JPS643156B2 - - Google Patents

Info

Publication number
JPS643156B2
JPS643156B2 JP55175435A JP17543580A JPS643156B2 JP S643156 B2 JPS643156 B2 JP S643156B2 JP 55175435 A JP55175435 A JP 55175435A JP 17543580 A JP17543580 A JP 17543580A JP S643156 B2 JPS643156 B2 JP S643156B2
Authority
JP
Japan
Prior art keywords
sludge
water
separated
mixed slurry
separated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55175435A
Other languages
Japanese (ja)
Other versions
JPS5799390A (en
Inventor
Katsuyuki Kataoka
Keigo Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP55175435A priority Critical patent/JPS5799390A/en
Publication of JPS5799390A publication Critical patent/JPS5799390A/en
Publication of JPS643156B2 publication Critical patent/JPS643156B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は有機性廃液の合理的な処理プロセスに
関するものである。 従来法による有機性廃液の処理の代表例を、し
尿処理プロセスを例にとつて第1図により説明す
ると、生し尿1は生物処理工程2で処理され、処
理液は最終沈澱池3により上澄水と引抜汚泥4に
分離され、引抜汚泥4の一部は返送汚泥5、残部
は余剰汚泥6となる。前記上澄水は撹拌槽7に流
入し、ここで無機凝集剤8及び高分子凝集剤9を
添加されたのち凝集沈澱池10に流入し凝集分離
水11と凝沈汚泥12に分離される。凝集分離水
11は砂過装置13により過され、オゾン処
理装置14においてオゾン15により酸化処理さ
れ、最後に活性炭吸着装置16で吸着処理され、
高度処理水17として系外に排出される。一方、
前記凝沈汚泥12は、余剰汚泥6と共に助剤混合
槽18で高分子凝集剤(カチオンポリマー)19
を添加されたのち、機械脱水機20により脱水分
離水21と脱水ケーキ22に分離される。 このような従来法のプロセスにおいては、次の
ような大きな問題点が残されている。 活性汚泥法、嫌気性消化法などの生物処理に
おいては、し尿中の色度成分、難生物分解性の
COD成分、リン酸が殆ど除去できないので、
生物処理水(第1図例では最終沈澱池3の上澄
水がこれに該当する。)に硫酸ばん土などの無
機凝集剤を多量に添加して、凝集沈澱する必要
がある。従つて、ランニングコストが高額とな
り、しかも、難脱水性凝集スラツジの発生量が
多く、その処理、処分が容易でない。 生物処理工程から発生する余剰生物汚泥の脱
水性も悪く、脱水ケーキ含水率を85%以下に低
下させるのが難しい。 汚泥脱水のためにカチオンポリマーなどの脱
水助剤を多量に必要とするため、汚泥脱水工程
のランニングコストが高い(この点については
従来当然のことと考えられ、問題点であるとの
認識さえなかつたのが実状である)。 本発明は、このような従来プロセスにおける問
題点を根本的に解決することができる有機性廃液
の処理方法を提供することを目的とするものであ
る。 本発明は、有機性廃液を生物処理工程にて生物
処理し、該生物処理工程の余剰汚泥と処理水との
混合スラリーを得、該混合スラリーを嫌気的条件
下で滞留せしめると共に、少なくとも第2鉄系凝
集剤を添加して第2鉄イオンの一部又は全部を第
1鉄イオンに還元し、濃縮工程にて濃縮汚泥と分
離水に分離し、該分離水を酸化工程に導き該分離
水中の第1鉄イオンを第2鉄イオンに酸化せし
め、さらに該酸化処理液を固液分離することを特
徴とする有機性廃液の処理方法である。 すなわち本発明は、一旦添加したFe3+を汚泥
の脱水性改質用と生物処理水の高度処理用の薬剤
とに使用できるように、また、嫌気的条件下に保
持することにより汚泥の改質はFe3+で、濃縮分
離水の高度処理はFe2+の状態で反応させること
ができるように構成したものである。 これを具体的に説明すれば、生物処理工程から
発生する余剰生物汚泥を生物処理水に混和した状
態となし、この混合スラリーを嫌気的条件下に保
持したのち、該混合スラリーに少なくとも塩化第
2鉄、硫酸第2鉄などの第2鉄系凝集剤を添加し
て、混合スラリー中の汚泥の改質(汚泥の脱水性
向上処理)を行うと共に第2鉄の少なくとも一部
を第1鉄に還元せしめ、好ましくは酸性条件下で
濃縮工程(重力沈澱、スクリーン脱水など)にて
汚泥(混合スラリー)を濃縮し、第1鉄(Fe2+
を含む分離水と濃縮汚泥に分離するようにしたこ
とが第1の要点である。 なお、前記混合スラリーに第2鉄系凝集剤を添
加してから、この混合スラリーを嫌気的条件下に
保持してもよく、同一の作用効果が得られるもの
である。 本発明では、後記するように(第2図を参照)
混合スラリー37を嫌気的滞留槽38に滞留させ
酸化還元電位を低下させた余剰生物汚泥中に第2
鉄系凝集剤が共存するため、この凝集剤のFe3+
からFe2+への還元量を増大でき、したがつてこ
の凝集剤をより有効に利用することができる利点
がある。 なお、前記第2鉄系凝集剤と併用して消石灰、
水酸化マグネシウムなどのアルカリ剤と高分子凝
集剤を添加することにより濃縮工程の濃縮効果を
高め、装置材料の腐食を防止すことができる。 しかして、第1鉄Fe2+を含有する前記分離水
に空気、酸素、オゾン、塩素、過酸化水素などの
酸化剤を加えて、分離水(生物処理水)のフエン
トン処理による高度処理を行うと共にFe2+
Fe3+に酸化しFe(OH)3、FePO4などのSS性沈澱
物に変化させたのち沈澱、過などの固液分離工
程にて前記沈澱物を除去するようにしたことが第
2の要点である。 次に、本発明の一実施態様を図面を参照しつつ
説明すれば、第2図において生し尿31は生物学
的硝化脱窒素法などの生物処理工程32に流入す
る。生物処理工程32内に所望濃度の活性汚泥を
維持するためにMLSSの一部が汚泥濃縮部33に
流入し、濃縮汚泥34と濃縮分離水35に分離さ
れ、濃縮汚泥34は生物処理工程32に返送され
る。 一方、濃縮分離水35は生物処理工程32から
の流出スラリー36に混合され混合スラリー37
となる。この混合スラリー37は、生物処理工程
32にて発生する余剰汚泥を含有するスラリーを
意味している。なお、生物処理工程32に回転円
板法などの生物膜プロセスを採用する場合は、当
然返送汚泥用の汚泥濃縮部33は不要となり、流
出スラリー36がそのまま混合スラリー37に相
当することになる。 しかして混合スラリー37は、嫌気的滞留槽3
8にて所定時間滞留されたのち、撹拌槽39にて
塩化第2鉄(FeCl3)40が添加され、好ましく
は次いでアルカリ剤と高分子凝集剤が加えられ、
スクリーン、重力沈澱濃縮などの凝集汚泥濃縮工
程41にて濃縮汚泥42と分離水43に分離され
る。この濃縮工程41は酸性条件下(PH4〜5が
最適)で行なうのが好ましい。この理由は、PH4
〜5の酸性条件下では分離水43の有機物に起因
するCOD成分が最も少なくなり、かつFe2+がイ
