JPS642865B2 - - Google Patents
Info
- Publication number
- JPS642865B2 JPS642865B2 JP23354382A JP23354382A JPS642865B2 JP S642865 B2 JPS642865 B2 JP S642865B2 JP 23354382 A JP23354382 A JP 23354382A JP 23354382 A JP23354382 A JP 23354382A JP S642865 B2 JPS642865 B2 JP S642865B2
- Authority
- JP
- Japan
- Prior art keywords
- indoor heat
- refrigerant
- valve
- pressure release
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003507 refrigerant Substances 0.000 claims description 49
- 238000002347 injection Methods 0.000 claims description 11
- 239000007924 injection Substances 0.000 claims description 11
- 238000005057 refrigeration Methods 0.000 claims description 8
- 239000007788 liquid Substances 0.000 description 23
- 238000010438 heat treatment Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 230000005284 excitation Effects 0.000 description 6
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は室外ユニツトおよび複数の室内ユニ
ツトから成るマルチタイプの空気調和機に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a multi-type air conditioner comprising an outdoor unit and a plurality of indoor units.
一般にこの種の空気調和機としては第1図に示
すヒートポンプ式冷凍サイクルを備えたものがあ
る。第1図において、町は室外ユニツト、B,
C,Dは室内ユニツトである。しかして、能力可
変圧縮機(回転数可変)1、四方弁2、室外熱交
換器3、キヤピラリチユーブ4,5、減圧装置た
とえば膨張弁6、分流制御用キヤピラリチユーブ
11,21,31、液ライン開閉弁12,22,
32、室内熱交換器13,23,33、ガラスイ
ン開閉弁14,24,34などが順次連通され、
ヒートポンプ式冷凍サイクルが構成される。すな
わち、室内熱交換器13,23,33は並列構成
となつている。冷房運転時は図示実線矢印の方向
に冷媒が流れ、暖房運転時は四方弁2が切換わる
ことにより図示破線矢印の方向に冷媒が流れる。
Generally, this type of air conditioner includes one equipped with a heat pump type refrigeration cycle as shown in FIG. In Figure 1, the town is an outdoor unit, B,
C and D are indoor units. Therefore, a variable capacity compressor (variable rotation speed) 1, a four-way valve 2, an outdoor heat exchanger 3, capillary tubes 4, 5, a pressure reducing device such as an expansion valve 6, a capillary tube for branch flow control 11, 21, 31, Liquid line on/off valve 12, 22,
32, indoor heat exchangers 13, 23, 33, glass-in on-off valves 14, 24, 34, etc. are connected in sequence,
A heat pump type refrigeration cycle is constructed. That is, the indoor heat exchangers 13, 23, and 33 are arranged in parallel. During cooling operation, the refrigerant flows in the direction of the solid arrow shown in the figure, and during heating operation, the four-way valve 2 is switched, so that the refrigerant flows in the direction of the broken line arrow.
そして、上記膨張弁6の冷媒流出側配管と圧縮
機1の圧縮室との間にはキヤピラリチユーブ41
を介して液インジエクシヨンサイクル40が設け
られる。この液インジエクシヨンサイクル40
は、液冷媒を圧縮機1の圧縮室へインジエクシヨ
ンするものである。 A capillary tube 41 is provided between the refrigerant outlet pipe of the expansion valve 6 and the compression chamber of the compressor 1.
A liquid injection cycle 40 is provided via. This liquid injection cycle 40
is for injecting liquid refrigerant into the compression chamber of the compressor 1.
