JPS5842193A - Heater - Google Patents

Heater

Info

Publication number
JPS5842193A
JPS5842193A JP13852981A JP13852981A JPS5842193A JP S5842193 A JPS5842193 A JP S5842193A JP 13852981 A JP13852981 A JP 13852981A JP 13852981 A JP13852981 A JP 13852981A JP S5842193 A JPS5842193 A JP S5842193A
Authority
JP
Japan
Prior art keywords
heating element
heater
heat
power supply
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13852981A
Other languages
Japanese (ja)
Inventor
織田 誠
島崎 行雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Ltd filed Critical Hitachi Cable Ltd
Priority to JP13852981A priority Critical patent/JPS5842193A/en
Publication of JPS5842193A publication Critical patent/JPS5842193A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はと一声の構造に関するものであシ、とくに自己
温度制御機能を有し、冷蔵庫等に使用される除霜用のし
−タに適したヒータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a structure, and more particularly, to a heater that has a self-temperature control function and is suitable for defrosting heaters used in refrigerators, etc. .

一般に、冷蔵庫の冷却器あるいは、空気調和機器の冷却
器には、冷蔵庫内に収納された収納物から発生する水蒸
気や扉の開閉によりて庫内に侵入するしめ夛空気によシ
、あるいは外気と室内空気との温度差によシ着霜が生じ
る。冷却器に霜が付着すると冷却器の熱交換効率が低下
し、冷却能力が低下する。その為、冷蔵庫においては、
従来から、冷却器の冷媒管に装着された熱交換用フィン
に除震用と−タを設け、一定時間冷蔵庫が稼動する毎に
冷蔵庫の冷却装置の運転を停止し、除霜用ヒータへ通電
し、除霜用ヒータを加熱して除mを行ない、冷却能力が
低下するの會防止している。また、空調機器の場合には
、着霜が生じると、一定時間空調機器の運転を停止し、
外気の熱によ〕霜tとがし、除霜1行な2’−Cいる。
In general, refrigerator coolers or air conditioner coolers are designed to protect against water vapor generated from items stored in the refrigerator, trapped air that enters the refrigerator when the door is opened/closed, or outside air. Frost formation occurs due to the temperature difference with the indoor air. When frost adheres to the cooler, the heat exchange efficiency of the cooler decreases and the cooling capacity decreases. Therefore, in the refrigerator,
Conventionally, a vibration damper is installed on the heat exchange fins attached to the refrigerant pipes of the cooler, and each time the refrigerator has been operating for a certain period of time, the operation of the refrigerator's cooling system is stopped and electricity is turned on to the defrosting heater. Then, the defrosting heater is heated to remove the moisture, thereby preventing the cooling capacity from decreasing. In addition, in the case of air conditioning equipment, when frost occurs, the operation of the air conditioning equipment is stopped for a certain period of time, and
The frost is removed by the heat of the outside air, and the defrosting process takes place at 2'-C.

冷蔵庫の除霜ヒータとしては、従来、ニクロム線、ニッ
ケル、銅線等の金属ヒータ線をアル建パイプ等の保護管
に収納し九に一部が用いられている。
Conventionally, as a defrosting heater for a refrigerator, a metal heater wire such as a nichrome wire, a nickel wire, or a copper wire is housed in a protective tube such as an aluminum pipe, and a portion thereof is used.

