JPS644313B2 - - Google Patents

Info

Publication number
JPS644313B2
JPS644313B2 JP3944481A JP3944481A JPS644313B2 JP S644313 B2 JPS644313 B2 JP S644313B2 JP 3944481 A JP3944481 A JP 3944481A JP 3944481 A JP3944481 A JP 3944481A JP S644313 B2 JPS644313 B2 JP S644313B2
Authority
JP
Japan
Prior art keywords
flexible
electrically insulating
heater
insulating material
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3944481A
Other languages
Japanese (ja)
Other versions
JPS57154788A (en
Inventor
Makoto Oda
Hisao Futaki
Satoru Ooishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3944481A priority Critical patent/JPS57154788A/en
Publication of JPS57154788A publication Critical patent/JPS57154788A/en
Publication of JPS644313B2 publication Critical patent/JPS644313B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はヒータの構造に関するものであり、特
に可撓性を有し、自己温度制御機能を有し、冷蔵
庫等の除霜ヒータとして適したヒータの構造に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a heater, and particularly to the structure of a heater that is flexible, has a self-temperature control function, and is suitable as a defrosting heater for refrigerators, etc. .

圧縮機、凝縮器、毛細管及び蒸発器(以下冷却
器と称する)からなる冷凍システムを備えた冷蔵
庫や、空気調和機、冷凍シヨーケース等において
は、上記冷却器に付着した霜を、冷却器に配置さ
れたヒータによつて加熱して取り除き、着霜によ
る冷却器の熱交換率の低下、及び冷却能力の低下
を防止している。
In refrigerators, air conditioners, refrigeration cases, etc. equipped with a refrigeration system consisting of a compressor, condenser, capillary tube, and evaporator (hereinafter referred to as a cooler), frost that has adhered to the cooler is placed in the cooler. This prevents a decrease in the heat exchange rate of the cooler and a decrease in cooling capacity due to frost formation.

この除霜用ヒータとして、従来ニクロム線、ニ
ツケル銅線等の金属ヒータ線に絶縁被覆を施した
後、アルミパイプ等の保護管内に収納した構成の
ヒータが用いられている。この従来の除霜ヒータ
は周囲温度、負荷状態にかかわらず一定発熱量を
維持する特性を有する定電力のヒータであり、通
電時間と共に負荷の温度は上昇し続ける。このた
め、除霜完了を検知するには例えばサーミスタ温
度検知素子により温度を検知しており、検知素子
で検出した温度がある温度に達すると除霜ヒータ
による加熱を停止し、除霜を終了していた。この
従来の除霜ヒータでは、冷却器への着霜量及び着
霜分布状態に応じた適切な除霜を行なうことが難
しく、冷却器に霜が付着したまま残つてしまうの
を防止するために過度な温度にまで冷却器を加熱
せざるを得なかつた。このため冷却器において、
着霜が少なく、早く除霜が完了した部分は過熱状
態になり、必要以上に高温となる欠点がある。す
なわち、冷凍システムが稼動を停止し、冷却機能
が停止している除霜期間中に冷却器が必要以上に
高温になることにより、冷蔵庫の庫内に収納され
た被冷却物に温度上昇を招く。そこで、上記冷却
器各部の着霜分布及び着霜状態に応じた除霜がで
き、過熱状態が生じない除霜ヒータが望まれてい
る。
Conventionally, a defrosting heater is constructed by applying an insulation coating to a metal heater wire such as a nichrome wire or a nickel copper wire, and then housing the wire in a protective tube such as an aluminum pipe. This conventional defrosting heater is a constant power heater that maintains a constant amount of heat regardless of the ambient temperature or load condition, and the temperature of the load continues to rise with the energization time. Therefore, in order to detect the completion of defrosting, the temperature is detected using, for example, a thermistor temperature sensing element, and when the temperature detected by the sensing element reaches a certain temperature, heating by the defrosting heater is stopped and defrosting is finished. was. With this conventional defrosting heater, it is difficult to perform appropriate defrosting according to the amount of frost on the cooler and the distribution of frost. The cooler had to be heated to an excessive temperature. For this reason, in the cooler,
There is a disadvantage that areas where there is little frost and defrost is completed quickly become overheated, resulting in higher temperatures than necessary. In other words, during the defrosting period when the refrigeration system stops operating and the cooling function stops, the cooler becomes hotter than necessary, causing a temperature rise in the cooled items stored inside the refrigerator. . Therefore, there is a need for a defrosting heater that can defrost according to the frosting distribution and frosting state of each part of the cooler and does not cause overheating.