また、液ライン開閉弁12と室内熱交換器13
との間の冷媒配管には液戻しサイクル50の一端
が連通され、この液戻しサイクル50の他端はキ
ヤピラリチユーブ51を介してキヤピラリチユー
ブ4,5と膨張弁6との間の冷媒配管に連通され
る。液ライン開閉弁22と室内熱交換器23との
間の冷媒配管には液戻しサイクル60の一端が連
通され、この液戻しサイクル60の他端はキヤピ
ラリチユーブ61を介してキヤピラリチユーブ
4,5と膨張弁6との間の冷媒配管に連通され
る。液ライン開閉弁32と室内熱交換器33との
間の冷媒配管には液戻しサイクル70の一端が連
通され、この液戻しサイクル70の他端はキヤピ
ラリチユーブ71を介してキヤピラリチユーブ
4,5と膨張弁6との間の冷媒配管に連通され
る。これら液戻しサイクル50,60,70は、
次のような機能を有している。すなわち、室内ユ
ニツトB,C,Dにおいて暖房運転が行なわれて
いる場合、そのうち、たとえば室内ユニツトCの
運転を休止すると、ガスライン開閉弁24および
液ライン開閉弁22がそれぞれ閉成し、室内熱交
換器23への吐出ガス冷媒の流入が禁止される。
このとき、室内熱交換器23に既に流入していた
吐出ガス冷媒はそこに溜まり込み、その溜まり込
んだ吐出ガス冷媒は高温であるため外部と熱交換
し、徐々に冷却されて液状となる。しかして、液
冷媒が室内熱交換器23に溜まり込むと室内ユニ
ツトCの運転再開に際して冷凍サイクルのガスバ
ランスがくずれることになり、さらには圧縮機1
に液冷媒が戻つて液圧縮を生じ、圧縮機1の損傷
を招くという危険がある。そこで、室内熱交換器
23内に発生する液冷媒を液戻しサイクル60に
よつて液ライン側に戻し、上記のような不具合が
生じないようにしている。 In addition, the liquid line on-off valve 12 and the indoor heat exchanger 13
One end of a liquid return cycle 50 is connected to the refrigerant pipe between the capillary tubes 4 and 5 and the expansion valve 6 via a capillary tube 51. will be communicated to. One end of a liquid return cycle 60 is connected to the refrigerant pipe between the liquid line on-off valve 22 and the indoor heat exchanger 23, and the other end of this liquid return cycle 60 is connected to the capillary tube 4, via a capillary tube 61. The refrigerant pipe between the expansion valve 5 and the expansion valve 6 is connected to the refrigerant pipe. One end of a liquid return cycle 70 is connected to the refrigerant pipe between the liquid line on-off valve 32 and the indoor heat exchanger 33, and the other end of the liquid return cycle 70 is connected to the capillary tube 4, via a capillary tube 71. The refrigerant pipe between the expansion valve 5 and the expansion valve 6 is connected to the refrigerant pipe. These liquid return cycles 50, 60, 70 are
It has the following functions. That is, when heating operation is performed in indoor units B, C, and D, for example, when the operation of indoor unit C is stopped, the gas line on-off valve 24 and the liquid line on-off valve 22 are closed, and the indoor heat is released. The discharge gas refrigerant is prohibited from flowing into the exchanger 23.
At this time, the discharge gas refrigerant that has already flowed into the indoor heat exchanger 23 accumulates there, and since the accumulated discharge gas refrigerant has a high temperature, it exchanges heat with the outside and is gradually cooled and becomes liquid. If the liquid refrigerant accumulates in the indoor heat exchanger 23, the gas balance of the refrigeration cycle will be disrupted when the operation of the indoor unit C is restarted, and further, the compressor 1
There is a risk that the liquid refrigerant returns to the compressor 1 and causes liquid compression, causing damage to the compressor 1. Therefore, the liquid refrigerant generated in the indoor heat exchanger 23 is returned to the liquid line side by the liquid return cycle 60 to prevent the above-mentioned problems from occurring.
ところでこのような空気調和機において、室内
ユニツトCの運転休止時、ガスライン開閉弁24
側の冷媒圧力は液ライン開閉弁22側の冷媒圧力
よりも高いため、この状態で室内ユニツトCの運
転が再開されると、室内熱交換器23に急激に吐
出ガス冷媒が流入し、大きな冷媒音が生じて室内
の人に不快感や不信感を与えてしまうという問題
があつた。
By the way, in such an air conditioner, when the indoor unit C is out of operation, the gas line on-off valve 24
Since the refrigerant pressure on the side is higher than the refrigerant pressure on the liquid line opening/closing valve 22 side, when the operation of the indoor unit C is restarted in this state, the discharged gas refrigerant suddenly flows into the indoor heat exchanger 23, and a large refrigerant There was a problem in that the noise generated caused discomfort and a sense of distrust for the people in the room.