オンのままで残留し易いからである。 続いて分離水43は酸化槽45に流入し、ここ
で空気、酸素、過酸化水素、オゾン、塩素などの
酸化剤44を添加されFe2+がFe3+に酸化される。
このときFe3++3OH-→Fe(OH)3↓の反応が生起
し、ちようど分離水43に新鮮な塩化第2鉄凝集
剤を添加したのと同一の効果が得られる。この場
合、酸化剤44として過酸化水素(H2O2)又は
オゾン(O2)を使用するとFe2+がこれらの酸化
剤の酸化反応触媒となり、酸化槽45において凝
集反応と同時にいわゆるフエントン化学酸化反応
などの化学酸化が同一工程で達成できるという極
めて重要な効果が得られる。 前記酸化槽45からの流出水は砂過、沈澱な
どによるSS除去工程46にてSSが除去されたの
ち、高度処理水47となる。 一方、濃縮汚泥42は塩化第2鉄40の添加に
よつて脱水性が顕著に改善されており、そのまま
無薬注でフイルタープレス49によつて脱水さ
れ、低含有率(通常60〜65%)の脱水ケーキ51
が得られる。なお、図中48は分離汚泥、50は
脱水分離水である。 以上のように本発明の効果は驚くべきものであ
り、これは生物処理工程32からの処理水の色
度、COD、リン酸を除去する高度処理と、生物
処理工程32から発生する余剰生物汚泥の脱水性
向上処理が同一の薬剤で達成されることを意味す
る。 生物処理工程32においては、単にBOD除去
を行うプロセスを採用した場合、しばしば処理水
中に亜硝酸性窒素NO2−Nが多量に生成し、こ
れが酸化槽45に添加するH2O2やO3と反応し、
H2O2、O3の消費量の増大を招き、また、処理水
中にアンモニア性窒素NH3−Nが残留している
場合は酸化槽45に塩素を添加したときにクロラ
ミンを生成し、Cl2を多量に消費する現象をもた
らすので、生物処理工程32としては生物学的硝
化脱窒素プロセスを採用し確実にNO2−N、
NH3−Nの残留を防止することが非常に好まし
い。このようにすれば、生物学的硝化反応によつ
てアルカリ度を消費するため混合スラリー37の
PH緩衝性が弱まり、第2鉄系凝集剤による凝集反
応の最適PH(4〜5)に設定するのが容易となる
という見逃せない効果も得られる。 以上述べたように本発明によれば、生物処理水
の高度処理(COD成分、色度成分、リン酸など
の除去)と余剰生物汚泥の脱水性の改善処理が、
同一の薬品(本発明では第2鉄系凝集剤)によつ
て遂行されるので、従来プロセスのように高度処
理用凝集剤と別個にカチオンポリマーなどの汚泥
脱水剤を添加する必要がなくなる結果、プロセス
の合理化、維持管理費の大幅な節減が可能にな
り、したがつて濃縮工程(酸化工程の前段の)か
ら排出される濃縮汚泥はそのまま無薬注でも脱水
でき、また、混合スラリーの濃縮のための前処理
剤として加えられる第2鉄イオンFe3+が、生物
処理工程から流出する余剰生物汚泥を嫌気的に維
持したものと接触すると、高い効率で還元され
Fe2+イオンに変化するという新しい現象を見出
し、このFe2+イオンを前記濃縮工程による濃縮
分離水のフエントン処理用の酸化触媒として利用
するので、外部から新たにFeイオンを添加する
ことなく処理水質を向上できるなど工業上重要な
利益を得ることができる。 次に本発明の実施例について説明する。 実施例 第1表の水質を有する除渣生し尿を公知の硝化
液循環生物学的脱窒素工程により希釈水を添加せ
ずに処理した。
The present invention relates to a rational treatment process for organic waste liquid. A typical example of the treatment of organic waste liquid by the conventional method is explained using Figure 1 using the human waste treatment process as an example.The human waste 1 is treated in the biological treatment process 2, and the treated liquid is sent to the final sedimentation tank 3 to be made into supernatant water. A portion of the drawn sludge 4 becomes return sludge 5, and the remainder becomes surplus sludge 6. The supernatant water flows into the stirring tank 7, where an inorganic flocculant 8 and a polymer flocculant 9 are added, and then flows into a flocculation sedimentation tank 10 where it is separated into flocculated separation water 11 and flocculated sludge 12. The flocculated and separated water 11 is passed through a sand filter 13, oxidized with ozone 15 in an ozone treatment device 14, and finally adsorbed in an activated carbon adsorption device 16.
It is discharged outside the system as highly treated water 17. on the other hand,
The flocculated sludge 12 is treated with a polymer flocculant (cationic polymer) 19 together with excess sludge 6 in an auxiliary agent mixing tank 18.
is added, and then separated into dehydrated separated water 21 and dehydrated cake 22 by a mechanical dehydrator 20. In such conventional processes, the following major problems remain. In biological treatment such as activated sludge method and anaerobic digestion method, color components in human waste and difficult-to-biodegradable
Since COD components and phosphoric acid can hardly be removed,