第1図a,bは除霜用ヒータに使用されるヒー
タの構造を示す斜視図及び断面図で、第1図a,
bにおいて、1は可撓性を有する第1の給電用導
体、1′は第1の給電用導体1と並列して配置さ
れた可撓性を有する第2の給電用導体、2は前記
第1の給電用導体1及び第2の給電用導体1′に
挾まれ、抵抗値の温度係数が正で、抵抗値の温度
係数がある温度で急変する自己温度制御機能を持
つ可撓性抵抗体材料部(発熱体部)、3は電気絶
縁材料部、4は熱伝導性良好な金属材料からなる
パイプである。先ず、前記可撓性を有する抵抗体
材料部(発熱体部)の動作について説明する。
Figures 1a and 1b are perspective views and cross-sectional views showing the structure of a heater used in a defrosting heater;
In b, 1 is a flexible first power supply conductor, 1' is a flexible second power supply conductor arranged in parallel with the first power supply conductor 1, and 2 is a flexible first power supply conductor. A flexible resistor that is sandwiched between a first power supply conductor 1 and a second power supply conductor 1', has a positive temperature coefficient of resistance, and has a self-temperature control function that suddenly changes at a certain temperature. A material part (heating element part), 3 is an electrically insulating material part, and 4 is a pipe made of a metal material with good thermal conductivity. First, the operation of the flexible resistor material section (heat generating section) will be explained.

第1の給電用導体1と第2の給電用導体1′間
に定格電圧を印加することにより、自己温度制御
機能を有する抵抗体材料部2を通り、例えば第1
の給電用導体1から第2の給電用導体1′に電流
が流れ、ジユール熱により抵抗体材料部2が発熱
する。発熱による温度上昇により抵抗体材料部2
を構成する有機物材料は熱膨脹し、抵抗体材料部
2の内部抵抗が急激に増加する。この抵抗値の増
大により第1の給電用導体1と第2の給電用導体
1′間に流れる電流が規制され、前記抵抗体材料
部を構成する有機物材料により定まる一定の温度
まで抵抗体材料部2の温度は上昇する。
By applying a rated voltage between the first power supply conductor 1 and the second power supply conductor 1', it passes through the resistor material part 2 having a self-temperature control function, for example, the first
A current flows from the power supply conductor 1 to the second power supply conductor 1', and the resistor material portion 2 generates heat due to Joule heat. Resistor material part 2 due to temperature rise due to heat generation.
The organic material constituting the resistor material expands thermally, and the internal resistance of the resistor material portion 2 increases rapidly. Due to this increase in resistance value, the current flowing between the first power supply conductor 1 and the second power supply conductor 1' is regulated, and the resistor material part is heated to a certain temperature determined by the organic material constituting the resistor material part. The temperature of 2 increases.

