JPH0611888B2 - Manufacturing method of rare earth-iron giant magnetostrictive alloy ingot - Google Patents

Manufacturing method of rare earth-iron giant magnetostrictive alloy ingot

Info

Publication number
JPH0611888B2
JPH0611888B2 JP1259903A JP25990389A JPH0611888B2 JP H0611888 B2 JPH0611888 B2 JP H0611888B2 JP 1259903 A JP1259903 A JP 1259903A JP 25990389 A JP25990389 A JP 25990389A JP H0611888 B2 JPH0611888 B2 JP H0611888B2
Authority
JP
Japan
Prior art keywords
rare earth
melting
giant magnetostrictive
iron
alloy ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1259903A
Other languages
Japanese (ja)
Other versions
JPH03122229A (en
Inventor
英次 中村
伸幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP1259903A priority Critical patent/JPH0611888B2/en
Publication of JPH03122229A publication Critical patent/JPH03122229A/en
Publication of JPH0611888B2 publication Critical patent/JPH0611888B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、希土類−鉄系超磁歪合金鋳塊の製造方法に係
り、不純物の混入が少なく、安価に高磁歪特性の材料を
製造する技術に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a rare earth-iron-based giant magnetostrictive alloy ingot, and a technique for inexpensively producing a material having high magnetostrictive characteristics with less impurities mixed therein. Regarding

〔従来の技術〕[Conventional technology]

REFe2金属間化合物よりなる超磁歪合金は、1970年
代に入り、希土類−鉄系合金材料においてキュリー点を
上げ室温で超磁歪を発生させることに成功し、実用材料
として脚光をあびるようになり(未踏加工技術、198
6年5月、第2〜7ページ)、材料に関する発明(特公
昭61−33892号公報、特開昭64−73050号
公報)、製造方法に関する発明(特開昭62−1099
46号公報、特開昭63−242442号公報)が提案
されている。
In the 1970s, the giant magnetostrictive alloy consisting of REFe 2 intermetallic compound succeeded in raising the Curie point in the rare earth-iron alloy material to generate giant magnetostriction at room temperature, and became the spotlight as a practical material ( Unexplored processing technology, 198
May 6th, pp. 2 to 7), inventions relating to materials (Japanese Patent Publication No. 61-33892, Japanese Patent Publication No. 64-73050), and inventions relating to manufacturing methods (Japanese Patent Publication No. 62-1099).
46 and JP-A-63-242442) have been proposed.

通常、超磁歪合金は棒状で使用されるが、大略、単結晶
型のものと多結晶型の物に分けられる。
Usually, the giant magnetostrictive alloy is used in a rod shape, but it is roughly classified into a single crystal type and a polycrystalline type.

製造方法としては、単結晶型のものではゾーンメルト法
(特開昭62−109946号公報)、ブリッジマン法
(C.T.Murray:Design News16−6−88(198
8)140)等があり、多結晶型のものでは粉末焼結法
(U.S.P.4,152,178)、鋳造法(森輝夫:特別
セミナー「超磁歪材料とその応用」未踏化学技術協会:
先端加工機械技術振興協会編、(1988),1)等が
ある。
As a manufacturing method, for the single crystal type, the zone melt method (Japanese Patent Laid-Open No. 62-109946) and the Bridgman method (CT Murray: Design News 16-6-88 (198) are used.
8) 140), etc., and for the polycrystalline type, powder sintering method (USP 4,152,178), casting method (Meru Teruo: Special Seminar "Giant Magnetostrictive Material and Its Application")
Ed., Advanced Machining Technology Promotion Association, (1988), 1).

本磁歪材料は、磁歪の結晶異方性の点から〈111〉に
結晶が配向した方が望ましいが、単結晶では〈111〉
への配向材料は得がたく、〈112〉の配向が実用的に
使用されている(J.D. Verhoeven外3名、Metallurgic
al Tra-ns.A18A〔1987〕,223)。一方、
粉末焼結法では、本粉末を磁場中配向プレスによって、
〈111〉に配向させることはできるが、100%の配
向は困難であり、〈112〉利用の単結晶型よりも特性
的にはやや劣る。
In the present magnetostrictive material, it is desirable that the crystal be oriented in <111> from the viewpoint of magnetostrictive crystal anisotropy.
It is difficult to obtain an alignment material for the above, and the <112> orientation is practically used (JD Verhoeven and 3 others, Metallurgic
al Tra-ns. A18A [1987], 223). on the other hand,
In the powder sintering method, this powder is subjected to an orientation press in a magnetic field,
It can be oriented in <111>, but 100% orientation is difficult, and the characteristics are slightly inferior to those of the single crystal type using <112>.

