JPS6160835A - Electroslag remelting furnace - Google Patents

Electroslag remelting furnace

Info

Publication number
JPS6160835A
JPS6160835A JP18347584A JP18347584A JPS6160835A JP S6160835 A JPS6160835 A JP S6160835A JP 18347584 A JP18347584 A JP 18347584A JP 18347584 A JP18347584 A JP 18347584A JP S6160835 A JPS6160835 A JP S6160835A
Authority
JP
Japan
Prior art keywords
steel ingot
electrode
steel
electroslag remelting
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18347584A
Other languages
Japanese (ja)
Inventor
Eisaku Kondo
栄作 近藤
Masuo Morita
森田 益夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Co Ltd
Priority to JP18347584A priority Critical patent/JPS6160835A/en
Publication of JPS6160835A publication Critical patent/JPS6160835A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furnace Details (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

PURPOSE:To average components of the top part and the bottom part of a steel ingot, and to obtain a uniform steel ingot of high purity by constituting a consumable electrode of the steel ingot used for an electroslag remelting furnace, by dividing the steel ingot into plural parts and reversing alternately its top part and bottom part. CONSTITUTION:A steel ingot to be remelted is set as a consumable electrode 1, an AC power source 3 is connected between said electrode and a water cooling crucible 2, electric conduction is applied through a molten slag 4, the electrode 1 is melted successively and a non-metallic inclusion is removed by a refining effect of the slag 4, and said ingot is cooled and coagulated by a water flow 6, and a steel ingot 7 of high purity is obtained. In this case, the steel ingot used for the consumable electrode 1 is divided into plural parts extending from the top part direction to the bottom part direction, and bound so that its top part 1a and bottom part 1b are reversed alternately, and the consumable electrode 1 is constituted thereby. In this way, the top part 1a and the bottom part 1b are melted simultaneously, also stirred by an electromagnetic force, and the steel ingot 7 of high purity consisting of a uniform component is obtained.

Description

【発明の詳細な説明】 r発明の屈する技術分野〕 本発明は鋼塊を精練するためのエレクトロスラグ再溶解
炉に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical field to which the invention pertains The present invention relates to an electroslag remelting furnace for refining steel ingots.

〔従来技術とその問題点〕[Prior art and its problems]

一度m製した鋼塊な再溶解して精練し不純物を取除く一
つの方法としてエレクトロスラグ再溶解炉c以下ESR
炉と略称する)が用いられている。
One way to remove impurities by remelting and scouring a steel ingot once manufactured is to use an electroslag remelting furnace (ESR).
(abbreviated as “furnace”) is used.

この従来のESR炉の一例を第4図に示す。ここで再溶
解すべき鋼塊を消耗電極lとし、その頂部1aを一方の
電源端とし、水冷るつぼ2を他方の電源端として、この
間に交流電源3を接続し、電極lの底部1bを溶融スラ
グ4に接触させて通電スル。電極1はスラグ4の抵抗熱
によりそQ)底部1bから順次溶解し、滴状となって溶
融スラグ4中を通過し、るつぼ2内に溶鋼ブール5を形
成し、るつぼ2を取巻く水流6で冷却されて凝固し、次
第に堆積して再び鋼塊7を形成する。スラグ中で溶解さ
れた消耗電極はスラグの精練効果により脱硫・脱酸など
の非金^介在物が除去されて純度σ)高い鋼塊が得られ
る。またるつぼ内の溶鋼は急冷されるから同−断面内で
の成分偏析が小さいなどの利点がある。特に大形のES
R炉では電極のりアクタンスを低減して回路刃車の向上
をはかるために2個の電極を対象配置にしたり、多x1
@として並列に接続することもあるが精練効果は全く同
じである。
An example of this conventional ESR furnace is shown in FIG. Here, the steel ingot to be remelted is used as a consumable electrode l, its top part 1a is used as one power supply end, the water-cooled crucible 2 is used as the other power supply end, an AC power supply 3 is connected between these, and the bottom part 1b of the electrode l is melted. Contact slug 4 and turn on electricity. The electrode 1 melts sequentially from the bottom 1b due to the resistance heat of the slag 4, passes through the molten slag 4 in the form of drops, forms a molten steel boule 5 in the crucible 2, and is melted by the water flow 6 surrounding the crucible 2. It is cooled, solidified, and gradually deposited to form the steel ingot 7 again. Non-gold inclusions such as desulfurization and deoxidation are removed from the consumable electrode melted in the slag due to the refining effect of the slag, resulting in a steel ingot with high purity σ). Furthermore, since the molten steel in the crucible is rapidly cooled, there are advantages such as less segregation of components within the same cross section. Especially large ES
In the R furnace, in order to reduce the electrode glue actance and improve the circuit blade, two electrodes are arranged symmetrically, and multiple
Although they may be connected in parallel as @, the refining effect is exactly the same.