上記の特性を有する抵抗体材料部2を電気絶縁
材料部3により被覆した後、熱伝導良好な金属材
料からなるパイプ4内に収納し除霜用ヒータは形
成される。この除霜用ヒータは冷蔵庫等の冷却器
部に波形に引き廻し配置されて使用される。この
ヒータは上記第1及び第2の給電用導体1および
1′間に、無数の自己温度制御機能を有する抵抗
体材料部を連続的に配置したものとみなすことが
できるため、冷却器各部に付着した霜の量に応じ
た発熱動作を行ない、冷却器の除霜が完了した部
分のヒータ発熱量は低下し、不必要に高温となら
ないため、非常に効率の良い除霜用ヒータとな
る。上記したようにこの除霜用ヒータは従来の金
属ヒータ線からなる除霜用ヒータに較べて、良好
な除霜性能を有するが、熱伝達及び組立工数の面
でまだ問題を有していた。すなわち、電気絶縁材
料部3を設けた抵抗体材料部2を熱伝導性良好な
金属材料からなるパイプ4内に挿入する工程を必
要とし、この工程に意外な手間を要していた。上
記挿入工程を容易にするためには、金属材料から
なるパイプ4の内径と前記電気絶縁材料部3の最
外部寸法との差を大きく取ることが必要である。
しかしこの場合、抵抗体材料部(発熱体部)2と
金属材料からなるパイプ4との熱伝達を悪化させ
る原因となる欠点がある。この欠点は、ヒータを
金属材料からなるパイプ4内に挿入した後、金属
材料からなるパイプ4を圧延加工することにより
ヒータの絶縁材料部3に金属材料からなるパイプ
4の内面を密着させ、熱伝達の問題を解決するこ
とはできる。しかし、圧延加工工程において、自
己温度制御機能を有する抵抗体材料部(発熱体
部)2に圧力を加えることなく加工することは非
常に困難であり、圧延加工後の状態は、抵抗体材
料部(発熱体部)2が加圧された状態となり、ま
たその加圧圧力も一定ではない。抵抗体材料部
(発熱体部)2は抵抗体材料部2を構成する有機
物材料の温度上昇による熱膨脹によつて抵抗体材
料部2の内部抵抗が急激に増加し、自己温度制御
機能を果たすものであるが、抵抗体材料部2が加
圧されると、固有抵抗値が増加するという現象が
生じ、所望の出力を得ることができないという欠
点が生じる。すなわち、所望の出力が得られるよ
うに設計された抵抗体材料部2を金属材料からな
るパイプ4内に挿入し、圧延加工を行なつた後に
は抵抗体材料部2の固有抵抗値が設計値よりも増
加すると共に抵抗値にばらつきを生じ、安定に動
作させることが困難である。
After the resistor material part 2 having the above characteristics is covered with an electrically insulating material part 3, it is housed in a pipe 4 made of a metal material with good heat conduction, thereby forming a defrosting heater. This defrosting heater is used by being arranged in a corrugated manner in a cooler part of a refrigerator or the like. This heater can be regarded as having numerous resistor material parts having a self-temperature control function continuously arranged between the first and second power supply conductors 1 and 1'. The heater generates heat according to the amount of frost that has adhered, and the amount of heat generated by the heater in the part of the cooler that has been defrosted decreases, so that the temperature does not become unnecessarily high, making it a highly efficient defrosting heater. As described above, this defrosting heater has better defrosting performance than conventional defrosting heaters made of metal heater wires, but it still has problems in terms of heat transfer and assembly man-hours. That is, a step of inserting the resistor material section 2 provided with the electrically insulating material section 3 into a pipe 4 made of a metal material with good thermal conductivity is required, and this step requires an unexpected amount of time and effort. In order to facilitate the insertion process, it is necessary to provide a large difference between the inner diameter of the pipe 4 made of a metal material and the outermost dimension of the electrically insulating material portion 3.
However, in this case, there is a drawback that heat transfer between the resistor material part (heating element part) 2 and the pipe 4 made of a metal material is deteriorated. This drawback is that after the heater is inserted into the pipe 4 made of a metal material, the inner surface of the pipe 4 made of the metal material is brought into close contact with the insulating material part 3 of the heater by rolling the pipe 4 made of the metal material. Communication problems can be solved. However, in the rolling process, it is very difficult to process the resistor material part (heating element part) 2, which has a self-temperature control function, without applying pressure, and the state after rolling is (Heating element part) 2 is in a pressurized state, and the pressurizing pressure is not constant. The resistor material part (heating element part) 2 performs a self-temperature control function by rapidly increasing the internal resistance of the resistor material part 2 due to thermal expansion due to temperature rise of the organic material constituting the resistor material part 2. However, when the resistor material portion 2 is pressurized, a phenomenon occurs in which the specific resistance value increases, resulting in a drawback that a desired output cannot be obtained. That is, after inserting the resistor material part 2 designed to obtain a desired output into the pipe 4 made of metal material and performing rolling processing, the specific resistance value of the resistor material part 2 becomes the designed value. As the resistance value increases, variations occur in the resistance value, making it difficult to operate stably.