鋳造法としては、通常の凝固法と、一方向凝固法が考え
られる。前者は、結晶方位がランダムな場合が多く、性
能は低い。後者は、これまでデータとしては存在する
が、製法の内容や結晶方位については言及されていな
い。(前述森輝夫:〔超磁歪材料とその応用〕)。
As the casting method, an ordinary solidification method and a unidirectional solidification method can be considered. In the former, the crystal orientation is often random, and the performance is low. The latter exists as data so far, but the content of the manufacturing method and the crystal orientation are not mentioned. (Mr. Teruo, Mori: Giant Magnetostrictive Material and Its Applications).

以上は、製造の最終工程での分類をもとにした性能評価
であるが、合金の溶解の点からみると、ゾーンメルト
法、ブリッジマン法、粉末焼結法は、合金成分の均一性
を得るためには、前処理として均一溶解の工程(以後、
前溶解という)が不可欠である。
The above is a performance evaluation based on the classification in the final process of production, but from the viewpoint of melting the alloy, the zone melt method, Bridgman method, and powder sintering method show the uniformity of the alloy components. In order to obtain, a step of uniform dissolution as a pretreatment (hereinafter,
Pre-dissolution) is essential.

この前溶解工程は、一般に通常の高周波溶解法やアーク
溶解法等によるもので、それぞれ次工程に必要な塊状あ
るいは棒状の均一成分配分合金とする処理である。
This pre-melting step is generally performed by a usual high-frequency melting method, arc melting method, or the like, and is a treatment for forming a lump-shaped or rod-shaped uniform component distribution alloy required for the next step.

高周波溶解法では、本材料中の希土類元素(RE)が極
めて活性であり、適当なルツボ材料がなく、工業的なル
ツボ材料では、ルツボ材料による汚染を免れ得ず、特性
の低下をもたらすので好ましくない。したがって、通常
は前溶解としては銅ハースのアーク溶解法が用いられ
る。
In the high frequency melting method, the rare earth element (RE) in the present material is extremely active, there is no suitable crucible material, and an industrial crucible material cannot avoid contamination by the crucible material, resulting in deterioration of properties, which is preferable. Absent. Therefore, the arc melting method of copper hearth is usually used as the premelting.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

いずれにしても、ゾーンメルト法、ブリッジマン法、あ
るいは粉末焼結法は、これら前溶解処理後、それぞれの
方法で材料を製造することになり、コスト的に高価であ
る。
In any case, the zone melt method, the Bridgman method, or the powder sintering method is expensive in terms of cost since the materials are manufactured by the respective methods after the pre-melting treatment.

一方、鋳造法では、高周波溶解法、アーク溶解法等が考
えられるが、単純に鋳込んだだけではその特性が単結晶
の分数の1から10分の1程度のものしか得られない。
材料の特性を向上させるには一方向凝固法の適用により
結晶方位を揃えてやる必要がある。
On the other hand, as a casting method, a high frequency melting method, an arc melting method and the like are conceivable. However, if the casting is simply performed, the characteristics can be obtained only in the range of 1 to 1/10 of the fraction of a single crystal.
In order to improve the material properties, it is necessary to align the crystal orientation by applying the unidirectional solidification method.

しかしながら、本系材料に対して一方向凝固法を適用し
た例は少なく、データはあるが製造法や結晶方位につい
ては言及されていない。
However, there are few examples in which the unidirectional solidification method is applied to this material, and although there is data, the manufacturing method and crystal orientation are not mentioned.

一般に、一方向凝固法の工業材料への適用は、タービン
動翼材に対してなされており、P.D.法(Powder do
wn法)や、高速凝固(HRS)法が用いられているが
(中川幸也外2名:日本金属学会報17,〔7〕(197
8),589)、高周波加熱炉が通常のものであり、ル
ツボ材料からの汚染が考えられ、本系材料への適用は難
しい。
Generally, the application of the unidirectional solidification method to industrial materials is applied to turbine rotor blade materials, and P.I. D. Law (Powder do
The wn method) and the rapid solidification (HRS) method have been used (Yukiya Nakagawa et al. 2 people: The Japan Institute of Metals, 17 , [7] (197).
8), 589), a high-frequency heating furnace is a normal furnace, and contamination from the crucible material is considered, so it is difficult to apply to this material.