【、かじ、このBSR炉の消耗電極として用いられる鋼
塊は通常アーク炉や誘導炉などで溶製し、ときには脱ガ
ス処理を施した鋼塊が用いられるが、これらの鋼塊はい
ずれも縦長であって、溶製時取鍋からvmに注入され、
底部や周囲から次第に凝固し、最後に頂部が凝固する。
[, Kaji: The steel ingots used as consumable electrodes in BSR furnaces are usually melted in arc furnaces or induction furnaces, and sometimes degassed steel ingots are used, but all of these steel ingots are vertically long. and is poured into the vm from the ladle during melting,
It gradually solidifies from the bottom and surrounding areas, and finally solidifies at the top.

このように溶鋼が徐々に凝固すると最初に析出する部分
と後から凝固する部分とが組成を異にし、いわゆる偏析
を起こす。特に鋼塊の頂部1ζは溶融点の低い不純物な
どが多く含まれる。そ[7て固体内の拡散は非常に遅い
から組成不均一のまま残る。
When molten steel gradually solidifies in this way, the parts that precipitate first and the parts that solidify later have different compositions, causing so-called segregation. In particular, the top 1ζ of the steel ingot contains many impurities with a low melting point. [7] Since diffusion within a solid is very slow, the composition remains non-uniform.

ESR炉で上述の鋼塊を再溶解する場合、鋼塊は既に述
べた効果を得ることはできるが、鋼塊はスラグと接触し
ている底部から順次頂部へと溶解し、同じ順序で堆積凝
固するのであるから、除去される不純物以外の成分につ
いては、同じ鋼塊がその長さと直角方向に細分されて次
々に移動したと見なされる。したがって長さ方向の成分
を均一化することはできない。例えば第5図は従来のE
SR炉により溶製した12%Cr鋼を鋼塊の頂部1aか
ら底部1bへの方向を軸としてタービンロータを製作し
た場合、その長さ方向における炭素含有量%を示したグ
ラフで、炭素含有量%は頂部la側が高く、はぼ長さに
比例して減少している。
When the above-mentioned steel ingot is remelted in an ESR furnace, the steel ingot can obtain the effects already mentioned, but the steel ingot is melted sequentially from the bottom in contact with the slag to the top, and is deposited and solidified in the same order. Therefore, for components other than the impurities to be removed, it is considered that the same steel ingot was subdivided in the direction perpendicular to its length and moved one after another. Therefore, it is not possible to make the components in the length direction uniform. For example, Figure 5 shows the conventional E
When a turbine rotor is manufactured from 12% Cr steel melted in an SR furnace with the axis extending from the top 1a to the bottom 1b of the steel ingot, this is a graph showing the carbon content % in the longitudinal direction. % is higher on the top la side and decreases in proportion to the length of the bow.

このように鋼塊はESR炉で再溶製してもなおその部位
によって成分が相違し、これを加工整形して製造した構
造物はその部位によって強度、靭性などの特性が相違す
るという欠点がある。
In this way, even if a steel ingot is remelted in an ESR furnace, its composition will still differ depending on the part, and structures manufactured by processing and shaping this ingot have the disadvantage that properties such as strength and toughness will differ depending on the part. be.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、その部位における成分の相違の少ない
鋼塊が得られるESR炉を提供することにある。
An object of the present invention is to provide an ESR furnace capable of producing a steel ingot with fewer differences in composition at each location.

〔発明の要点〕[Key points of the invention]