本発明の目的は上記した従来技術の欠点をなく
し、除霜性能に優れ、しかも組立作業の容易な除
霜用ヒータを提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a defrosting heater that eliminates the drawbacks of the prior art described above, has excellent defrosting performance, and is easy to assemble.

上記の目的を達成するために、本発明のヒータ
は少なくとも、可撓性を有する第1の給電用導体
と、該第1の給電用導体と並列して配置された可
撓性を有する第2の給電用導体と、前記第1及び
第2の給電用導体に挾まれ、抵抗値の温度係数が
正で、抵抗値の温度係数がある温度で急変し、自
己温度制御機能を持つ可撓性抵抗体材料部と、第
1及び第2の給電用導体と可撓性抵抗体材料部の
外周部に設けられた電気絶縁材料部と、電気絶縁
材料部の外周部に設けられた熱伝導性良好な材料
からなる保護層部、とから構成され電気絶縁材料
部と可撓性抵抗材料部の一部には凹部が形成さ
れ、この凹部によつて保護層部と電気絶縁材料と
の間に空隙部を形成する。
In order to achieve the above object, the heater of the present invention includes at least a first flexible power supply conductor and a flexible second power supply conductor arranged in parallel with the first power supply conductor. and the first and second power supply conductors, the flexible conductor has a positive temperature coefficient of resistance, the temperature coefficient of resistance changes suddenly at a certain temperature, and has a self-temperature control function. A resistor material part, an electrically insulating material part provided on the outer periphery of the first and second power feeding conductors and the flexible resistor material part, and a thermally conductive material part provided on the outer periphery of the electrically insulating material part. A recess is formed in a part of the electrically insulating material part and the flexible resistance material part, and the recess is formed between the protective layer part and the electrically insulating material. Form a void.