It is necessary to add a large amount of an inorganic flocculant such as sulfuric acid chloride to the biologically treated water (in the example in Figure 1, this corresponds to the supernatant water of the final sedimentation tank 3) for coagulation and sedimentation. Therefore, running costs are high, and a large amount of hard-to-drain coagulated sludge is generated, making it difficult to treat and dispose of it. Excess biological sludge generated from the biological treatment process also has poor dewatering properties, making it difficult to reduce the moisture content of the dehydrated cake to below 85%. The running cost of the sludge dewatering process is high because a large amount of dewatering aids such as cationic polymers are required for sludge dewatering. The actual situation is that An object of the present invention is to provide a method for treating organic waste liquid that can fundamentally solve the problems in the conventional processes. The present invention biologically treats organic wastewater in a biological treatment process, obtains a mixed slurry of surplus sludge from the biological treatment process and treated water, retains the mixed slurry under anaerobic conditions, and at least A part or all of the ferric ions are reduced to ferrous ions by adding an iron-based flocculant, separated into thickened sludge and separated water in the concentration process, and the separated water is led to the oxidation process. This is a method for treating an organic waste liquid, which is characterized by oxidizing ferrous ions into ferric ions, and further separating the oxidized liquid into solid and liquid. In other words, the present invention enables Fe 3+ once added to be used as a chemical for dehydration modification of sludge and for advanced treatment of biologically treated water, and also improves sludge modification by maintaining it under anaerobic conditions. The quality is Fe 3+ , and the advanced treatment of the concentrated separated water is configured so that it can be reacted in the Fe 2+ state. To explain this specifically, surplus biological sludge generated from the biological treatment process is mixed with biologically treated water, and after this mixed slurry is maintained under anaerobic conditions, at least dichloride is added to the mixed slurry. Adding a ferric flocculant such as iron or ferric sulfate to improve the sludge in the mixed slurry (treatment to improve sludge dewatering properties) and convert at least a portion of the ferric iron into ferrous iron. Ferrous iron (Fe 2+
The first point is that the sludge is separated into separated water containing water and thickened sludge. Note that after adding the ferric flocculant to the mixed slurry, this mixed slurry may be maintained under anaerobic conditions, and the same effect can be obtained. In the present invention, as described later (see FIG. 2),
The mixed slurry 37 is retained in the anaerobic retention tank 38 to reduce the redox potential.
Since an iron-based flocculant coexists, the Fe 3+ of this flocculant
There is an advantage that the amount of reduction from Fe 2+ to Fe 2+ can be increased, and that this flocculant can therefore be used more effectively. In addition, in combination with the ferric coagulant, slaked lime,
By adding an alkaline agent such as magnesium hydroxide and a polymer flocculant, the concentration effect of the concentration step can be enhanced and corrosion of equipment materials can be prevented. Then, an oxidizing agent such as air, oxygen, ozone, chlorine, hydrogen peroxide, etc. is added to the separated water containing ferrous Fe 2+ , and the separated water (biologically treated water) is subjected to advanced treatment by Fuenton treatment. with Fe 2+