この従来の除霜ヒータは自己温度制御機能含有しないと
一部であシ、冷却器に付着した霜の量及び霜の分布状態
にかかわらず一定の発熱量を維持する特性を有するため
、冷却器の各部の除霜完了時点が異なる。すなわち、霜
が多食に付着している部分では除霜が遅れる。そこで従
来、除霜が完了し几ことを検知するために位、冷却器の
除霜完了時点が最も遅い部分にサーきスタ勢の温度検知
装置管設け、除霜をしながら温度を検知して、ある温度
に達した時に除霜が完了し7t4のとみなしている。t
たさらに、季節の変化によシ着霜量が増大する場合や収
納物の配置状態の差異によシ着霜の分布状態が変化した
時の事會考慮して、いずれの場合にも十分に除霜が行な
われるように温度、時間などの除霜条件を設定せざるを
得なかつ次。この為、冷却器における着霜量が少なく、
早く除霜が完了した部分の温度は通電時間とともに不必
要に高くなる。i*、ヒータへの通電を#!了した時点
において冷却器の各部の温度には大きな温度差金主じる
。冷却器の温度が不必要に高温になると、除震を、完了
しt後に冷却運転音再開した際に冷却器の温度會低下さ
せるための時間が長くなシ、消費電力が大きくなる欠点
含有している。
Some of these conventional defrosting heaters do not have a self-temperature control function, but because they have the characteristic of maintaining a constant amount of heat regardless of the amount of frost attached to the cooler and the frost distribution, The time when defrosting is completed differs for each part. In other words, defrosting is delayed in areas where frost is heavily deposited. Conventionally, in order to detect when defrosting is complete, a circstar-type temperature sensing device is installed in the part of the cooler where defrosting is completed the latest, and the temperature is detected while defrosting. It is assumed that defrosting is completed when a certain temperature is reached, which is 7t4. t
Furthermore, in consideration of the possibility that the amount of frost may increase due to seasonal changes, or the distribution of frost may change due to differences in the arrangement of stored items, sufficient measures should be taken in both cases. Next, it is necessary to set defrosting conditions such as temperature and time so that defrosting occurs. For this reason, the amount of frost on the cooler is small,
The temperature of the portion where defrosting is completed early becomes unnecessarily high as the electricity supply time increases. i*, energize the heater #! There is a large temperature difference between the temperatures of each part of the cooler at the time of completion. If the temperature of the cooler becomes unnecessarily high, it will take a long time to lower the temperature of the cooler when the cooling operation resumes after the vibration isolation is completed, and the power consumption will increase. ing.

t*、さらに、除霜ヒータを加熱するための電力も不必
要に大きいという欠点がある。ま几、冷蔵庫内に収納さ
れ九食品等の温度上昇を招き易いという欠点がある。
t*.Furthermore, there is a drawback that the electric power required to heat the defrosting heater is unnecessarily large. However, there is a drawback that the temperature of foods stored in the refrigerator tends to rise.

一方、自己温度制御機能を有するヒータとして有機物と
一部が知られている。このヒータの構造を第1図(り 
、 Ch”)及び第2図に示す。
On the other hand, some organic materials are known as heaters that have a self-temperature control function. The structure of this heater is shown in Figure 1.
, Ch”) and shown in FIG.

第1図(a) # (h)及び第2図において、1およ
び1#嫁給電用電気導体で、例えばすずめつき銅線によ
って形成され、2は高密度ポリエチレン尋の有機物材料
とカーボンの混線物からなる自己温度制御機能を有する
発熱部、3は例えばウレタンゴム等の絶縁用材料部、4
は例えばポリエチレン等からなる保膿被覆材料部である
。籐1図(すI(b)K示すヒリと第2図に示す℃二り
は断面形状が異なるが構成においては本質的な差異はな
い。この自己温度制御作用を有するヒータを冷蔵庫の除
霜用ヒータとして使用する場合には、このと−タを冷却
器(図示せず)の熱交換用フィン(図示せず)の開口部
に設置するために、前記第1図(cL) # Cb)に
示したヒータ會アルミ等の熱伝導率の良好なパイプ内に
収納して用いる必要がある。このヒータは非常に良好な
除霜性能含有する除霜装置として動作するが、熱伝達の
面、および組立工数の点でかならずしも十分ではない、
すなわち、第1図(@)、(b)又は第2図に示す構造
のヒータを使用する場合、収納用パイプとの間に空気層
が生りざるを得す、空気層によ〉熱の伝達が悪くなシ、
熱伝達の面で最適とは言えない。it、自己温度制御機
能含有すると一部を収納用パイプに挿入する工程を必要
とし、との工S(こ多大な時間′を必要とする。挿入工
程の手間を減少させるには収納用パイプの内径を大きく
しなければならず、さらに熱伝達を悪化させる原因とな
る。
In Fig. 1 (a) # (h) and Fig. 2, 1 and 1 # are electrical conductors for daughter-in-law feeding, which are made of tinned copper wire, for example, and 2 is a mixed conductor of high-density polyethylene thick organic material and carbon. 3 is an insulating material part such as urethane rubber, and 4 is a heat generating part having a self-temperature control function.
is a purulent covering material portion made of, for example, polyethylene or the like. Although the cross-sectional shapes of the two shown in Figure 1 (I(b)K and ℃2 shown in Figure 2 are different in terms of their configurations), there is no essential difference in their configurations. When used as a heater, the heater is installed in the opening of the heat exchange fins (not shown) of the cooler (not shown) as shown in FIG. 1 (cL) #Cb). It is necessary to use the heater by storing it in a pipe with good thermal conductivity, such as aluminum. Although this heater operates as a defrosting device with very good defrosting performance, it is not always sufficient in terms of heat transfer and assembly man-hours.
In other words, when using a heater with the structure shown in Fig. 1 (@), (b) or Fig. 2, an air layer is inevitably created between it and the storage pipe. Poor communication,
It cannot be said to be optimal in terms of heat transfer. If it contains a self-temperature control function, it will require a process of inserting a part into the storage pipe, which requires a lot of time.To reduce the labor of the insertion process, The inner diameter must be increased, which further deteriorates heat transfer.