本発明は、前記した諸問題を解消し、希土類−鉄系磁歪
合金を商業規模の一方向凝固法により効率よく製造する
方法を提供することを目的としている。
An object of the present invention is to solve the above-mentioned problems and to provide a method for efficiently producing a rare earth-iron based magnetostrictive alloy by a commercial scale directional solidification method.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的を達成するため、本発明者らは種々検討した結
果、後述する技術的知見に基づいて本発明を完成するに
至った。
As a result of various studies by the present inventors in order to achieve the above object, the present invention has been completed based on the technical knowledge described below.

すなわち、本発明は、第1図に示すようなプラズマアー
クトーチと、その下部に設けた無底の水冷銅鋳型を有す
るプラズマアーク溶解炉を用い、連続供給される希土類
−鉄系超磁歪合金原料配合物をプラズマフレームにより
溶解して、前記鋳型上部に溶解部を形成すると共に、鋳
型下部より凝固した合金を連続的に引出すもので、溶解
部の深さを液相の温度勾配Gと凝固速度Rの比G/Rが
一定値以上の大きさとなるように調整することにより、
結晶方向を一方向に揃えた鋳塊を製造するというもので
ある。
That is, the present invention uses a plasma arc torch as shown in FIG. 1 and a plasma arc melting furnace having a bottomless water-cooled copper mold provided below the plasma arc torch to continuously supply a rare earth-iron-based giant magnetostrictive alloy raw material. The composition is melted by a plasma flame to form a melted part on the upper part of the mold, and the solidified alloy is continuously drawn out from the lower part of the mold. The depth of the melted part is determined by the temperature gradient G of the liquid phase and the solidification rate. By adjusting the ratio G / R of R to be a certain value or more,
The ingot is manufactured by aligning the crystal directions in one direction.

〔作用〕[Action]

本発明の構成および作用について説明する。 The configuration and operation of the present invention will be described.

本系材料の溶解法としては、ルツボでの反応性を考慮し
て高周波溶解法よりはアーク溶解法等が望ましい。すな
わち、消耗電極式アーク溶解法、非消耗電極式アーク溶
解法、プラズマアーク溶解法、電子ビーム溶解法が有効
である。
As a melting method for this material, an arc melting method or the like is preferable to the high frequency melting method in consideration of the reactivity in the crucible. That is, the consumable electrode type arc melting method, the non-consumable electrode type arc melting method, the plasma arc melting method, and the electron beam melting method are effective.

また、これらの溶解法の適用と同時に、その凝固方式と
しては、小規模な溶解でよく用いられる水冷銅鋳型のい
わゆるボタン溶解方式ではなく、溶解部の真下に連続的
に棒状の凝固材料を引抜く、第1図に示すようないわゆ
る鋳塊引下げ法(底抜き鋳型法、積層凝固法)が有効で
ある。
At the same time when these melting methods are applied, the solidification method is not the so-called button melting method of water-cooled copper molds that are often used in small-scale melting, but a continuous rod-shaped solidified material is drawn directly below the melting part. The so-called ingot lowering method (bottoming mold method, laminated solidification method) as shown in FIG. 1 is effective.

これらのアーク溶解法、ビーム溶解法では、溶解温度が
高周波溶解法よりも高く(数千K〜1万K以上)、ま
た、溶解部の厚さが薄いために、液相部の温度勾配Gが
通常の凝固に比較してかなり大きく、G/R(R:凝固
速度)がある一定値より大きいときに一方向凝固の柱状
晶が得られるという経験則を容易に満足させることがで
き、また、結晶の成長方位も〈112〉に安定している
ことが判った。
In the arc melting method and the beam melting method, the melting temperature is higher than that of the high frequency melting method (several thousands K to 10,000 K or more), and the thickness of the melting portion is thin. Is considerably larger than that of ordinary solidification, and the empirical rule that columnar crystals of unidirectional solidification can be obtained when G / R (R: solidification rate) is larger than a certain value can be easily satisfied. It was found that the crystal growth orientation was stable at <112>.

