OA、Nb電極
18に4700A31Tl電して、内径が100111
の水冷銅鋳型11にNb−Ti合金をl造したところ、
陥析及び溶は残りがないNb−Ti合金(Nb47%:
Ti53%)を得ることができた。
In this way, by applying 100OA to the Ti electrode 17 and 4700A31T to the Nb electrode 18, the inner diameter was 100111.
When Nb-Ti alloy was made in the water-cooled copper mold 11,
Nb-Ti alloy (Nb47%:
53% Ti) was obtained.

次に、この発明の第2の実施例について、第2図及び第
3図を参照して説明する。この実施例は、連続鋳造型の
溶解方法についてのものである。チャンバ30内に、筒
状の鋳型が設置されており、この鋳型31内には、引き
抜き装置32のダミーバ33が嵌入されている。このダ
ミーバ33の上には、所望の組成のl’Jb−Ti合金
からなるアーク開始板34が載置されている。純Tiの
丸棒(例えば、直径2511+1>からなる消耗型+¥
i35と、純Nbの丸棒(例えば、直径36.5+am
)からなる消耗電極36とが鋳型31の上方に、例えば
、鉛直方向に45度傾斜させて配設されている。これら
の電極35.36は夫々′#電性の支持棒37゜38を
介してチャンバ30の土壁に支持されている。雷4fj
35,36とダミーバ33との間には、夫々、直流電源
39.40が接続されている。なお、支持棒37.38
には溶解速度の検出装置41が取り付Cブられている。
Next, a second embodiment of the present invention will be described with reference to FIGS. 2 and 3. This example concerns a method for melting a continuous casting mold. A cylindrical mold is installed in the chamber 30, and a dummy bar 33 of the extraction device 32 is fitted into the mold 31. An arc initiation plate 34 made of l'Jb-Ti alloy having a desired composition is placed on the dummy bar 33. A round bar of pure Ti (e.g., a consumable type with a diameter of 2511+1)
i35 and pure Nb round bar (for example, diameter 36.5+am
) is disposed above the mold 31 at an angle of 45 degrees in the vertical direction, for example. These electrodes 35 and 36 are supported on the earthen walls of the chamber 30 via electrically conductive support rods 37 and 38, respectively. thunder 4fj
DC power supplies 39 and 40 are connected between 35 and 36 and the dummy bar 33, respectively. In addition, support rod 37.38
A dissolution rate detection device 41 is attached to the holder.

また、鋳型31の外側には磁ITて1用のコイル45が
配設されて&3す、これにより鋳型内の溶湯を電磁撹拌
するようになっている。
Further, a coil 45 for the magnetic IT 1 is disposed outside the mold 31, so that the molten metal in the mold is electromagnetically stirred.

この第2の実施例にJ3いても、直流電源39゜40か
ら電極35.36とアーク開始板34との間に給電でる
と、アーク42が形成される。このアーク42により電
+1i35.36の下端が溶融し、融液が鋳型31内に
鋳込まれる。溶解が進行すると、第3図に示すように、
電極35.36の下端が鋳型31の間口上縁に位置する
ように電極35゜36が下降駆動される。一方、鋳型3
1内の溶湯43はコイル45から発生するlil&場に
より撹拌されつつ鋳型31により冷加されで凝固し、N
b−Tiインゴット44が鋳造される。引き抜、、!装
置32のダミーバ33は連続的に下降し、インゴット4
4が下方に引き抜かれる。この実施例においても、内径
が150+onの鋳型を使用し、電極35゜36にお(
プる溶解速度が一定になるように各電極に流れる電流を
制御し!こところ、Nb47%−丁153%の均一なイ
ンゴットが連続的に鋳造された。この15合のTi電十
の通電電流は1000Aであり、Nb電極の通電電流は
4700Aであつ ノこ 。
Even in this second embodiment, an arc 42 is formed when power is supplied between the electrodes 35, 36 and the arc initiation plate 34 from the DC power supply 39.40. This arc 42 melts the lower end of the electrode 35.36, and the melt is cast into the mold 31. As the dissolution progresses, as shown in Figure 3,
The electrodes 35 and 36 are driven downward so that the lower ends of the electrodes 35 and 36 are located at the upper edge of the opening of the mold 31. On the other hand, mold 3
The molten metal 43 in the coil 45 is cooled and solidified by the mold 31 while being stirred by the lil & field generated by the coil 45.
A b-Ti ingot 44 is cast. Pull it out! The dummy bar 33 of the device 32 is continuously lowered and the ingot 4
4 is pulled downward. In this example as well, a mold with an inner diameter of 150+ on is used, and the electrodes are placed at 35° and 36° (
Control the current flowing through each electrode so that the dissolution rate is constant! At this time, uniform ingots of 47% Nb and 153% Nb were continuously cast. The current flowing through the 15-meter Ti electrode was 1000 A, and the current flowing through the Nb electrode was 4700 A.