さらに、自己温度制御作用を有する正温度特性令侑→4
有機物半導体ヒータは給電用電気導体間の間隔が長くな
るにつれて、ピンチ効果、。
In addition, positive temperature characteristics with self-temperature control effect→4
Organic semiconductor heaters suffer from the pinch effect, as the distance between the feeding electrical conductors increases.

すなわち電界集中現象が生じ易くなシ、その結果、給電
用電極間の発熱体材料の一部のみが高温とな多発熱体材
料部全体が有効に動作しなくなる。
That is, the electric field concentration phenomenon is likely to occur, and as a result, only a portion of the heating element material between the power supply electrodes is at a high temperature, and the entire multi-heating element material section does not operate effectively.

すなわち第5図に示すように、給電用電極間。That is, as shown in FIG. 5, between the power supply electrodes.

体1,1−を結ぶ領域6における温度にm度分布が生じ
、発熱体部2の給電用電気導体間の中央部分2@の温度
のみが高くな力、他の発熱体部分2にでは有効に発熱動
作しなくなり熱出力の減少を生じるという欠点がある。
A m degree distribution occurs in the temperature in the region 6 connecting the bodies 1 and 1-, and the force where only the temperature in the central part 2 between the power supply electric conductors of the heating element part 2 is high is effective for the other heating element parts 2. However, there is a drawback that the heat generation operation is stopped and the heat output decreases.

本発明の目的は、上記した技術の欠点をなくし、熱伝達
特性に優れ、しかも組立作業の容品な除霜用ヒータを提
供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a defrosting heater that eliminates the drawbacks of the above-mentioned techniques, has excellent heat transfer characteristics, and is easy to assemble.

上記の目的を達成する几めに、本発明では、2対以上の
給電用電気導体管導電性材料と有機物材料とからなる自
己温度制御機能を有する発熱体部内に配置し、相隣接す
る給電用導体間距離をほぼ同心円状の位置に配置する。
In order to achieve the above object, in the present invention, two or more pairs of power supplying electric conductor tubes are arranged in a heating element part having a self-temperature control function, which is composed of a conductive material and an organic material, and adjacent power supplying The distances between the conductors are arranged in substantially concentric positions.

そして、電気絶縁材料部の外側に、この電気絶縁材料部
に密着して、熱的な良導体からなる保護被覆部を形成す
る。
Then, a protective coating made of a good thermal conductor is formed on the outside of the electrically insulating material in close contact with the electrically insulating material.