前述した各種溶解法のうち、プラズマアーク溶解法が特
に有効である。すなわち、電子ビーム溶解法では雰囲気
ガス圧が10-3〜10-8Torrであり、蒸気圧の高い成分
を含む合金材料では、その組成コントロールが難しく、
装置がプラズマアーク溶解より高価である。消耗電極式
アーク溶解法では、前準備として本系合金材料棒電極の
製造が必要であり、非消耗電極式アーク溶解法では、電
極材料(例えばW)による汚染が考えられ好ましくな
い。
Among the various melting methods described above, the plasma arc melting method is particularly effective. That is, in the electron beam melting method, the atmospheric gas pressure is 10 −3 to 10 −8 Torr, and it is difficult to control the composition of an alloy material containing a high vapor pressure component.
The equipment is more expensive than plasma arc melting. In the consumable electrode type arc melting method, it is necessary to manufacture the present system alloy material rod electrode as a preliminary preparation, and in the non-consumable electrode type arc melting method, contamination by the electrode material (for example, W) is considered, which is not preferable.

〔実施例〕〔Example〕

本発明の実施例を説明する。 An example of the present invention will be described.

第1図に示すようなプラズマアーク溶解炉を用いて、3
0mm・120mmlの一方向凝固試料を作成した。
Using a plasma arc melting furnace as shown in FIG.
A unidirectionally solidified sample of 0 mm and 120 mm1 was prepared.

原料はTb0.3Dy0.7Fe1.95を目標組成にして3N級の87
wt%Tb-Fe母合金、3N級の88wt%Dy-Fe母合金およひ
電解鉄を−20メッシュ〜+100メッシュに粉砕、混
合したものをフィーダーから連続装入した。
Raw material Tb 0. 3 Dy 0. 7 Fe 1. 95 3N grade 87 in the target composition of
A wt% Tb-Fe master alloy, 3N grade 88 wt% Dy-Fe master alloy and electrolytic iron were crushed to -20 mesh to +100 mesh and mixed, and continuously charged from a feeder.

10KW出力のプラズマアークトーチを用いて溶解を実施
し、120mml×30mmの棒を、10cm/hr〜20
0cm/hrの速度で引下げた。凝固速度Rは10〜20
0cm/hrと推定される。凝固温度(液相線)は約12
50℃であり、溶湯部温度勾配Gは、溶解温度3000
〜10000K,溶解深さ0.5〜1.5cmとしてG=(14
77〜8477)/(0.5〜1.5)≒17000〜
1000℃/cmとなり、G/R=(17000〜100
0)/(10〜200)=1700〜5hr℃/cmの範
囲と考えられる。
Melting was carried out using a plasma arc torch with a power output of 10 KW, and a 120 mm 1 × 30 mm rod was placed at 10 cm / hr-20
It was pulled down at a speed of 0 cm / hr. Coagulation rate R is 10-20
It is estimated to be 0 cm / hr. Solidification temperature (liquidus) is about 12
It is 50 ° C. and the melt temperature gradient G is 3000
G = (14
77-8477) / (0.5-1.5) ≈17000-
1000 ° C / cm, G / R = (17,000-100
It is considered that the range is 0) / (10 to 200) = 1700 to 5 hr ° C./cm.

得られた試料は1000℃・7日(Ar雰囲気)の熱処理
を行った。試料長軸方向の断面マクロ組織写真を第2図
に示す。また棒断面のX線回析像を第3図(a)に示す。
The obtained sample was heat-treated at 1000 ° C. for 7 days (Ar atmosphere). FIG. 2 shows a photograph of a macrostructure of a cross section in the direction of the long axis of the sample. An X-ray diffraction image of the rod cross section is shown in Fig. 3 (a).

参考値として、市販の単結晶棒(FSZM(Free stand
zone melting法によるもの)の断面のX線回析像(第
3図(c))と、本実施例で得た試料の粉末のX線回析像
(第3図(b))も同時に示す。本件試料では(422)面のピ
ーク強度が棒断面の回析像で増大し、長軸方向への〈1
12〉の配向が多くなっていることがわかる。
As a reference value, a commercially available single crystal rod (FSZM (Free stand
An X-ray diffraction image (FIG. 3 (c)) of a cross section of the zone melting method) and an X-ray diffraction image (FIG. 3 (b)) of the powder of the sample obtained in this example are also shown. . In this sample, the peak intensity on the (422) plane increases in the diffraction image of the rod cross section, and the <1
It can be seen that the orientation of 12> is increased.

本件試料の磁歪値を第4図に示すと共に、一般のアーク
溶解品、FSZM法の市販品のカタログ値を比較のため
第4図に示した。
The magnetostriction values of the sample of the present invention are shown in FIG. 4, and the catalog values of general arc-melted products and commercial products of the FSZM method are shown in FIG. 4 for comparison.