この発明は上記のような事情に鑑みてなされた
もので、その目的とするところは、休止ユニツト
運転開始時の冷媒音を抑えることができ、これに
より信頼性の向上などを可能とするすぐれた空気
調和機を提供することにある。
This invention was made in view of the above circumstances, and its purpose is to suppress the refrigerant noise when the idle unit starts operating, thereby improving reliability. Our goal is to provide air conditioners.
この発明は、高圧レリースサイクルを配設する
とともに、この高圧レリースサイクルから各室内
熱交換器へ減圧装置を介して冷媒注入サイクルを
配設し、各室内熱交換器のうち少なくとも何れか
一つの運転を開始するに際し、その室内熱交換器
に対応する開閉弁の開放に先立ち、高圧レリース
サイクルを一旦導通して上記室内熱交換器へ冷媒
を徐々に注入しておくものである。
The present invention provides a high-pressure release cycle and a refrigerant injection cycle from the high-pressure release cycle to each indoor heat exchanger via a pressure reducing device, thereby controlling the operation of at least one of the indoor heat exchangers. When starting the indoor heat exchanger, the high-pressure release cycle is first turned on and refrigerant is gradually injected into the indoor heat exchanger before opening the on-off valve corresponding to the indoor heat exchanger.
以下、この発明の一実施例について図面を参照
して説明する。ただし、図面において第1図と同
一構成部分には同一符号を付し、その詳細な説明
は省略する。
An embodiment of the present invention will be described below with reference to the drawings. However, in the drawings, the same components as in FIG. 1 are denoted by the same reference numerals, and detailed explanation thereof will be omitted.
第2図に示すように、膨張弁6の冷媒流入側配
管と圧縮機1の冷媒吸入側配管との間には高圧レ
リース用開閉弁81およびキヤピラリチユーブ8
2を介して高圧レリースサイクル80を配設す
る。この高圧レリースサイクル80における開閉
弁81の後段から各室内熱交換器13,23,3
3に減圧装置たとえばキヤピラリチユーブ91,
92,93をそれぞれ介して冷媒注入サイクル9
4,95,96を配設する。 As shown in FIG. 2, a high-pressure release on-off valve 81 and a capillary tube 8 are provided between the refrigerant inlet pipe of the expansion valve 6 and the refrigerant suction pipe of the compressor 1.
A high pressure release cycle 80 is provided via 2. In this high pressure release cycle 80, each indoor heat exchanger 13, 23, 3 is
3, a pressure reducing device such as a capillary tube 91,
Refrigerant injection cycle 9 via 92 and 93, respectively.
4, 95, and 96 are arranged.
第3図は制御回路の要部を示す図である。端子
101,102間にはユニツトB運転信号(交流
電源電圧)V1、端子101,103間にはユニ
ツトC運転信号(交流電源電圧)V2、端子10
1,104間にはユニツトD運転信号(交流電源
電圧)V3、端子101,105間には高圧レリ
ース信号(交流電源電圧)V4が印加される。し
かして、端子101,102間にはユニツトB用
開閉弁駆動リレー111,端子101,103間
にはユニツトC用開閉弁駆動リレー112、端子
101,104間にはユニツトD用開閉弁駆動リ
レー113、端子101,105間には高圧レリ
ース用開閉弁81の励磁コイル81Cが接続され
る。 FIG. 3 is a diagram showing the main parts of the control circuit. Unit B operation signal (AC power supply voltage) V 1 is connected between terminals 101 and 102, unit C operation signal (AC power supply voltage) V 2 is connected between terminals 101 and 103, and terminal 10
A unit D operation signal (AC power supply voltage) V 3 is applied between terminals 1 and 104, and a high voltage release signal (AC power supply voltage) V 4 is applied between terminals 101 and 105. Thus, the on-off valve drive relay 111 for unit B is connected between terminals 101 and 102, the on-off valve drive relay 112 for unit C is connected between terminals 101 and 103, and the on-off valve drive relay 113 for unit D is connected between terminals 101 and 104. , an excitation coil 81C of the high-pressure release on-off valve 81 is connected between the terminals 101 and 105.