なJ3、この実施例において、電極35.36はぞの長
手方向が鉛直方向に対して傾斜するように配設されるが
、これに限らず、長手方向が鉛直になるように電極35
.36を設置してもよい。
J3, in this embodiment, the electrodes 35 and 36 are arranged so that their longitudinal directions are inclined with respect to the vertical direction; however, the electrodes 35 and 36 are arranged so that their longitudinal directions are vertical.
.. 36 may be installed.

また、上記いずれの実施例においても、合金組成の調整
は、電極の長さの減少速度又は消耗速度(am、、、/
分)が各電極について同一になるように通電電流を調整
し、電極の断面積(直径)を成分濃度(Nb:47%−
Ti;53%)に応じて選定するか、又は、電極の溶融
速度(kg/分)が成分濃度に応じて所定の速度になる
ように、各電極の電流密度及び電極の送り速度を個別的
に調整すればよい。
Furthermore, in any of the above embodiments, the adjustment of the alloy composition is the rate of decrease in the length of the electrode or the rate of wear (am, , /
The applied current was adjusted so that the current was the same for each electrode, and the cross-sectional area (diameter) of the electrode was adjusted so that the component concentration (Nb: 47% -
Ti; 53%), or the current density and feed rate of each electrode can be adjusted individually so that the melting rate (kg/min) of the electrode is a predetermined rate depending on the component concentration. Just adjust it.

更に、直流電源に限らず、交流電源によっても電極を溶
解することができることは勿論である。
Furthermore, it goes without saying that the electrodes can be melted not only by a DC power source but also by an AC power source.

この場合に、交流の位相をずらすか、又は直流電源を重
畳させることにより、アーク放電が安定的に維持される
ように1にとが好ましい。
In this case, it is preferable to shift the phase of the alternating current or to superimpose the direct current power so that the arc discharge can be stably maintained.

更にまた、コイル12.45により、鋳型内の溶湯を電
磁撹拌することは必ずしし必要ではない。
Furthermore, it is not absolutely necessary to electromagnetically stir the molten metal in the mold by the coil 12.45.

[発明の効果1 この発明によれば、金属H料の溶CJ残りが<’K <
、溶解月利の汚染が抑制される。また、溶解木材を予め
用意1Jることか不要であるので、高品質の合金を低コ
ス1〜で製B 、lることができる。
[Effect of the invention 1 According to this invention, the melt CJ residual of the metal H material is <'K <
, the pollution of dissolved monthly interest is suppressed. Furthermore, since it is not necessary to prepare melted wood in advance, a high quality alloy can be produced at a low cost of 1~1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1の実施例を示す図、第2図及び
第3図はこの発明の第2の実施例を示す図、第4図(a
)乃至(e)は従来のNb−Ti合金の製造方法を示1
模式図である。。 10.30:チャンバ、11.31:鋳型、13゜43
:溶湯、14.41インゴツト、17,18.35,3
6:電極、19.20,39,40;直流電源、22.
42:アーク 出願人代理人  弁理士 鈴江武彦 第2図 第3図 第4図 特許庁長官  宇 賀 道 部  殿 1、事件の表示 特願昭61−79796号 2、発明の名称 合金の溶解方法 3、補正をする者 事件との関係 特許出願人 (412)  日本鋼管株式会社 4、代理人 \、−一/’ 7、補正の内容 明細書第2頁、第5行目にl’−Nbjとあるのを、[
TiJに訂正する。
FIG. 1 shows a first embodiment of the invention, FIGS. 2 and 3 show a second embodiment of the invention, and FIG.
) to (e) show the conventional manufacturing method of Nb-Ti alloy 1
It is a schematic diagram. . 10.30: Chamber, 11.31: Mold, 13°43
: Molten metal, 14.41 ingot, 17, 18.35, 3
6: Electrode, 19.20, 39, 40; DC power supply, 22.
42: Ark Applicant's Representative Patent Attorney Takehiko Suzue Figure 2 Figure 3 Figure 4 Commissioner of the Patent Office Michibe Uga 1, Indication of Case Patent Application No. 1983-79796 2, Title of Invention Method for Melting Alloys 3 , Relationship with the case of the person making the amendment Patent applicant (412) Nippon Koukan Co., Ltd. 4, Agent \, -1/' 7. On page 2, line 5 of the statement of contents of the amendment, l'-Nbj There is [
Corrected by TiJ.