前記したように、ヒータが具備すべき伝熱に関する必要
条件として、1)被加熱物とヒータとの熱的接触が良好
であること。2)ヒータの発熱部とヒータの最外側放熱
面間での熱的J1少な。
As described above, the necessary conditions for heat transfer that the heater should have are: 1) good thermal contact between the object to be heated and the heater; 2) Thermal J1 between the heat generating part of the heater and the outermost heat radiation surface of the heater is small.

いとと。5)自己温度制御作用を有するヒータでは特に
、発熱材料郡全体が有効に動作することがあげられる。
Itoto. 5) Particularly in a heater having a self-temperature control function, the entire group of heat-generating materials operates effectively.

本発明ではヒータを上記の構造にすることによりピンチ
効果による発熱集中部が生じにくくし、発熱材料郡全体
が有効に動作し、tft電気絶縁材料部に密着して保護
被覆部を形成し、発熱体部から最外側の保護被覆部まで
の間での熱的損失が少ない、良好なヒータを形成する。
In the present invention, by structuring the heater as described above, it is difficult to generate a heat-generating concentrated area due to the pinch effect, the entire heat-generating material group operates effectively, and it forms a protective coating by closely contacting the TFT electrical insulating material part, thereby generating heat. To form an excellent heater with little thermal loss between a body part and an outermost protective covering part.

ま危、本発明においては、発熱体部に空洞部 ゛を形成
し、発熱体部が発熱して、膨張し几場合に発生する内部
応力を、この空洞部により緩和し、発熱体部の熱的特性
が内部応力によって変化するのを防止する。すなわち、
保護被覆部と発熱体部の熱膨張率が異なシ、発熱体の熱
膨張率が保護被覆部の熱膨張率より大きく、発熱体が発
熱して膨張した場合においても、発熱体の特性が変化す
るのを防止する。
However, in the present invention, a cavity is formed in the heating element, and this cavity relieves the internal stress that occurs when the heating element generates heat and expands. prevent physical properties from changing due to internal stress. That is,
The coefficient of thermal expansion of the protective coating and the heating element are different; the coefficient of thermal expansion of the heating element is greater than the coefficient of thermal expansion of the protective coating, and even when the heating element generates heat and expands, the characteristics of the heating element change. prevent

本発明による除霜用ヒータの構造を第4図(a)、(A
)に示す。第4図、(す、(b)において、7.7・8
.8#は給電用電気導体で、例えば、すずめ−)き銅線
によ多形成され、9は、例えば、高密度ポリエチレンか
らなる有機物材料と、例えばグラファイト、カーボンな
どからなる導電性材料の混線物からなる自己温度制御機
能を有する発熱体部、10は、仰えば、ウレタンゴム、
ポリフッ化ビ、−IJデン等からなる電気絶縁材料部、
11は熱伝導が良好な材料からなる保−被覆部で例えば
、鋼、アルミニウム材料によりて形成されている。12
は空洞部ないしは、例えばガラスウール等の耐熱性弾性
材料が充てんされる充てん部である。
The structure of the defrosting heater according to the present invention is shown in FIGS.
). Figure 4, (S, (b), 7.7.8
.. 8 is an electrical conductor for power supply, which is made of, for example, a tin-plated copper wire, and 9 is a mixed conductor made of an organic material such as high-density polyethylene and a conductive material such as graphite or carbon. The heating element 10 having a self-temperature control function is made of urethane rubber,
Electrical insulating material part made of polyvinyl fluoride, -IJden, etc.
Reference numeral 11 denotes a protective cover made of a material with good thermal conductivity, and is made of, for example, steel or aluminum. 12
is a cavity or a filling portion filled with a heat-resistant elastic material such as glass wool.

次に本発明によるヒータの動作について説明する。Next, the operation of the heater according to the present invention will be explained.