さらに、端子101,102間にはリレー接点
111aを介してサーマルタイマ121のヒータ
121hが接続されるとともに、リレー接点11
1aおよびタイマ接点121aの常開側を介して
開閉弁14,12の励時コイル14c,12cが
接続される。端子101,103間にはリレー接
点112aを介してサーマルタイマ122のヒー
タ122hが接続されるとともに、リレー接点1
12aおよびタイマ接点122aの常開側を介し
て開閉弁24,22の励磁コイル24c,22c
が接続される。端子101,104間にはリレー
接点113aを介してサーマルタイマ123のヒ
ータ123hが接続されるとともに、リレー接点
113aおよびタイマ接点123aの常開側を介
して開閉弁34,32の励磁コイル34c,32
cが接続される。 Further, a heater 121h of a thermal timer 121 is connected between the terminals 101 and 102 via a relay contact 111a, and a relay contact 11
Excitation coils 14c and 12c of the on-off valves 14 and 12 are connected through the normally open side of the timer contact 1a and the timer contact 121a. A heater 122h of a thermal timer 122 is connected between terminals 101 and 103 via a relay contact 112a, and a relay contact 1
12a and the excitation coils 24c, 22c of the on-off valves 24, 22 via the normally open side of the timer contact 122a.
is connected. A heater 123h of a thermal timer 123 is connected between the terminals 101 and 104 via a relay contact 113a, and excitation coils 34c and 32 of the on-off valves 34 and 32 are connected via the normally open sides of the relay contact 113a and the timer contact 123a.
c is connected.
そして、励磁コイル81cの一端は、リレー接
点111aとタイマ接点121の常閉側との直列
回路、リレー接点112aとタイマ接点122の
常閉側との直列回路、リレー接点113aとタイ
マ接点123の常閉側との直列回路をそれぞれ介
して端子102,103,104に接続される。 One end of the excitation coil 81c is connected to a series circuit between the relay contact 111a and the normally closed side of the timer contact 121, a series circuit between the relay contact 112a and the normally closed side of the timer contact 122, and a series circuit between the relay contact 113a and the normally closed side of the timer contact 123. They are connected to terminals 102, 103, and 104 via series circuits with the closed side, respectively.
ところで、サーマルタイマ121,122,1
23は、ヒータの発熱によりそれぞれ一定時間後
にタイマ接点が作動するものであり、その一定時
間は5秒以上となつている。 By the way, the thermal timers 121, 122, 1
23, a timer contact is activated after a certain period of time due to the heat generated by the heater, and the certain period of time is 5 seconds or more.
つぎに、上記のような構成において動作を説明
する。 Next, the operation in the above configuration will be explained.
いま、室内ユニツトBにおいて暖房運転を設定
すると、四方弁2が切換作動するとともに、圧縮
機1の運転が開始され、さらにユニツトB運転信
号V1が発生する。すると、リレー111が作動
し、リレー接点111aのオンによつてサーマル
タイマ121のヒータ121hに対する通電がな
される。同時に、開閉弁81が開放作動する。開
閉弁81が開放すると、冷凍サイクルに溜まつて
いた冷媒が高圧レリースサイクル80から冷媒注
入サイクル94,95,96を通つて室内熱交換
器13,23,33に流れ込み、その各室内熱交
換器の内圧が上昇する。こうして、内圧が十分に
上昇したころ、タイマ接点121hが作動し、開
閉弁81が閉成するとともに、開閉弁14,12
が開放作動し、室内熱交換器13を通して暖房サ
イクルが形成され、室内ユニツトBにおいて暖房
運転が開始される。このとき、開閉弁14,12
の開放に際しては室内熱交換器13の内圧が上昇
しているため、室内熱交換器13における圧力変
動はごくわずかであり、冷媒音は生じない。 Now, when heating operation is set in indoor unit B, the four-way valve 2 is switched, the compressor 1 starts operating, and the unit B operation signal V1 is generated. Then, the relay 111 is activated, and the relay contact 111a is turned on, thereby energizing the heater 121h of the thermal timer 121. At the same time, the on-off valve 81 is opened. When the on-off valve 81 opens, the refrigerant accumulated in the refrigeration cycle flows from the high-pressure release cycle 80 through the refrigerant injection cycles 94, 95, and 96 to the indoor heat exchangers 13, 23, and 33. The internal pressure of increases. In this way, when the internal pressure has risen sufficiently, the timer contact 121h is activated, the on-off valve 81 is closed, and the on-off valves 14, 12 are closed.