The second method was to oxidize to Fe 3+ and change it to SS precipitates such as Fe(OH) 3 and FePO 4 , and then remove the precipitates in a solid-liquid separation process such as precipitation and filtration. That's the point. Next, one embodiment of the present invention will be described with reference to the drawings. In FIG. 2, human waste 31 flows into a biological treatment process 32 such as biological nitrification and denitrification. In order to maintain activated sludge at a desired concentration in the biological treatment process 32, a part of the MLSS flows into the sludge thickening section 33, where it is separated into thickened sludge 34 and concentrated separated water 35, and the thickened sludge 34 is sent to the biological treatment process 32. It will be sent back. On the other hand, the concentrated separated water 35 is mixed with the effluent slurry 36 from the biological treatment process 32 to form a mixed slurry 37.
becomes. This mixed slurry 37 means a slurry containing excess sludge generated in the biological treatment process 32. Note that when a biofilm process such as a rotating disk method is employed in the biological treatment step 32, the sludge concentration section 33 for returning sludge is naturally unnecessary, and the outflow slurry 36 directly corresponds to the mixed slurry 37. Therefore, the mixed slurry 37 is transferred to the anaerobic retention tank 3.
After being retained at 8 for a predetermined time, ferric chloride (FeCl 3 ) 40 is added in a stirring tank 39, and preferably an alkali agent and a polymer flocculant are added next.
The sludge is separated into a concentrated sludge 42 and separated water 43 in a flocculated sludge concentration process 41 such as a screen or gravity sedimentation concentration. This concentration step 41 is preferably carried out under acidic conditions (optimally pH 4 to 5). The reason for this is PH4
This is because under the acidic conditions of ~5, the COD component resulting from organic matter in the separated water 43 is the least, and Fe 2+ tends to remain as an ion. Subsequently, the separated water 43 flows into an oxidizing tank 45, where an oxidizing agent 44 such as air, oxygen, hydrogen peroxide, ozone, or chlorine is added to oxidize Fe 2+ to Fe 3+ .
At this time, the reaction Fe 3+ +3OH - →Fe(OH) 3 ↓ occurs, and the same effect as when fresh ferric chloride flocculant is added to the separated water 43 can be obtained. In this case, when hydrogen peroxide (H 2 O 2 ) or ozone (O 2 ) is used as the oxidizing agent 44, Fe 2+ becomes an oxidation reaction catalyst for these oxidizing agents, and at the same time a coagulation reaction occurs in the oxidizing tank 45. A very important effect is obtained that chemical oxidation such as oxidation reaction can be achieved in the same process. The outflow water from the oxidation tank 45 becomes highly treated water 47 after SS is removed in an SS removal step 46 by sand filtration, sedimentation, etc. On the other hand, the dewatering properties of the thickened sludge 42 have been significantly improved by the addition of ferric chloride 40, and it is directly dehydrated by the filter press 49 without chemical injection, with a low content (usually 60 to 65%). dehydrated cake 51