本発明による除霜用ヒータの外観構造及び断面
構造を第2図a,bに示す。第2図において、1
は例えばすずめき銅線などの可撓性を有する第1
の給電用導体、1′は前記第1の給電用導体1と
並列して配置された可撓性を有する第2の給電用
導体、2は前記第1の給電用導体1及び第2の給
電用導体1′に挾まれて配置された抵抗値の温度
係数が正で、抵抗値の温度係数がある温度で急変
する自己温度制御機能を持つ断面円形形状をなす
可撓性抵抗体材料部で、例えば、導電性カーボン
材料と高密産ポリエチレン等の半導電性有機物材
料から形成されている。3は電気絶縁材料部で、
例えばポリウレタン、ポリフツ化ビニリデン等に
よつて形成され、4は電気絶縁材料部3に密着し
た熱伝導性良好な材料からなる保護層部で、例え
ばアルミニウム、銅等の金属材料によつて形成さ
れている。5は前記断面円形形状をなす可撓性抵
抗体材料部2の一部に設けられた凹部、6は前記
電気絶縁材料部の凹部と前記保護層部4との間に
形成された空隙部である。この除霜用ヒータは通
常の電線材料製作方法と同様な押出し成形法によ
り第1及び第2の給電用導体1及び1′に少なく
とも挾まれた部分に可撓性抵抗体材料部2を一体
成形後、上記と同様押出し成形法により電気絶縁
材料部3を形成し、次にこの電気絶縁材料部3ま
で形成されたものを熱伝導性良好な材料からな
り、電気絶縁材料部3の外径より大きな内径寸法
を有するアルミ材料からなる保護層部4に挿入し
た後、保護層部4を冷間圧延等の手段により絶縁
材料部3に密着することにより形成される。上記
保護層部4の形成時及び形成後に抵抗体材料部2
に加わる圧力は可撓性抵抗体材料部2の一部に設
けられた凹部5、及び電気絶縁材料部の凹部5と
保護層部4との間に生じる空隙部6により緩和吸
収され、従来問題であつた可撓性抵抗体材料部2
の固有抵抗値の増加がほとんど生じない。次に本
発明による除霜ヒータの動作について説明する。
The external structure and cross-sectional structure of the defrosting heater according to the present invention are shown in FIGS. 2a and 2b. In Figure 2, 1
is a flexible first wire such as tin-plated copper wire.
1' is a flexible second power feeding conductor arranged in parallel with the first power feeding conductor 1, 2 is the first power feeding conductor 1 and the second power feeding conductor. A flexible resistor material portion having a circular cross-section and having a self-temperature control function where the temperature coefficient of the resistance value is positive and the temperature coefficient of the resistance value changes suddenly at a certain temperature, which is placed between the conductors 1'. For example, it is formed from a conductive carbon material and a semiconductive organic material such as high-density polyethylene. 3 is the electrical insulation material section,
For example, it is made of polyurethane, polyvinylidene fluoride, etc., and 4 is a protective layer made of a material with good thermal conductivity that is in close contact with the electrically insulating material part 3, and is made of a metal material such as aluminum or copper. There is. 5 is a recess provided in a part of the flexible resistor material portion 2 having a circular cross-sectional shape; 6 is a gap formed between the recess of the electrically insulating material portion and the protective layer portion 4; be. In this defrosting heater, a flexible resistor material part 2 is integrally molded at least in the portion sandwiched between the first and second power supply conductors 1 and 1' by an extrusion molding method similar to the usual method of manufacturing electric wire materials. After that, the electrically insulating material portion 3 is formed by the same extrusion method as above, and then the electrically insulating material portion 3 is made of a material with good thermal conductivity, and the outer diameter of the electrically insulating material portion 3 is It is formed by inserting the protective layer part 4 made of aluminum material having a large inner diameter dimension, and then bringing the protective layer part 4 into close contact with the insulating material part 3 by means such as cold rolling. Resistor material portion 2 during and after formation of the protective layer portion 4
The pressure applied to the flexible resistor material part 2 is relaxed and absorbed by the recess 5 provided in a part of the electrically insulating material part 2 and the gap 6 formed between the recess 5 of the electrically insulating material part and the protective layer part 4, which solves the conventional problem. Warm flexible resistor material part 2
There is almost no increase in the specific resistance value. Next, the operation of the defrosting heater according to the present invention will be explained.

第1の給電用導体1と第2の給電用導体1′間
に定格電圧を印加することにより、自己温度制御
機能を有する抵抗体材料部2を通り、例えば第1
の給電用導体1から第2の給電用導体1′に電流
が流れ、ジユール熱により抵抗体材料部2が発熱
する。発熱による温度上昇により抵抗体材料部2
を構成する有機物材料が熱膨脹する。この時、抵
抗体材料部2の凹部5及びアルミ材料からなるパ
イプ4と電気絶縁材料部3との間に設けた空隙部
6において、抵抗体材料部2は外圧を受けること
なく熱膨脹し、抵抗体材料部2の内部抵抗が急激
に増加する。この抵抗増加により、給電用導体1
および1′間に流れる電流が規制され、前記抵抗
体材料部2を形成する有機物材料により定まる一
定温度まで温度上昇する。上記に示したように、
除霜用ヒータの構成を第2図に示したごとくする
ことにより、除霜用ヒータの発熱部から最外部保
護層表面への熱伝達が改善されると共に、最外保
護層を密着して設けることにより生じていた除霜
用ヒータの特性変動を防止でき、実用的に使用可
能なヒータとすることができる。
By applying a rated voltage between the first power supply conductor 1 and the second power supply conductor 1', it passes through the resistor material part 2 having a self-temperature control function, for example, the first
A current flows from the power supply conductor 1 to the second power supply conductor 1', and the resistor material portion 2 generates heat due to Joule heat. Resistor material part 2 due to temperature rise due to heat generation.
The organic material that makes up the material expands thermally. At this time, the resistor material part 2 thermally expands without being subjected to external pressure in the recess 5 of the resistor material part 2 and the gap 6 provided between the pipe 4 made of aluminum material and the electrically insulating material part 3, and resists the resistance. The internal resistance of the body material portion 2 increases rapidly. Due to this increase in resistance, the power supply conductor 1
and 1' is regulated, and the temperature rises to a constant temperature determined by the organic material forming the resistor material portion 2. As shown above,
By configuring the defrosting heater as shown in Figure 2, heat transfer from the heat generating part of the defrosting heater to the surface of the outermost protective layer is improved, and the outermost protective layer is provided in close contact with each other. It is possible to prevent characteristic fluctuations of the defrosting heater that would occur due to this, and it is possible to make the heater usable for practical use.