is opened, a heating cycle is formed through the indoor heat exchanger 13, and heating operation is started in the indoor unit B. At this time, the on-off valves 14, 12
When the indoor heat exchanger 13 is opened, the internal pressure of the indoor heat exchanger 13 increases, so the pressure fluctuation in the indoor heat exchanger 13 is very small, and no refrigerant noise is generated.
室内ユニツトBの運転時、室内ユニツトCにお
いて暖房運転を設定すると、ユニツトC運転信号
V2が発生する。すると、リレー112が作動し、
リレー接点112aのオンによつてサーマルタイ
マ122のヒータ122hに対する通電がなされ
る。同時に、開閉弁81が開放作動する。開閉弁
81が開放作動すると、高圧レリースが行なわ
れ、その高圧レリースサイクルから冷媒注入サイ
クル95,96を通つて室内熱交換器23,33
に冷媒(ガス)が流れ込み、その各室内熱交換器
23,33の内圧が上昇する。この場合、圧力の
均衡によつて室内熱交換器13には冷媒は流入し
ない。また、室内熱交換器23,33に流入する
冷媒はキヤピラリチユーブ92,93の存在によ
つて徐々に流入することになり、冷媒音が生じる
ことはない。こうして、内圧が十分に上昇したこ
ろ、タイマ接点122hが作動し、開閉弁81が
閉成するとともに、開閉弁24,22が開放作動
し、室内熱交換器23を通しても暖房サイクルが
形成され、室内ユニツトCにおいて暖房運転が開
始される。このとき、開閉弁24,22の開放に
際しては室内熱交換器23の内圧が上昇している
ため、室内熱交換器23における圧力変動がごく
わずかであり、冷媒音は生じない。 When indoor unit B is operating, if indoor unit C is set to heating operation, unit C operation signal is
V 2 occurs. Then, relay 112 is activated,
By turning on the relay contact 112a, the heater 122h of the thermal timer 122 is energized. At the same time, the on-off valve 81 is opened. When the on-off valve 81 operates to open, high pressure is released, and from the high pressure release cycle, the indoor heat exchangers 23, 33 pass through the refrigerant injection cycles 95, 96.
Refrigerant (gas) flows into the indoor heat exchangers 23 and 33, and the internal pressure of each of the indoor heat exchangers 23 and 33 increases. In this case, no refrigerant flows into the indoor heat exchanger 13 due to pressure balance. Moreover, the refrigerant flowing into the indoor heat exchangers 23, 33 gradually flows in due to the presence of the capillary tubes 92, 93, and no refrigerant noise is generated. In this way, when the internal pressure has risen sufficiently, the timer contact 122h is activated, the on-off valve 81 is closed, the on-off valves 24 and 22 are opened, and a heating cycle is also formed through the indoor heat exchanger 23, and the indoor heat exchanger 23 is heated. Heating operation is started in unit C. At this time, since the internal pressure of the indoor heat exchanger 23 is rising when the on-off valves 24 and 22 are opened, the pressure fluctuation in the indoor heat exchanger 23 is very small, and no refrigerant noise is generated.
ところで、高圧レリース用開閉弁81を高圧レ
リースと冷媒注入とに兼用するため、休止熱交の
内圧が十分に上昇しないのではないかとの危惧を
生じるが、高圧レリース中においても冷媒注入は
行なわれることになるからキヤピラリチユーブ8
2の絞りは多少大きくしても問題はなく、その分
だけ開閉弁81の後段における圧力の上昇が計
れ、しかもキヤピラリチユーブ91,92,93
の絞りをゆるめることにより、内圧を十分に上昇
させることができる。また、運転を行なう室内熱
交換器だけではなく他の休止熱交にも冷媒の注入
がなされるが、その余計な注入冷媒は液戻しサイ
クルにて回収されるため、能力の犠牲にはならな
い。 By the way, since the high-pressure release on-off valve 81 is used for both high-pressure release and refrigerant injection, there is a concern that the internal pressure of the idle heat exchanger will not rise sufficiently, but refrigerant injection is performed even during high-pressure release. Therefore, the capillary tube 8
There is no problem even if the orifice No. 2 is made a little larger, and the pressure increase in the downstream stage of the on-off valve 81 can be measured accordingly, and the capillary tubes 91, 92, 93
By loosening the restriction, the internal pressure can be sufficiently increased. In addition, refrigerant is injected not only into the operating indoor heat exchanger but also into other idle heat exchangers, but the extra injected refrigerant is recovered in the liquid return cycle, so there is no sacrifice in performance.