給電用電気導体7,7Iと8,81間に定格電圧が印加
されることによ〕、発熱体部9、すなわち、給電用電気
導体7と8.8と7’、7’と8’、8#と7の間に電
流が流れ、ジ為−ル熱によシ発熱体部9が発熱する。す
ると発熱による温度上昇によ多発熱体部9t−構成する
有機物材料が膨張し、発熱体部9の内部抵抗が増加し、
その結果発熱体部9を流れる電流が減少する。電流が減
少すると有機物材料、すなわち、発熱体部9の特性によ
シ定まる一定温度まで発熱体部9は温度上昇し、その後
、その温良、すなわち定格温度に保たれる。同一放熱面
積を有するヒータの場合、第4図(り、(A)に示すよ
うに、給電用導体t−4本以上とし、同心円状に配置す
ることにより給電用導体1本当りの電流が減少し、給電
用導体断面積を小さくすることが出来るため、発熱体部
9の有効発熱動作部からヒータの最外放熱wまで・の距
離を小さくでき、伝熱径路による熱損失を小さくできる
。また、給電用電気導体間の間隔を小さくできる友め、
ピンチ効果にきる。また、第4図(g)、(A)に示し
た除算用ヒータの最外・部に設けた熱伝導良好な材料か
らなる保護被覆部11は、電気絶縁材料部10と同様、
ヒータ製作工程において、通常の電線製作と同様な方法
で成形可能であるため、発熱体部9、電気絶縁材料部1
0、保護被覆部11間の密着性が良く熱的損失を最小に
することが可能になる。
By applying the rated voltage between the power supply electric conductors 7, 7I and 8, 81], the heating element portion 9, that is, the power supply electric conductors 7, 8, 8 and 7', 7' and 8', A current flows between 8# and 7, and the heating element part 9 generates heat due to the heat generated by the metal. Then, due to the temperature rise due to heat generation, the organic material constituting the multiple heating element section 9t expands, and the internal resistance of the heating element section 9 increases.
As a result, the current flowing through the heating element portion 9 decreases. When the current decreases, the temperature of the heating element 9 rises to a certain temperature determined by the characteristics of the organic material, that is, the heating element 9, and then the temperature is maintained at the rated temperature. In the case of heaters with the same heat dissipation area, as shown in Figure 4 (A), the current per power supply conductor is reduced by using t-4 or more power supply conductors and arranging them concentrically. However, since the cross-sectional area of the power supply conductor can be made small, the distance from the effective heating operation part of the heating element section 9 to the outermost heat radiation w of the heater can be made small, and the heat loss due to the heat transfer path can be made small. , a companion that can reduce the spacing between electrical conductors for power supply,
It can be a pinch effect. Further, the protective covering part 11 made of a material with good thermal conductivity and provided at the outermost part of the dividing heater shown in FIGS. 4(g) and (A) is similar to the electrically insulating material part 10.
In the heater manufacturing process, the heating element part 9 and the electrical insulating material part 1 are
0. Good adhesion between the protective coating parts 11 makes it possible to minimize thermal loss.

tyc、従来のような発熱線をアルミニウム等のパイプ
に挿入する工程が全く不必要となる。
tyc, the conventional process of inserting a heating wire into a pipe made of aluminum or the like is completely unnecessary.

なお、上記にのべ皮ように、発熱体部9および電気材料
絶縁部10と熱膨張係数の異なる熱伝導性が良好な保諌
被榎部11′t−一体化しfc場合には発熱体部9が熱
膨張又は熱収縮し、発熱体部9の一特性か変゛化するが
、本゛発明によるヒータの構“造のように、ヒーターの
中心部に空洞部′12を設けるど゛熱膨:撫゛によりて
生゛じる応力が空洞部12によって゛、−和さ!籠□何
□らの問題も生じない。このヒータめ□中心−に設けら
れた空洞部12には、耐熱性で弾性1有する材料を充填
しても良い。
In addition, as described above, in the case where the heat generating body part 11't-fc is integrated, the heat generating body part 11' has good thermal conductivity and has a coefficient of thermal expansion different from that of the heat generating body part 9 and the electrical material insulating part 10. 9 thermally expands or contracts, and one of the characteristics of the heating element 9 changes. Swelling: The stress generated by stroking is relieved by the cavity 12! No problems occur.The cavity 12 provided at the center of the heater has the following properties: It may be filled with a material that is heat resistant and has an elasticity of 1.