次に本発明による他の実施例を第3図および第
4図に示す。第3図は前記可撓性を有する抵抗体
材料部2を楕円形に形成した場合であり、第3図
aは斜視図、第3図bは断面図を示したものであ
る。第3図に示した構造の除霜用ヒータも、上記
に示した第2図の構造の除霜用ヒータと同様良好
な結果が得られた。また可撓性を有する抵抗体材
料部2に設ける凹部5は一個所に限らず、第4図
aおよびbに示すように数個所に分割して設けて
も上記と同様な結果が得られることは言うまでも
ない。なお、前記抵抗体材料部2に設ける凹部5
は、加圧による影響を受けない範囲でできるだけ
小さい程、熱伝達の面ではより望ましい結果が得
られる。
Next, another embodiment according to the present invention is shown in FIGS. 3 and 4. FIG. 3 shows a case where the flexible resistor material portion 2 is formed into an elliptical shape, with FIG. 3a showing a perspective view and FIG. 3b showing a cross-sectional view. The defrosting heater having the structure shown in FIG. 3 also gave good results similar to the defrosting heater having the structure shown in FIG. 2 shown above. Furthermore, the recess 5 provided in the flexible resistor material portion 2 is not limited to one location, but may be divided into several locations as shown in FIGS. 4a and 4b, and the same result as above can be obtained. Needless to say. Note that the recess 5 provided in the resistor material portion 2
The smaller is as small as possible without being affected by pressurization, the more desirable results will be obtained in terms of heat transfer.

以上にのべたごとく、本発明によれば、少なく
とも並設して配置された可撓性を有する第1及び
第2の給電用導体に挾まれた自己温度制御機能を
有する可撓性抵抗体材料部の一部に凹部を設けた
構造とし、ヒータの最外保護層との間に空隙部を
設けた構造とすることにより、可撓性を有する抵
抗体材料の特性を損なうことなく、熱効率が良好
で、着霜状態に応じた除霜が可能となる除霜用ヒ
ータを提供することができる。
As described above, according to the present invention, a flexible resistor material having a self-temperature control function is sandwiched between at least the first and second flexible power supply conductors arranged in parallel. By creating a structure in which a recess is provided in a part of the heater and a gap is provided between the heater and the outermost protective layer, thermal efficiency can be improved without impairing the characteristics of the flexible resistor material. It is possible to provide a defrosting heater that is good and capable of defrosting according to the frosting state.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は除霜用ヒータの構造を示す図で、第1
図aは斜視図、第1図bは断面図、第2図、第3
図および第4図は本発明による除霜用ヒータの実
施例の構造を示す図であり、第2図a、および第
3図aは斜視図、第2図b、第3図bおよび第4
図a,bは断面図である。 1,1′……給電用導体、2……可撓性抵抗体
材料部、3……電気絶縁材料部、4……保護層
部、5……凹部。
Figure 1 is a diagram showing the structure of the defrosting heater.
Figure a is a perspective view, Figure 1 b is a sectional view, Figures 2 and 3.
Figures 2 and 4 are diagrams showing the structure of an embodiment of the defrosting heater according to the present invention, and Figures 2a and 3a are perspective views, and Figures 2b, 3b, and 4
Figures a and b are cross-sectional views. DESCRIPTION OF SYMBOLS 1, 1'... Power supply conductor, 2... Flexible resistor material part, 3... Electrical insulating material part, 4... Protective layer part, 5... Recessed part.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも、可撓性を有する第1の給電用導
体と、第1の給電用導体と並列して配置された可
撓性を有する第2の給電用導体と、前記第1及び
第2の給電用導体に挾まれて配置され抵抗値の温
度係数が正で、抵抗値の温度係数がある温度で急
変する自己温度制御機能を持つ可撓性抵抗体材料
部と、前記第1及び第2の給電用導体と前記可撓
性抵抗体材料部の外周部に設けられた電気絶縁材
料部と、電気絶縁材料部の外周部に設けられた熱
伝導性良好な材料からなる保護層部とから構成さ
れ、前記可撓性抵抗体材料と前記電気絶縁材料部
との一部には、前記保護層部と前記電気絶縁材料
部との間に空隙部を形成する凹部が形成されてい
ることを特徴とするヒータ。
1 At least a flexible first power feeding conductor, a flexible second power feeding conductor arranged in parallel with the first feeding conductor, and the first and second feeding conductors. a flexible resistor material portion which is placed between the conductors for use, has a positive temperature coefficient of resistance value, and has a self-temperature control function in which the temperature coefficient of resistance value changes suddenly at a certain temperature; Consisting of a power supply conductor, an electrically insulating material part provided on the outer periphery of the flexible resistor material part, and a protective layer part made of a material with good thermal conductivity provided on the outer periphery of the electrically insulating material part. and a recessed portion forming a gap between the protective layer portion and the electrically insulating material portion is formed in a portion of the flexible resistor material and the electrically insulating material portion. heater.
JP3944481A 1981-03-20 1981-03-20 Heater Granted JPS57154788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3944481A JPS57154788A (en) 1981-03-20 1981-03-20 Heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3944481A JPS57154788A (en) 1981-03-20 1981-03-20 Heater