is obtained. In addition, in the figure, 48 is separated sludge, and 50 is dehydrated separated water. As described above, the effects of the present invention are surprising, and this is due to the advanced treatment that removes color, COD, and phosphoric acid from the treated water from the biological treatment process 32, and the removal of excess biological sludge generated from the biological treatment process 32. This means that the dehydration-improving treatment of 20% is achieved with the same agent. In the biological treatment step 32, when a process that simply removes BOD is adopted, a large amount of nitrite nitrogen NO 2 -N is often generated in the treated water, and this is mixed with H 2 O 2 and O 3 added to the oxidation tank 45. reacted with,
This will lead to an increase in the consumption of H 2 O 2 and O 3 , and if ammonia nitrogen NH 3 -N remains in the treated water, chloramine will be produced when chlorine is added to the oxidation tank 45, and Cl Since this results in the phenomenon of consuming a large amount of NO 2 -N , a biological nitrification and denitrification process is adopted as the biological treatment step 32 to ensure that NO 2 -N,
It is highly preferred to prevent NH3 -N residue. In this way, the mixed slurry 37 is consumed because the alkalinity is consumed by the biological nitrification reaction.
Another effect that cannot be overlooked is that the pH buffering property is weakened and it becomes easy to set the optimum pH (4 to 5) for the flocculation reaction by the ferric flocculant. As described above, according to the present invention, advanced treatment of biologically treated water (removal of COD components, chromaticity components, phosphoric acid, etc.) and treatment to improve the dewaterability of surplus biological sludge are performed.
Since the process is carried out using the same chemical (ferric flocculant in the present invention), there is no need to add a sludge dewatering agent such as a cationic polymer separately from the advanced treatment flocculant as in conventional processes. This makes it possible to streamline the process and significantly reduce maintenance and management costs.Thus, the thickened sludge discharged from the thickening process (the first stage of the oxidation process) can be dehydrated without any chemical injection, and the thickened sludge of the mixed slurry can be dehydrated. When the ferric ion Fe 3+ added as a pre-treatment agent for ferric sludge comes into contact with anaerobically maintained excess biological sludge flowing out from the biological treatment process, it is reduced with high efficiency.
We discovered a new phenomenon in which Fe 2+ ions change into Fe 2+ ions, and use these Fe 2+ ions as oxidation catalysts for the Fenton treatment of the concentrated and separated water in the concentration process, so the treatment can be performed without adding additional Fe ions from the outside. Important industrial benefits can be obtained, such as improved water quality. Next, examples of the present invention will be described. EXAMPLE Residue-free human waste having the water quality shown in Table 1 was treated by a known nitrified solution circulation biological denitrification process without adding dilution water.