これらから、〈112〉単結晶材に匹敵する磁歪値を有
する一方向凝固磁歪材料の製造法としては、アーク溶
解、ビーム溶解、鋳塊引下げ法が有効であり、特にプラ
ズマアーク溶解、鋳塊引下げ法の組合せが好ましいこと
が明らかとなった。
From these, arc melting, beam melting, and ingot lowering methods are effective as methods for producing a unidirectionally solidified magnetostrictive material having a magnetostriction value comparable to <112> single crystal material, and plasma arc melting and ingot lowering are particularly effective. It has become clear that a combination of methods is preferred.

これにより、コスト的にも単結晶材料より有利に一方向
凝固材料を製造することができる。
Thereby, the unidirectionally solidified material can be manufactured more advantageously than the single crystal material in terms of cost.

〔発明の効果〕〔The invention's effect〕

本発明は以上説明したように構成されていることによ
り、次のような効果が奏され、産業上極めて有用であ
る。
Since the present invention is configured as described above, it has the following effects and is extremely useful industrially.

1.巣が少なく、割れも少ない(高周波溶解炉から直接
鋳込んだもの、アーク溶解のボタン式溶解で割れが多
く、寸法の大きいものの回収は難しく、磁歪特性も低
い。)。
1. There are few cavities and few cracks (things cast directly from the high frequency melting furnace, many cracks due to button melting of arc melting, large dimensions are difficult to recover, and magnetostriction characteristics are low).

2.溶解時間が短く、また引き抜き速度もかなり大きく
とれることから迅速な合金棒の製造が可能であり生産性
もよい。
2. Since the melting time is short and the drawing speed is considerably high, rapid production of alloy rods is possible and the productivity is good.

3.雰囲気ガス圧力は大気圧であり、蒸気圧の高い物質
を用いても大きな組成変動がなく安定している。
3. The atmospheric gas pressure is atmospheric pressure, and even if a substance having a high vapor pressure is used, it is stable without a large compositional change.

4.合金棒中への介在物(酸化物)の混入は好ましくな
いが、プラズマアーク溶解では、これらは浮遊し、ま
た、プラズマアークのふきつけにより鋳肌側へ排除さ
れ、合金bulk中へは混入しない。
4. Inclusion of inclusions (oxides) in the alloy rod is not preferable, but in plasma arc melting, they float and are removed to the casting surface side by wiping of the plasma arc and do not mix into the alloy bulk.

5.前溶解工程が不要であり、一段の工程で製造が可能
となるので、コストが低減できる。
5. Since the pre-melting step is unnecessary and the manufacturing can be performed in a single step, the cost can be reduced.

6.ゾーンメルト法の原料素棒としても使用できる。6. It can also be used as a raw material rod for the zone melt method.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明方法を実施する装置の概要説明図、第
2図は、本発明方法で得た磁歪合金棒の縦断面マクロ金
属組織を示す写真図、第3図は、X線回析像を示す説明
図、第4図は、磁歪特性値を示す説明図である。
FIG. 1 is a schematic explanatory view of an apparatus for carrying out the method of the present invention, FIG. 2 is a photograph showing a macroscopic metal structure of a longitudinal section of a magnetostrictive alloy rod obtained by the method of the present invention, and FIG. FIG. 4 is an explanatory diagram showing an analysis image, and FIG. 4 is an explanatory diagram showing magnetostrictive characteristic values.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】結晶方向が揃った希土類−鉄系超磁歪合金
鋳塊を製造するにあたり、プラズマアークトーチと、そ
の下部に設けた無底水冷鋳型を有するプラズマアーク溶
解炉を用い、連続的に供給される原料配合物をプラズマ
フレームにより溶解して前記鋳型上部に溶解部を形成す
ると共に、鋳型下部より凝固した合金を連続的に引き出
すことよりなる希土類−鉄系超磁歪合金鋳塊の製造にお
いて、前記溶解部の深さを、液相の温度勾配Gと凝固速
度Rの比G/Rが一定値以上の大きさとなるように調整
することを特徴とする希土類−鉄系超磁歪合金鋳塊を製
造する方法。
1. When producing a rare earth-iron-based giant magnetostrictive alloy ingot having a uniform crystal orientation, a plasma arc torch and a plasma arc melting furnace having a bottomless water-cooled mold provided below the plasma arc torch are continuously used. In the production of a rare earth-iron-based giant magnetostrictive alloy ingot, which comprises melting the supplied raw material mixture by a plasma flame to form a melted part in the upper part of the mold, and continuously drawing out the solidified alloy from the lower part of the mold. The depth of the melting portion is adjusted so that the ratio G / R of the temperature gradient G of the liquid phase to the solidification rate R becomes a certain value or more, a rare earth-iron-based giant magnetostrictive alloy ingot. A method of manufacturing.
【請求項2】鋳型が水冷銅鋳型である請求項1記載の希
土類−鉄系超磁歪合金鋳塊を製造する方法。
2. The method for producing a rare earth-iron-based giant magnetostrictive alloy ingot according to claim 1, wherein the mold is a water-cooled copper mold.
JP1259903A 1989-10-06 1989-10-06 Manufacturing method of rare earth-iron giant magnetostrictive alloy ingot Expired - Lifetime JPH0611888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1259903A JPH0611888B2 (en) 1989-10-06 1989-10-06 Manufacturing method of rare earth-iron giant magnetostrictive alloy ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1259903A JPH0611888B2 (en) 1989-10-06 1989-10-06 Manufacturing method of rare earth-iron giant magnetostrictive alloy ingot