Publications (2)

Publication Number Publication Date
JPS57154788A JPS57154788A (en) 1982-09-24
JPS644313B2 true JPS644313B2 (en) 1989-01-25

Family

ID=12553184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3944481A Granted JPS57154788A (en) 1981-03-20 1981-03-20 Heater

Country Status (1)

Country Link
JP (1) JPS57154788A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6098291U (en) * 1983-12-12 1985-07-04 日立電線株式会社 heating element
JPS60142491U (en) * 1984-03-01 1985-09-20 日立電線株式会社 Self-temperature control heater
JPH0331029Y2 (en) * 1984-12-26 1991-07-01
JPH01143838U (en) * 1988-03-12 1989-10-03
JPH0592993U (en) * 1992-05-20 1993-12-17 株式会社クラベ Heater wire

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230793Y2 (en) * 1980-04-04 1987-08-07

Also Published As

Publication number Publication date
JPS57154788A (en) 1982-09-24

Similar Documents

Publication Publication Date Title
EP2290307B1 (en) Evaporator with defrost heater having strip type plane heating elements
US2687626A (en) Heat exchanger having open-sided bore superimposed on closed bore
US4493972A (en) Electrically heated apparatus employing a PTC heater for liquifying a rod of binding material
KR100445480B1 (en) Heater assembly for refrigerator
KR101037651B1 (en) Defrost Heater of Surface Type
US6350969B1 (en) Self-regulating heater
JPS644313B2 (en)
JP3930094B2 (en) Evaporator with electric heating cable
CA1283155C (en) Flexible, elongated thermistor heating cable
KR101032412B1 (en) A surface type heater for defrost and method for manufacturing the heater and defrost apparatus using the same
JPH0539966A (en) Heat pump device
US5922232A (en) Self-regulating heating element
JP4264008B2 (en) Heat exchanger useful for heating purposes with electric heating device
US4016521A (en) Thermal limiter
JPH08138836A (en) Rod ptc heater
KR200416894Y1 (en) Heat Rod Structure of Pre-Heater for Vehicle
JPH08255681A (en) Heater
EP3945748A1 (en) A tube for an electric heater
EP3945264A1 (en) Electric fluid heater
JP3725907B2 (en) Method for manufacturing tube heater
CN116580993A (en) Thermal control type superconducting switch and manufacturing method thereof
JPH08306470A (en) Heater and its manufacture
JPS5842193A (en) Heater
JPS5833471Y2 (en) fluid heater
CN117989797A (en) Defrosting heating device for refrigerator and refrigerator