【表】 また、生物学的硝化脱窒素工程の運転条件は第
2表のように設定した。
[Table] The operating conditions for the biological nitrification and denitrification process were set as shown in Table 2.

【表】【table】

【表】 この生物学的硝化脱窒素工程からの処理液と余
剰生物汚泥を混合した混合スラリー(SS8000〜
12000mg/、Mアリカリ度800〜1000mg/、PH
8.2)を4時間嫌気的に滞留させ、次いでFeCl3
3000mg/添加し10分間撹拌したのち(このとき
PHは2.5であつた)、Ca(OH)2を加えてPH5.0に調
整し、さらにノニオンポリマー(アコフロツク
N100)を40mg/添加し大粒径のフロツクを形
成させたのち、傾斜式ウエツジワイヤスクリーン
(目開き0.3mm、スクリーン長さ60cm、スクリーン
幅20cm)に流入させたところ、効果的に水切りが
なされスクリーン上の濃縮汚泥の濃度は3.8%と
高濃度であつた。一方、スクリーン分離水中には
Fe2+イオンが50〜100mg/が含まれていた。こ
れはFeCl3中のFe3+の一部が生物汚泥によつて還
元されたものと推定される。 次に、スクリーン分離水に過酸化水素H2O2
200mg/添加し1時間撹拌したのちPH5.0に再中
和し、生成したFe(OH)3を主体とするSSを砂
過によつて除去した結果、砂過処理水水質は第
3表のように極めて良好であつた。
[Table] Mixed slurry (SS8000~
12000mg/, M alkalinity 800~1000mg/, PH
8.2) was allowed to stay anaerobically for 4 hours, then FeCl 3
After adding 3000mg/stir and stirring for 10 minutes (at this time
PH was 2.5), adjusted to PH5.0 by adding Ca(OH) 2 , and then added nonionic polymer (Acofrost).
After adding 40mg of N100) to form large particle flocs, they were flowed into an inclined wedge wire screen (mesh opening 0.3mm, screen length 60cm, screen width 20cm), which effectively drained the water. The concentration of thickened sludge on the screen was as high as 3.8%. On the other hand, in the screen separation water
It contained 50-100 mg/Fe 2+ ion. This is presumed to be due to part of Fe 3+ in FeCl 3 being reduced by biological sludge. Then screen separated water with hydrogen peroxide H2O2
After adding 200mg/1 hour and stirring for 1 hour, the pH was re-neutralized to 5.0, and the generated SS, mainly composed of Fe(OH) 3 , was removed by sand filtration. It was extremely good.