本発明の要点は、鋼塊を消耗電極とじ該電極と水冷るつ
ぼとの間に溶融スラグな介して交流電流を流し、前記ス
ラグの抵抗熱により前記鋼塊を再溶解するエレクトロス
ラグ再溶解炉において、前記鋼塊の複数が溶製時の頂部
と底部とを交互に反対にしてそれぞれ同一電源端に接続
されている電気炉で、含有成分の異なる鋼塊の頂部と底
部とを同時に溶解し、この溶鋼を速かに再凝固させて含
有成分を平均化させ、鋼塊の部位による成分の相違を低
減し、その特性差を低減しようというものである。なお
、複数の鋼塊は1個の鋼塊をその溶製時の頂部から底部
方向へ切断分割して形成したものがよく、これら複数の
鋼塊が互いに結束されて1個の電極を形成しているもの
でもよい。
The gist of the present invention is to provide an electroslag remelting furnace in which a steel ingot is connected to a consumable electrode, an alternating current is passed through a molten slag between the electrode and a water-cooled crucible, and the steel ingot is remelted by the resistance heat of the slag. , simultaneously melting the tops and bottoms of the steel ingots containing different components in an electric furnace in which a plurality of the steel ingots are connected to the same power supply terminal with the tops and bottoms alternately reversed during melting, The aim is to quickly re-solidify this molten steel to average out the contained components, thereby reducing differences in components depending on the location of the steel ingot, and thereby reducing differences in properties. Note that the plurality of steel ingots are preferably formed by cutting and dividing one steel ingot from the top to the bottom during melting, and these plurality of steel ingots are tied together to form one electrode. It may be something that you have.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を第1図ないし第3図に基づいて詳
細に説明する。第1図において、ESR炉は従来のもの
と同様に再溶解すべき鋼塊な消耗電極1として、この電
極1と水冷るつぼ2との間に交流電源3を接続している
が、この電極1は第2図に示すように頂部1aから底部
1b方向(前回溶製時の凝固方向)に4分割され、その
頂部1aと底部1bとが交互に反対に結束されている点
が従来の電極と大いに異なる。そのほかこの電極1の先
端を溶融スラグ4に接触させて通電すると、電極1はそ
の先端から順次溶解し、水冷るつぼ2内に溶鋼プール5
を形成し、水流6で冷却されて凝固し、再び鋼塊7を形
成する工程は従来のものと同様である。しかしこのよう
にすると最初鋼塊の頂部1aの半分と底部1bの半分が
同時に溶解され、この溶鋼はさらに電気炉の特徴とする
電磁力により攪拌され、溶鋼プール5の成分は頂部1a
と底部1bが混合したものとなり、この混合した溶鋼が
逐次急冷されて凝固堆積し、再び鋼塊7を形成する。し
たがって、この鋼塊7の成分は部位による相違が少なく
均一なものとなる。勿論溶鋼は急冷されるので攪拌効果
は余り大きくないから結束鋼塊の数をなるべく増加して
凝固方向と直角方向の断面内における合金成分を均一化
するとよい。このようにして電極1は次第にその通電方
向中央部に進行するが、このとき形成される溶鋼プ−ル
5の溶鋼も凝固しつつある部分も常に同一成分であり、
溶鋼の凝固方向に対して均一な成分の鋼塊が得られる。
Embodiments of the present invention will be described in detail below with reference to FIGS. 1 to 3. In FIG. 1, the ESR furnace has an AC power source 3 connected between the electrode 1 and a water-cooled crucible 2 as a consumable electrode 1, which is a steel ingot to be remelted, as in the conventional ESR furnace. As shown in Fig. 2, the electrode is divided into four parts from the top 1a to the bottom 1b (solidification direction during previous melting), and the top 1a and bottom 1b are alternately tied together in opposite directions, which is different from the conventional electrode. Very different. In addition, when the tip of the electrode 1 is brought into contact with the molten slag 4 and electricity is applied, the electrode 1 is sequentially melted starting from the tip, and a molten steel pool 5 is formed in the water-cooled crucible 2.
The steps of forming a steel ingot, cooling it with a water stream 6 to solidify it, and forming a steel ingot 7 again are the same as those of the conventional method. However, in this case, half of the top 1a and half of the bottom 1b of the steel ingot are simultaneously melted, and this molten steel is further stirred by the electromagnetic force characteristic of the electric furnace, and the components of the molten steel pool 5 are transferred to the top 1a.
The mixed molten steel is successively rapidly cooled and solidified and deposited to form the steel ingot 7 again. Therefore, the composition of this steel ingot 7 is uniform with little difference between parts. Of course, since the molten steel is rapidly cooled, the stirring effect is not very great, so it is preferable to increase the number of bound steel ingots as much as possible to make the alloy components uniform within the cross section in the direction perpendicular to the solidification direction. In this way, the electrode 1 gradually advances to the center in the current direction, but the molten steel of the molten steel pool 5 formed at this time and the solidifying part always have the same composition.
A steel ingot with uniform composition in the direction of solidification of molten steel can be obtained.