なお、上記実施例ではタイマとしてサーマルタ
イマを用いたが、それに限らずモータ式や電子式
のタイマを用いても良く、さらにはタイマ機能を
マイクロコンピユータによるソフト的な制御に依
存しても良く、そうすればコスト的にも有利であ
る。また、室内ユニツトが3台の場合について述
べたが、それ以上の台数の室内ユニツトを有する
場合についても同様に実施することができる。 Although a thermal timer is used as the timer in the above embodiment, the timer is not limited to this, and a motor type or electronic type timer may be used.Furthermore, the timer function may be dependent on software control by a microcomputer. This would be advantageous in terms of cost. Further, although the case where there are three indoor units has been described, the same method can be applied to a case where there are more indoor units.
また、上記実施例では高圧レリースサイクルか
らの冷媒注入を行なうようにしたが、第4図およ
び第5図に示すように、暖房運転時の高圧側冷媒
配管から各室内熱交換器へ開閉弁131およびキ
ヤピラリチユーブ141,142,143を介し
て冷媒注入サイクル144,145,146を配
設し、その開閉弁131の励磁コイル131cに
リレー接点111,112,113およびタイマ
接点121,122,123をそれぞれ介して暖
房運転信号(交流電源電圧)V5を印加するよう
にしても同様の効果を得ることができる。 In addition, in the above embodiment, refrigerant is injected from the high pressure release cycle, but as shown in FIGS. A refrigerant injection cycle 144, 145, 146 is arranged through the capillary tube 141, 142, 143, and the excitation coil 131c of the on-off valve 131 is connected with relay contacts 111, 112, 113 and timer contacts 121, 122, 123. A similar effect can be obtained by applying the heating operation signal (AC power supply voltage) V5 through each of them.
以上述べたようにこの発明によれば、休止ユニ
ツト運転開始時の冷媒音を抑えることができこれ
により信頼性の向上などを可能とするすぐれた空
気調和機を提供できる。
As described above, according to the present invention, it is possible to provide an excellent air conditioner that can suppress refrigerant noise when the idle unit starts operating, thereby improving reliability.
第1図は従来におけるヒートポンプ式冷凍サイ
クルの一例を示す構成図、第2図はこの発明の一
実施例におけるヒートポンプ式冷凍サイクルの構
成図、第3図は同一実施例における制御回路の構
成図、第4図はこの発明の他の実施例を示すヒー
トポンプ式冷凍サイクルの構成図、第5図は同他
の実施例における制御回路の構成図である。
1……能力可変圧縮機、3……室外熱交換器、
13,23,33……室内熱交換器、12,1
4,22,24,32,34……開閉弁、80…
…高圧レリースサイクル、81……高圧レリース
用開閉弁、91,92,93……キヤピラリチユ
ーブ(減圧装置)、94,95,96……冷媒注
入サイクル。
FIG. 1 is a configuration diagram showing an example of a conventional heat pump type refrigeration cycle, FIG. 2 is a configuration diagram of a heat pump type refrigeration cycle in an embodiment of the present invention, and FIG. 3 is a configuration diagram of a control circuit in the same embodiment. FIG. 4 is a block diagram of a heat pump type refrigeration cycle showing another embodiment of the present invention, and FIG. 5 is a block diagram of a control circuit in the same other embodiment. 1... variable capacity compressor, 3... outdoor heat exchanger,
13,23,33...Indoor heat exchanger, 12,1
4, 22, 24, 32, 34...on/off valve, 80...