【表】 生物学的硝化脱窒素工程から流出する前記混合
スラリーにFeCl3を3000mg/添加した場合に、
スクリーン分離水中のFe2+が前記混合スラリー
のSS濃度によつてどのように変化するかを調べ
た結果を第3図の実線のグラフAで示した。この
グラフから、混合スラリーのSS濃度が高くなる
ほどスクリーン分離水中のFe2+イオン濃度も増
大することが認められる。なお、第3図の破線グ
ラフBは前記混合スラリーを嫌気的に滞留させ
ず、逆に空気で4時間曝気処理してからFeCl3
3000mg/添加した場合のスクリーン分離水中の
Fe2+濃度を示したものである。これらの結果か
ら、スクリーン分離水に積極的にFe2+を還元溶
出せしめ、これを凝集剤又は酸化触媒として利用
するためには、混合スラリーを嫌気的に滞留せし
めることが効果的であることが判明した。 次に、スクリーン分離水のFe2+を酸化する酸
化剤として各種物質を利用したときの砂過処理
水のCOD−Mnを第4表に示す。
[Table] When 3000 mg/FeCl 3 is added to the mixed slurry flowing out from the biological nitrification and denitrification process,
The solid line graph A in FIG. 3 shows the results of investigating how Fe 2+ in the screen-separated water changes depending on the SS concentration in the mixed slurry. From this graph, it is recognized that as the SS concentration of the mixed slurry increases, the Fe 2+ ion concentration in the screen-separated water also increases. Note that the broken line graph B in Fig. 3 shows that the mixed slurry is not anaerobically retained, but rather is aerated with air for 4 hours before adding FeCl3 .
in screen separated water when 3000mg/additional
This shows the Fe 2+ concentration. These results indicate that it is effective to anaerobically retain the mixed slurry in order to actively reduce and elute Fe 2+ into the screen-separated water and use it as a flocculant or oxidation catalyst. found. Next, Table 4 shows the COD-Mn of the sand filter treated water when various substances were used as oxidizing agents to oxidize Fe 2+ in the screen separated water.

【表】 一方、ウエツジワイヤスクリーン上の前記濃縮
汚泥(濃度3.8%)は約12時間以上放置すると脱
水性が顕著に悪化し、無薬注では脱水困難となる
傾向が見られたが、放置時間が数時間以内であれ
ば、そのまま無薬注でフイルタープレスによつて
容易に脱水でき、過圧4Kg/cm2、過時間10
分、圧搾圧12Kgf/cm2、圧搾時間20分の条件で脱
水した結果、含水率65〜68%という極めて低含水
率の脱水ケーキが得られ、このケーキは流動床焼
却炉で自燃が可能であつた。
[Table] On the other hand, when the thickened sludge (concentration 3.8%) on the wedge wire screen was left for more than about 12 hours, the dewatering performance deteriorated significantly, and there was a tendency for it to become difficult to dewater without chemical injection. If the time is within a few hours, it can be easily dehydrated using a filter press without chemical injection, with an overpressure of 4 kg/cm 2 and an overtime of 10
As a result of dehydration under the conditions of 12 Kgf/cm 2 , compression pressure of 12 kgf/cm 2 , and 20 minutes of pressing time, a dehydrated cake with an extremely low moisture content of 65 to 68% was obtained, and this cake can be self-combusted in a fluidized bed incinerator. It was hot.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法の代表例を示す系統説明図、第
2図は本発明の実施態様を示す系統説明図、第3
図は本発明の実施例における混合スラリーのSS
濃度とスクリーン分離水のFe2+イオン濃度との
関係を示したグラフである。 31……生し尿、32……生物処理工程、33
……汚泥濃縮部、34……濃縮汚泥、35……濃
縮分離水、36……流出スラリー、37……混合
スラリー、38……嫌気的滞留槽、39……撹拌
槽、40……塩化第2鉄、41……濃縮工程、4
2……濃縮汚泥、43……分離水、44……酸化
剤、45……酸化槽、46……SS除去工程、4
7……高度処理水、48……分離汚泥、49……
フイルタープレス、50……脱水分離水、51…
…脱水ケーキ。
Fig. 1 is a system explanatory diagram showing a typical example of the conventional method, Fig. 2 is a system explanatory diagram showing an embodiment of the present invention, and Fig. 3 is a system explanatory diagram showing a typical example of the conventional method.
The figure shows SS of mixed slurry in an example of the present invention.
It is a graph showing the relationship between the concentration and the Fe 2+ ion concentration of screen-separated water. 31... Fresh urine, 32... Biological treatment process, 33
... Sludge concentration section, 34 ... Thickened sludge, 35 ... Concentrated separated water, 36 ... Effluent slurry, 37 ... Mixed slurry, 38 ... Anaerobic retention tank, 39 ... Stirring tank, 40 ... Chloride phase 2 Iron, 41...Concentration process, 4
2... Thickened sludge, 43... Separated water, 44... Oxidizing agent, 45... Oxidation tank, 46... SS removal process, 4
7...Highly treated water, 48...Separated sludge, 49...
Filter press, 50...Dehydrated separated water, 51...
...Dehydrated cake.