゛なお、上記の実施例では給電珀゛導体゛が′4本の場
合について示したが、給電用導体が例えば6゛ 本以上
使用されても同じ作用を得る゛ことができる。このヒー
タは発熱部9と給電用電気導体77’ 、8.8’ 、
給電用電気導体7,7# 、8,8#と絶縁材料部10
.絶縁材料部10と保護部11とが互に密着して接して
いるため、発熱°部9で発生しt熱が保護部111で良
好に伝達され、したがって、熱伝達特性が向上する。
Although the above-described embodiment shows the case where there are four power supply conductors, the same effect can be obtained even if six or more power supply conductors are used, for example. This heater has a heat generating part 9, a power supply electric conductor 77', 8.8',
Electrical conductors 7, 7#, 8, 8# for power supply and insulating material part 10
.. Since the insulating material portion 10 and the protective portion 11 are in close contact with each other, the heat generated in the heat generating portion 9 is efficiently transferred to the protective portion 111, and therefore the heat transfer characteristics are improved.

上記し穴ヒータを冷蔵庫の冷却器のフィン部(図示せず
)に、従来のヒータと同様、かち込み方式によシ取り付
け、除霜制御回路と組合せ、除霜実験を行な−)友とこ
ろ、ヒータの発熱体部から冷却器フィン部′への熱伝達
特性が改善されたため、除霜に要する時間を短縮するこ
とができた。tm熱伝達特性が改善され、有効発熱部の
領域が増加するため、自己温度制御作用含有するヒータ
として、定格温度が低いシのを使用しても十分に実用に
供することが可能となり、除霜に要する消費電力が従来
に比較して15〜25座低減した。
The above-mentioned hole heater was attached to the fin section (not shown) of a refrigerator cooler using the hook-in method, similar to a conventional heater, and combined with a defrosting control circuit, and a defrosting experiment was conducted. Since the heat transfer characteristics from the heating element of the heater to the cooler fins were improved, the time required for defrosting could be shortened. tm heat transfer characteristics are improved and the area of the effective heat generating part is increased, so even if a heater with a low rated temperature is used as a heater with a self-temperature control function, it can be put to practical use. The power consumption required for this has been reduced by 15 to 25 seats compared to conventional models.

以上説明したように、不発−によれば、発熱体部に少な
くとも4本、すなわち2対の給電用−気導体をほぼ尋問
隔に配置し、なおかつ−熱伝導が良好な保護被覆部を発
熱体め外側に配置された電気絶縁材料部に物着して配設
したため、発熱体部の全体で″はぼ均一に発熱が生じ、
かつ発熱体部で発生した熱が保護被覆部まで良好に伝達
され、ヒータの内部における熱的な損失が少ないに一部
を提供できる。
As explained above, according to the misfire, at least four, that is, two pairs of power supply gas conductors are arranged on the heating element part, approximately spaced apart from each other, and a protective coating with good heat conduction is attached to the heating element. Because it is attached to the electrically insulating material part placed on the outside, heat is generated almost uniformly throughout the heating element part.
In addition, the heat generated in the heating element is well transmitted to the protective coating, and a portion of the heat loss inside the heater can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(#)、’(り及び第2図は自己温度制御機能を
有する従来のヒータの構造會示す図で、第1図(−)拡
止面図、第1図(b)、第2図は断面図、第3図は従来
のヒータ′における温度勾配を示す特性図、第4図(g
)、’(りは本発明によるヒータを示す図で、第4図(
11)は正面図、第“4図(りは断面図である。
Figures 1 (#) and 2 are diagrams showing the structure of a conventional heater with a self-temperature control function. Figure 1 (-) is an enlarged view, Figure 1 (b) is Figure 2 is a cross-sectional view, Figure 3 is a characteristic diagram showing the temperature gradient in a conventional heater, and Figure 4 (g
), '(ri is a diagram showing a heater according to the present invention, and FIG.
11) is a front view, and FIG. 4 is a sectional view.