Publications (2)

Publication Number Publication Date
JPH03122229A JPH03122229A (en) 1991-05-24
JPH0611888B2 true JPH0611888B2 (en) 1994-02-16

Family

ID=17340537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1259903A Expired - Lifetime JPH0611888B2 (en) 1989-10-06 1989-10-06 Manufacturing method of rare earth-iron giant magnetostrictive alloy ingot

Country Status (1)

Country Link
JP (1) JPH0611888B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501236B2 (en) * 2000-06-30 2010-07-14 Jfeスチール株式会社 Continuous casting method
CN105950952B (en) * 2016-07-06 2018-04-13 昆明理工大学 A kind of in-situ preparation titanium zirconium boride strengthens the preparation method of high-modulus glass hard steel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619532A (en) * 1984-06-26 1986-01-17 Daido Steel Co Ltd Manufacture of metal ingot of niobium or tantalum
JP2550064B2 (en) * 1987-04-28 1996-10-30 昭和電工株式会社 Method and apparatus for manufacturing alloy ingot

Also Published As

Publication number Publication date
JPH03122229A (en) 1991-05-24

Similar Documents

Publication Publication Date Title
CN103502505A (en) Cu-Ga alloy sputtering target and method for producing same
JPH0768612B2 (en) Alloy powder for rare earth metal-iron group metal target, rare earth metal-iron group metal target, and methods for producing the same
CN107140959A (en) A kind of preparation method of oxide eutectic structural ceramics powder
JPH04314836A (en) Method and equipment for manufacturing alloy composed mainly of titanium and aluminum
CN104704139B (en) Cu Ga alloy sputtering targets and its manufacture method
Chen et al. Characterization of LaB6–ZrB2 eutectic composite grown by the floating zone method
JPS61139637A (en) Target for sputter and its manufacture
CN108044123B (en) Preparation method of Nb-Si-Ti alloy with directional solidification structure
JPH06287661A (en) Production of smelted material of refractory metal
JPH0266129A (en) Method for regulating composition of titanium and titanium alloy in electron beam melting
JPH0611888B2 (en) Manufacturing method of rare earth-iron giant magnetostrictive alloy ingot
CN109280786B (en) Aluminum-tungsten intermediate alloy and production method thereof
US5114467A (en) Method for manufacturing magnetostrictive materials
CN106636778B (en) A kind of method that high strength alumin ium alloy is prepared using plasma process
JP2597380B2 (en) Method for producing rare earth metal-transition metal target alloy powder and method for producing rare earth metal-transition metal target
JP2002332508A (en) Method for producing thermoelectric material
JP2550064B2 (en) Method and apparatus for manufacturing alloy ingot
JP3367069B2 (en) Manufacturing method of giant magnetostrictive alloy rod
CN108044124B (en) Preparation method of near-eutectic Nb-Si-Mo alloy with lamellar structure oriented arrangement characteristic
JPH08282B2 (en) Method and apparatus for manufacturing alloy ingot
JPH0437442A (en) Apparatus for producing magnetostrictive material
JPH1161392A (en) Production of sputtering target for forming ru thin film
JPH02298227A (en) Production of refractory metal material capable of plastic working
JPH059642A (en) Molybdenum material having good workability and production thereof
JPS606914B2 (en) Method for producing tantalum carbide crystals