Claims (1)

【特許請求の範囲】 1 有機性廃液を生物処理工程にて生物処理し、
該生物処理工程の余剰汚泥と処理水との混合スラ
リーを得、該混合スラリーを嫌気的条件下で滞留
せしめると共に、少なくとも第2鉄系凝集剤を添
加して第2鉄イオンの一部又は全部を第1鉄イオ
ンに還元し、濃縮工程にて濃縮汚泥と分離水に分
離し、該分離水を酸化工程に導き該分離水中の第
1鉄イオンを第2鉄イオンに酸化せしめ、さらに
該酸化処理液を固液分離することを特徴とする有
機性廃液の処理方法。 2 前記濃縮工程がPH4〜5の酸性条件下で行な
われるものである特許請求の範囲第1項記載の方
法。
[Claims] 1. Organic waste liquid is biologically treated in a biological treatment process,
A mixed slurry of surplus sludge and treated water from the biological treatment process is obtained, and the mixed slurry is allowed to stagnate under anaerobic conditions, and at least a ferric flocculant is added to remove some or all of the ferric ions. is reduced to ferrous ions, separated into concentrated sludge and separated water in a concentration step, and the separated water is led to an oxidation step to oxidize the ferrous ions in the separated water to ferric ions. A method for treating organic waste liquid characterized by solid-liquid separation of the treated liquid. 2. The method according to claim 1, wherein the concentration step is carried out under acidic conditions of pH 4 to 5.
JP55175435A 1980-12-12 1980-12-12 Treatment of organic waste liquid Granted JPS5799390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55175435A JPS5799390A (en) 1980-12-12 1980-12-12 Treatment of organic waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55175435A JPS5799390A (en) 1980-12-12 1980-12-12 Treatment of organic waste liquid

Publications (2)

Publication Number Publication Date
JPS5799390A JPS5799390A (en) 1982-06-21
JPS643156B2 true JPS643156B2 (en) 1989-01-19

Family

ID=15996040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55175435A Granted JPS5799390A (en) 1980-12-12 1980-12-12 Treatment of organic waste liquid

Country Status (1)

Country Link
JP (1) JPS5799390A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005000844A (en) * 2003-06-13 2005-01-06 Kubota Corp Phosphorus removing apparatus
JP4795290B2 (en) * 2007-03-27 2011-10-19 ダイヤニトリックス株式会社 How to remove phosphorus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919759B2 (en) * 1976-02-20 1984-05-08 オルガノ株式会社 Advanced treatment method for sewage water
JPS52108654A (en) * 1976-03-09 1977-09-12 Toa Gosei Chem Ind Method of treating treated night soil water

Also Published As

Publication number Publication date
JPS5799390A (en) 1982-06-21

Similar Documents

Publication Publication Date Title
JPS5845920B2 (en) Biochemical treatment method for organic waste liquid
JPH0124558B2 (en)
JPS643156B2 (en)
JPH09290299A (en) Treatment of waste water from thermal electric power plant
US4288328A (en) Use of specially prepared iron floc to oxidize and remove iron in water treatment processes
JPS6320600B2 (en)
JPS58153594A (en) Treatment of organic waste
JPH0141110B2 (en)
JPS6339307B2 (en)
JPS6339309B2 (en)
JP4145406B2 (en) Method for preventing phosphorus from being eluted in sludge and phosphorus elution preventing agent for sludge
JP3326084B2 (en) How to reduce organic sludge
JP4141554B2 (en) Method for preventing phosphorus from being eluted in sludge and phosphorus elution preventing agent for sludge
JPS5938837B2 (en) How to treat organic waste liquid
JPH0314519B2 (en)
JPS6254078B2 (en)
JPS6254077B2 (en)
JPH0433518B2 (en)
JPH09290297A (en) Treatment of waste water from thermal electric power plant
JP7297512B2 (en) Wastewater treatment method and wastewater treatment system
JPS6339319B2 (en)
JPS58143900A (en) Treatment of organic sludge
JP5063975B2 (en) Organic wastewater treatment method and treatment apparatus
JPS5940520B2 (en) How to treat organic wastewater
JPH0585240B2 (en)