JPS642189B2 - - Google Patents
Info
- Publication number
- JPS642189B2 JPS642189B2 JP21577984A JP21577984A JPS642189B2 JP S642189 B2 JPS642189 B2 JP S642189B2 JP 21577984 A JP21577984 A JP 21577984A JP 21577984 A JP21577984 A JP 21577984A JP S642189 B2 JPS642189 B2 JP S642189B2
- Authority
- JP
- Japan
- Prior art keywords
- target
- magnet
- sputtering
- film thickness
- center
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000004544 sputter deposition Methods 0.000 claims description 30
- 238000001816 cooling Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 238000009826 distribution Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 5
- 230000005684 electric field Effects 0.000 description 3
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 230000005291 magnetic effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3402—Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
- H01J37/3405—Magnetron sputtering
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明はスパツタ装置に係り、特に電界と磁界
とを直交させるマグネトロン形のスパツタ装置に
関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a sputtering device, and particularly to a magnetron-type sputtering device in which an electric field and a magnetic field are orthogonal to each other.
近年、ターゲツトに垂直な電界とこの電界に直
交する磁界とを組合わせたマグネトロンスパツタ
装置が、スパツタ速度が速く、処理面の熱損傷が
少なくさらに膜質が良いこと等から、広く利用さ
れている。
In recent years, magnetron sputtering equipment, which combines an electric field perpendicular to the target and a magnetic field perpendicular to the electric field, has been widely used because of its high sputtering speed, little heat damage to the treated surface, and good film quality. .
第8図は従来のマグネトロンスパツタ装置の概
略を示したもので、ターゲツト1の下面側には、
所定間隔Hを有するように、各極が同心円状に配
置された円板状のマグネツト2が配設され、この
マグネツト2はその中心軸が上記ターゲツト1の
中心軸から距離Dだけ離れるように配置されター
ゲツト1の中心軸を中心として偏心回転するよう
になされている。また、上記ターゲツト1の上面
側には、所定間隔hを有するように、被処理物3
を固定支持するホルダ4が設けられており、上記
各部材は図示しない真空容器内に収容されてい
る。 FIG. 8 shows an outline of a conventional magnetron sputtering device.
A disk-shaped magnet 2 is provided, each pole of which is arranged concentrically at a predetermined interval H, and the magnet 2 is arranged such that its center axis is separated from the center axis of the target 1 by a distance D. The target 1 is rotated eccentrically around the central axis of the target 1. Further, on the upper surface side of the target 1, a workpiece 3 is placed at a predetermined interval h.
A holder 4 is provided to fixedly support the above-mentioned members, and each of the above-mentioned members is housed in a vacuum container (not shown).
上記スパツタ装置においては、ターゲツト1の
材料を被処理物3の表面にスパツタするときに、
マグネツト2を偏心回転させてターゲツト1の材
料を均一に飛散させることにより、被処理物3の
表面に均一にスパツタするようになされている。
また、被処理物3は必ずしも固定されるものでは
なく、必要に応じて自転、公転あるいは自公転さ
れる。 In the above sputtering apparatus, when sputtering the material of the target 1 onto the surface of the workpiece 3,
By eccentrically rotating the magnet 2 to uniformly scatter the material of the target 1, spatter is uniformly applied to the surface of the workpiece 3.
Further, the object 3 to be processed is not necessarily fixed, but may be rotated, revolved, or revolved as necessary.
そして、マグネツト2の偏心距離Dは、通常膜
厚分布が一定な領域を可能な限り広くするように
設定される。 The eccentric distance D of the magnet 2 is usually set so as to make the region where the film thickness distribution is constant as wide as possible.
しかし、上記のような装置の場合、均一な膜厚
分布領域を広く確保しているため、ターゲツト1
自体のスパツタ速度は大きくても、被処理物3の
表面における付着速度が小さくなつてしまい、特
に、被処理物の表面積が小さい場合にスパツタ速
度に対する効率が極めて低下してしまうという問
題がある。 However, in the case of the above-mentioned apparatus, since a uniform film thickness distribution area is secured over a wide area, the target 1
Even if the sputtering speed itself is high, the adhesion speed on the surface of the object 3 to be treated is low, and particularly when the surface area of the object to be treated is small, there is a problem in that the efficiency with respect to the sputtering speed is extremely reduced.
また、所望の膜質を得るため被処理物とターゲ
ツトとの距離を変える場合や強磁性体のターゲツ
トを使用する場合等、種々の条件が変化したとき
においては、上記装置では膜厚分布の均一性が著
しく低下してしまうという問題があり、このこと
は、種々の条件下で使用される実験装置において
特に顕著である。 In addition, when various conditions change, such as when changing the distance between the object to be processed and the target to obtain the desired film quality, or when using a ferromagnetic target, the above-mentioned apparatus will not be able to maintain the uniformity of the film thickness distribution. There is a problem in that the value decreases significantly, and this is particularly noticeable in experimental equipment used under various conditions.