しかもスラグ4の精練効果による炭素以外の非金属介在
物の除去や急冷効果による同−断面内での成分偏析が少
ないなどの利点はそのまま残る。
Moreover, the advantages such as removal of non-metallic inclusions other than carbon due to the scouring effect of the slag 4 and less segregation of components within the same cross section due to the quenching effect remain.

次に大形炉では既に述べたように複数の電極が−1を源
端に並列に′M!!続される。この場合は上述のように
分割再結束された電極の複数を並列に接続してもよく、
また第2図に示すように1個の鋼塊を必要数に分割し、
第3図に示すようにそのそれぞれの頂部1aまたは底部
1bを同数交互に同じ電源端に接続してもよい。さらに
同じ様に溶製されたそれぞれの鋼塊の頂部1aまたは底
部1bを回数交互に同じ電源端に接続してもよい。この
ようにして構成したESI−LFlこ通電し、溶製すれ
ば、単極の場合と同様な効果が得られる。
Next, in a large furnace, as already mentioned, multiple electrodes are connected in parallel with -1 at the source end 'M! ! Continued. In this case, a plurality of divided and recombined electrodes may be connected in parallel as described above.
Also, as shown in Figure 2, one steel ingot is divided into the required number of pieces,
As shown in FIG. 3, the same number of alternate top portions 1a or bottom portions 1b may be connected to the same power terminal. Further, the top portion 1a or bottom portion 1b of each steel ingot produced in the same manner may be alternately connected to the same power source terminal several times. If the ESI-LFl constructed in this way is energized and melted, the same effect as in the case of a single electrode can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によるESR炉は、アーク炉や
鱒導炉などで溶製され、その頂部と底部の成分差が大き
い複数の鋼塊の頂部または底部を交互に反対にしてそれ
ぞれ同一電源端に接続して消耗電極とし、その先端から
逐次溶解し、かつ急冷し鋼塊の頂部と底部成分を平均化
し、均一な鋼塊を得ることができる。しかもこうして溶
製された鋼塊は従来と同じように溶融スラグの精練効果
と急冷効果を受けて優れた鋼塊が得られる再溶解炉であ
る。
As described above, the ESR furnace according to the present invention is produced by melting in an arc furnace, a trout induction furnace, etc., and the tops or bottoms of a plurality of steel ingots having a large difference in composition between the tops and bottoms are alternately reversed and the same power source is used. It is connected to the end to serve as a consumable electrode, and the tip is sequentially melted and rapidly cooled to average the top and bottom components of the steel ingot, making it possible to obtain a uniform steel ingot. Moreover, the steel ingot produced in this manner is subjected to the scouring effect and quenching effect of molten slag in the same way as in the conventional method, so that an excellent steel ingot can be obtained in a remelting furnace.

【図面の簡単な説明】[Brief explanation of drawings]

W、1図は本発明によるエレクトロスラグ再溶解炉の一
実施例を示す縦断面図、第2図は第1図に示す再溶解炉
に用いる消耗電極の斜視図、第3図は多電極エレクトロ
スラグ再溶解炉の電極の接続例を示す縦断面図、第4図
は従来のエレクトロスラグ再溶解炉の一例を示す縦断面
図、第5図は従来のエレクトロスラグ再溶解炉を用いて
溶製した12%Cr鋼りらm作したタービンロータの長
さ方向における炭素成分量を示すグラフである。 l・・・電極にした鋼塊、1a・・・鋼塊の頂部、11
)・・・鋼塊の底部、2・・・水冷るつぼ、3・・・交
流電源、4・・・溶融スラグ。 屹埋人弁理士 山 口   岩″ 第1図
W, Figure 1 is a vertical cross-sectional view showing an embodiment of the electroslag remelting furnace according to the present invention, Figure 2 is a perspective view of a consumable electrode used in the remelting furnace shown in Figure 1, and Figure 3 is a multi-electrode electrolyte. A vertical cross-sectional view showing an example of electrode connection in a slag remelting furnace, Figure 4 is a vertical cross-sectional view showing an example of a conventional electroslag remelting furnace, and Figure 5 is a vertical cross-sectional view showing an example of a conventional electroslag remelting furnace. 2 is a graph showing the carbon content in the longitudinal direction of a turbine rotor made of 12% Cr steel. l... Steel ingot used as an electrode, 1a... Top of steel ingot, 11
)... Bottom of the steel ingot, 2... Water-cooled crucible, 3... AC power supply, 4... Molten slag. Iwa Yamaguchi, Patent Attorney Figure 1

Claims (1)