Claims (1)

【特許請求の範囲】 t 導電性材料と有機物材料からなる発熱体部と、この
発熱体部の内部に配設された給電用電気導体と、発熱体
部の外側に配置された絶縁材料部を備えたと−タにおい
て、少なくとも2対の給電用電気導体が発熱体部内に配
設され、絶縁材料部の外側には絶縁材料部に密着して、
熱良導体の材料からなる保護被覆部が形成されているこ
とを特徴とすると一声。 2 導電性材料と有機物材料からなる発熱体部と、この
発熱体部の内部に配設された給電用電気導体と、発熱体
部の外側に配置された絶縁材料部を備えたヒータにおい
て、少なくとも2対の給電用電気導体が発熱体部内に配
設され、絶縁材料部の外側には絶縁材料部に密着して、
熱良導体の材料からなる保護被覆部が形成され、かつ、
発熱体部の中央部に空洞が形成され、発熱体部がリング
状に形成されていることt4I黴とするヒータ。
[Claims] t. A heating element made of a conductive material and an organic material, a power supply electric conductor disposed inside the heating element, and an insulating material disposed outside the heating element. In the equipped heater, at least two pairs of electric conductors for power supply are disposed within the heating element part, and are arranged on the outside of the insulating material part in close contact with the insulating material part.
It is said that it is characterized by a protective coating made of a material that is a good thermal conductor. 2. A heater comprising a heating element made of a conductive material and an organic material, a power supply electric conductor disposed inside the heating element, and an insulating material disposed outside the heating element, at least Two pairs of electric conductors for power supply are arranged inside the heating element part, and on the outside of the insulating material part, in close contact with the insulating material part,
A protective covering made of a material that is a good thermal conductor is formed, and
A heater in which a cavity is formed in the center of the heating element, and the heating element is formed in a ring shape.
JP13852981A 1981-09-04 1981-09-04 Heater Pending JPS5842193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13852981A JPS5842193A (en) 1981-09-04 1981-09-04 Heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13852981A JPS5842193A (en) 1981-09-04 1981-09-04 Heater

Publications (1)

Publication Number Publication Date
JPS5842193A true JPS5842193A (en) 1983-03-11

Family

ID=15224278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13852981A Pending JPS5842193A (en) 1981-09-04 1981-09-04 Heater

Country Status (1)

Country Link
JP (1) JPS5842193A (en)

Similar Documents

Publication Publication Date Title
CN106374162B (en) A kind of battery modules thermal management algorithm and device based on pyroelectric effect
US5987891A (en) Thermoelectric refrigerator/warmer using no external power, and refrigerating/warming method
US4164253A (en) Method for reducing thermal degradation of a heat exchange fluid
US4098261A (en) Flat plate solar collector panel having extruded thermal conductors
KR101037651B1 (en) Defrost Heater of Surface Type
CN105186927A (en) Gas stove pot rack employing waste heat for power generation
US2246329A (en) Heat absorber
CN109244528A (en) A kind of lithium ion battery energy-storage module
US3183121A (en) Thermoelectric generator with heat transfer and thermal expansion adaptor
JPS5842193A (en) Heater
KR101032412B1 (en) A surface type heater for defrost and method for manufacturing the heater and defrost apparatus using the same
CN112153872A (en) Electric automobile fills electric pile cooling system based on solar energy semiconductor heat pipe
JPH10106514A (en) Cylindrical secondary battery and battery pack using this secondary battery
JPH0791796A (en) Electronic refrigeration type cold storage box
CN112164746B (en) Thermoelectric power generation device
JPS644313B2 (en)
JPH04139773A (en) Thermoelectric conversion equipment
JP2000009361A (en) Thermoelectric conversion system
JPH11233136A (en) Sodium-sulfur battery module
CN103187547A (en) Battery temperature control box and temperature control device
JPS5944559B2 (en) Method for preventing cold temperatures in underground cryogenic tanks
CN105762268A (en) Gas heat exchanger based on non-uniform doped semiconductor
JPS63243691A (en) Heat accumulating type heat exchanger
KR20120041181A (en) Motorcycle trunks heating method and devices that uses the exhaust heat
CN213662243U (en) Electric automobile fills electric pile cooling system based on solar energy semiconductor heat pipe