...High pressure release cycle, 81...High pressure release on/off valve, 91,92,93...Capillary tube (pressure reducing device), 94,95,96...Refrigerant injection cycle.
Claims (1)
複数の室内熱交換器の並列体などを順次連通して
成るヒートポンプ式冷凍サイクルと、前記各室内
熱交換器への冷媒配管にそれぞれ設けられ、その
各室内熱交換器への冷媒流入制御を行なう開閉弁
と、前記各室内熱交換器と減圧装置との間の冷媒
配管から前記圧縮機の冷媒吸入側配管へ配設され
た高圧レリースサイクルと、この高圧レリースサ
イクルに設けられた高圧レリース用開閉弁と、こ
の高圧レリース用開閉弁の後段における高圧レリ
ースサイクルから前記各室内熱交換器へ減圧装置
を介して配設された冷媒注入サイクルと、前記各
室内熱交換器の少なくとも何れか一つの運転を開
始するに際し、その室内熱交換器に対応する開閉
弁の開放に先立ち、前記高圧レリース用開閉弁を
一旦開放する制御回路とを具備したことを特徴と
する空気調和機。1 Compressor, four-way valve, outdoor heat exchanger, pressure reducing device,
A heat pump refrigeration cycle consisting of a plurality of parallel indoor heat exchangers connected in sequence, and a refrigerant pipe connected to each of the indoor heat exchangers, respectively, to control refrigerant inflow to each indoor heat exchanger. An on-off valve, a high-pressure release cycle arranged from the refrigerant piping between each of the indoor heat exchangers and the pressure reducing device to the refrigerant suction side piping of the compressor, and a high-pressure release opening/closing valve provided in this high-pressure release cycle. a refrigerant injection cycle arranged from the high-pressure release cycle downstream of the high-pressure release on-off valve to each of the indoor heat exchangers via a pressure reducing device, and the operation of at least one of the indoor heat exchangers. An air conditioner comprising: a control circuit that temporarily opens the high-pressure release on-off valve before opening the on-off valve corresponding to the indoor heat exchanger when starting the air conditioner.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23354382A JPS59122870A (en) | 1982-12-28 | 1982-12-28 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23354382A JPS59122870A (en) | 1982-12-28 | 1982-12-28 | Air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59122870A JPS59122870A (en) | 1984-07-16 |
JPS642865B2 true JPS642865B2 (en) | 1989-01-18 |
Family
ID=16956698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23354382A Granted JPS59122870A (en) | 1982-12-28 | 1982-12-28 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59122870A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02111697U (en) * | 1989-02-21 | 1990-09-06 |
-
1982
- 1982-12-28 JP JP23354382A patent/JPS59122870A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59122870A (en) | 1984-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0213765A (en) | Refrigerating cycle system | |
CN101443609A (en) | Economic refrigeration system with low-pressure steam injection | |
JP2012127518A (en) | Air conditioner | |
JPS642865B2 (en) | ||
JP2597634Y2 (en) | Pressure equalizer in multi-room air-conditioning heat pump system | |
JP2001263832A (en) | Refrigerating cycle of refrigerator | |
JPH1082569A (en) | Air conditioner | |
JP3099574B2 (en) | Air conditioner pressure equalizer | |
JP3675977B2 (en) | Air conditioner | |
JPS59104055A (en) | Air conditioner | |
JPH0217370A (en) | Operation control device for air conditioning device | |
JP3109212B2 (en) | Heat transfer device | |
JPS6032100B2 (en) | air conditioner | |
JPS5899655A (en) | Refrigerator | |
JPS63243668A (en) | Engine drive type air conditioner | |
JP2827656B2 (en) | Heat transfer device | |
JPS5912273A (en) | Refrigerator | |
JPS6129657A (en) | Refrigerator | |
JPH02293563A (en) | Refrigerating plant | |
JPS59115944A (en) | Heat pump type air conditioner | |
JPH11257764A (en) | Refrigerator | |
JPH1062030A (en) | Air conditioner | |
JPH0120709B2 (en) | ||
EP0119579A2 (en) | Refrigerant circuit for a refrigerator-freezer combination | |
JPS6339828B2 (en) |