Claims (3)

【特許請求の範囲】[Claims] (1)第1種の金属材料からなる電極と第2種の金属材
料からなる電極とをチャンバ内に設置し、これらの電極
と鋳型との間にアークを形成し、電極先端を溶解して鋳
型内に鋳込み、爾後、各電極の電流密度を制御しつつ電
極と鋳型内溶湯との間にアークを形成することを特徴と
する合金の溶解方法。
(1) An electrode made of a first type of metal material and an electrode made of a second type of metal material are installed in a chamber, an arc is formed between these electrodes and the mold, and the tip of the electrode is melted. A method for melting an alloy, which comprises casting the alloy into a mold and then forming an arc between the electrode and the molten metal in the mold while controlling the current density of each electrode.
(2)前記鋳型は有底であることを特徴とする特許請求
の範囲第1項に記載の合金の溶解方法。
(2) The method for melting an alloy according to claim 1, wherein the mold has a bottom.
(3)前記鋳型は筒状であることを特徴とする特許請求
の範囲第1項に記載の合金の溶解方法。
(3) The method for melting an alloy according to claim 1, wherein the mold is cylindrical.
JP7979686A 1986-04-07 1986-04-07 Melting method for alloy Pending JPS62238339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7979686A JPS62238339A (en) 1986-04-07 1986-04-07 Melting method for alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7979686A JPS62238339A (en) 1986-04-07 1986-04-07 Melting method for alloy

Publications (1)

Publication Number Publication Date
JPS62238339A true JPS62238339A (en) 1987-10-19

Family

ID=13700178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7979686A Pending JPS62238339A (en) 1986-04-07 1986-04-07 Melting method for alloy

Country Status (1)

Country Link
JP (1) JPS62238339A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101941066A (en) * 2010-10-15 2011-01-12 哈尔滨工业大学 Ceramic casting mold applied to metal casting under electric field treatment and method for casting titanium aluminum-based alloy by using same
CN109457119A (en) * 2018-11-26 2019-03-12 抚顺特殊钢股份有限公司 A kind of simple method of controlling of titanium alloy vacuum consumable melting current voltage matches

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60218437A (en) * 1984-04-16 1985-11-01 Nippon Kokan Kk <Nkk> Arc melting method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60218437A (en) * 1984-04-16 1985-11-01 Nippon Kokan Kk <Nkk> Arc melting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101941066A (en) * 2010-10-15 2011-01-12 哈尔滨工业大学 Ceramic casting mold applied to metal casting under electric field treatment and method for casting titanium aluminum-based alloy by using same
CN109457119A (en) * 2018-11-26 2019-03-12 抚顺特殊钢股份有限公司 A kind of simple method of controlling of titanium alloy vacuum consumable melting current voltage matches
CN109457119B (en) * 2018-11-26 2021-05-14 抚顺特殊钢股份有限公司 Simple control method for titanium alloy vacuum consumable remelting current and voltage matching

Similar Documents

Publication Publication Date Title
US4738713A (en) Method for induction melting reactive metals and alloys
JP5048222B2 (en) Method for producing long ingots of active refractory metal alloys
US3650311A (en) Method for homogeneous refining and continuously casting metals and alloys
JPH0258022B2 (en)
EP1726386B1 (en) Method for making and using a rod assembly as feedstock material in a smelting process
EP0907756B1 (en) Processing of electroslag refined metal
EP0499389B1 (en) Method and assembly for consumable electrode vacuum arc melting
US4681627A (en) Process for preparing an ingot from metal scrap
JPS62238339A (en) Melting method for alloy
RU2346221C1 (en) Method of vacuum-plasma melting of metals and alloys in skull furnace and facility for its implementation
US4167963A (en) Method and apparatus for feeding molten metal to an ingot during solidification
JP2011173172A (en) Method for producing long cast block of active high melting point metal alloy
JP5006161B2 (en) Ingot manufacturing method for TiAl-based alloy
US4764209A (en) Method for manufacturing alloy
JPH0995743A (en) Production of smelted metallic material, smelted metallic material and electron beam melting equipment
US3865174A (en) Method for the nonconsumable electrode melting of reactive metals
WO2023239254A1 (en) Method for producing a zirconium-niobium master alloy
JPS6092432A (en) Method and device for plasma arc melting
JPH0611888B2 (en) Manufacturing method of rare earth-iron giant magnetostrictive alloy ingot
JPH08282B2 (en) Method and apparatus for manufacturing alloy ingot
JPS60149738A (en) Melting method of nb-ti alloy
RU2204618C1 (en) Method for making tantalum ingots
JP2003013153A (en) Method for producing vanadium material
JPS58217651A (en) Preparation of material for storing hydrogen
JPS644573B2 (en)