【特許請求の範囲】 1)鋼塊を消耗電極とし該電極と水冷るつぼとの間に溶
融スラグを介して交流電流を流し、前記スラグの抵抗熱
により前記鋼塊を再溶解するエレクトロスラグ再溶解炉
において、前記鋼塊の複数がその溶製時の頂部と底部と
を交互に反対にしてそれぞれ同一の電源端に接続されて
いることを特徴とするエレクトロスラグ再溶解炉。 2)特許請求の範囲第1項に記載のエレクトロスラグ再
溶解炉において、複数の鋼塊は1個の鋼塊をその溶製時
の頂部から底部方向へ切断分割して形成したものである
ことを特徴とするエレクトロスラグ再溶解炉。 3)特許請求の範囲第1項または第2項に記載のエレク
トロスラグ再溶解炉において、複数の鋼塊が互いに結束
されて1個の電極を形成していることを特徴とするエレ
クトロスラグ再溶解炉。
[Claims] 1) Electroslag remelting, in which a steel ingot is used as a consumable electrode, and an alternating current is passed through the molten slag between the electrode and a water-cooled crucible, and the steel ingot is remelted by the resistance heat of the slag. An electroslag remelting furnace characterized in that a plurality of the steel ingots are connected to the same power source terminal with their tops and bottoms alternately reversed during melting. 2) In the electroslag remelting furnace according to claim 1, the plurality of steel ingots are formed by cutting and dividing one steel ingot from the top to the bottom during melting. An electroslag remelting furnace featuring: 3) In the electroslag remelting furnace according to claim 1 or 2, the electroslag remelting furnace is characterized in that a plurality of steel ingots are bound together to form one electrode. Furnace.
JP18347584A 1984-08-31 1984-08-31 Electroslag remelting furnace Pending JPS6160835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18347584A JPS6160835A (en) 1984-08-31 1984-08-31 Electroslag remelting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18347584A JPS6160835A (en) 1984-08-31 1984-08-31 Electroslag remelting furnace

Publications (1)

Publication Number Publication Date
JPS6160835A true JPS6160835A (en) 1986-03-28

Family

ID=16136443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18347584A Pending JPS6160835A (en) 1984-08-31 1984-08-31 Electroslag remelting furnace

Country Status (1)

Country Link
JP (1) JPS6160835A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4701521B2 (en) * 2001-03-14 2011-06-15 大同特殊鋼株式会社 Cold crucible dissolution method
CN104831081A (en) * 2015-05-26 2015-08-12 重庆钢铁(集团)有限责任公司 Electroslag smelting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4701521B2 (en) * 2001-03-14 2011-06-15 大同特殊鋼株式会社 Cold crucible dissolution method
CN104831081A (en) * 2015-05-26 2015-08-12 重庆钢铁(集团)有限责任公司 Electroslag smelting method

Similar Documents

Publication Publication Date Title
CN106756203B (en) A kind of preparation method of fine grain chromium-bronze
US4207454A (en) Method for electroslag welding of metals
CN103526038A (en) Electroslag remelting production method of high-strength high-plasticity TWIP (Twinning Induced Plasticity) steel
CN108660320A (en) A kind of low-aluminium high titanium-type high temperature alloy electroslag remelting process
JPS6160835A (en) Electroslag remelting furnace
JPH0639635B2 (en) Electroslag remelting method for copper and copper alloys
US4167963A (en) Method and apparatus for feeding molten metal to an ingot during solidification
EP1334214B1 (en) Method and device for producing ingots or strands of metal by melting electrodes in an electroconductive slag bath
US3918957A (en) Method of making iron-copper alloy
US4184869A (en) Method for using flux and slag deoxidizer in ESR process
JP2622796B2 (en) Electroslag for remelting electroslag and method for producing alloy using the electrode
US3875990A (en) Methods of producing large steel ingots
JPS60103137A (en) Metal refinement
CN106636859B (en) The smelting process of high cleanliness bearing steel
JPH05285632A (en) Method for electrically melting slag
US4161399A (en) Method for electroslag remelting of a manganese-copper-nickel alloy
JP3084850B2 (en) Ingot drawing type electroslag melting method
RU2013457C1 (en) Method for production of ingots from chips
DE2503140A1 (en) PROCESS FOR GRAIN REFINEMENT OF CASTINGS
US3997332A (en) Steelmaking by the electroslag process using prereduced iron or pellets
JPS644573B2 (en)
DE2228280C3 (en) Method for electroslag casting of ingots
US4265295A (en) Method of producing steel ingots
JPH10211546A (en) Hot-top casting method
JP3083653B2 (en) Manufacturing method of retaining ring material