本発明は上記した点に鑑みてなされたもので、
スパツタ速度を低下させることなく、常に最適な
膜厚分布を得ることができるスパツタ装置を提供
することを目的とするものである。
The present invention has been made in view of the above points, and
It is an object of the present invention to provide a sputtering device that can always obtain an optimal film thickness distribution without reducing the sputtering speed.
上記目的達成のため本発明に係るスパツタ装置
は、真空容器内にターゲツトを被処理物と一定間
隔を有するように配置し、上記ターゲツトの裏面
側に配置したマグネツトを上記ターゲツトの中心
に対して公転させながら上記被処理物へのスパツ
タリングを行なうスパツタ装置において、上記真
空容器の外方に上記ターゲツトの中心と一致する
軸線を中心として回転し、上面にマグネツトを取
付けるマグネツト取付板を配置するととも、この
マグネツトの中心と上記マグネツト取付板の回転
中心との距離を調節自在に構成し、上記ターゲツ
トの裏面側にターゲツト冷却用水を導通するため
の空間を設けたことを特徴とするものであり、真
空容器の外部に配置したマグネツト取付板へのマ
ブネツトの取付け位置を調節することにより、膜
厚分布の均一性を図るようにしたものである。
In order to achieve the above object, the sputtering apparatus according to the present invention arranges a target in a vacuum container at a constant distance from the workpiece, and rotates a magnet arranged on the back side of the target with respect to the center of the target. In a sputtering apparatus that performs sputtering on the object to be treated while sputtering, a magnet mounting plate that rotates around an axis that coincides with the center of the target is disposed outside the vacuum vessel, and a magnet is attached to the upper surface of the sputtering apparatus. The vacuum container is characterized in that the distance between the center of the magnet and the center of rotation of the magnet mounting plate is adjustable, and a space is provided on the back side of the target for conducting water for cooling the target. The uniformity of the film thickness distribution is achieved by adjusting the mounting position of the magnet on the magnet mounting plate located outside the magnet.
以下、本発明の実施例を第1図乃至第7図を参
照して説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 7.
第1図は本発明に係るマグネトロンスパツタ装
置を示したもので、Co−Cr合金製のターゲツト
1は、真空容器5の内側に取付けられた銅製の支
持台6の上面に固着されており、この支持台6と
真空容器5との間には空間が形成され、この空間
に冷却水を導通することによりターゲツト1の冷
却効率を高めるようになされている。また、真空
容器5の外部側には、モータ7がその回転軸をタ
ーゲツト1の中心軸上に位置させるように配置さ
れ、このモータ7のシヤフト8には、長円状の取
付孔9を有するマグネツト取付板10の一端部が
固着されている。このマグネツト取付板10に
は、マグネツト2が上記取付孔9を貫通するねじ
等により取付けられており、上記取付孔9のねじ
締付位置を変化させることにより上記マグネツト
2のターゲツト1に中心軸に対する偏心距離Dを
調整し得るようになされている。 FIG. 1 shows a magnetron sputtering device according to the present invention, in which a target 1 made of a Co-Cr alloy is fixed to the upper surface of a support base 6 made of copper attached to the inside of a vacuum vessel 5. A space is formed between the support base 6 and the vacuum container 5, and the cooling efficiency of the target 1 is increased by conducting cooling water into this space. Further, a motor 7 is disposed on the outside of the vacuum container 5 so that its rotating shaft is positioned on the central axis of the target 1, and the shaft 8 of the motor 7 has an oblong mounting hole 9. One end of the magnet mounting plate 10 is fixed. The magnet 2 is attached to the magnet attachment plate 10 by screws passing through the attachment hole 9, and by changing the tightening position of the screw in the attachment hole 9, the magnet 2 can be attached to the target 1 of the magnet 2 relative to the central axis. The eccentric distance D can be adjusted.
また、第3図乃至第5図は、真空容器内のAr
圧力が5×10-3Torr、スパツタ電力が380W、被
処理物とターゲツトとの距離が6.5cm、マグネツ
トの径が11.5cmという条件下において、偏心距離
Dを第3図はD=0、第4図はD=7.5cm、第5
図はD=7.0cmとしたときの膜厚分布をそれぞれ
示したもので、偏心距離が0の場合では被処理物
の中心部と周縁部との膜厚が著しく異なるのに対
して、マグネツトを偏心させる方が均一な膜厚分
布を得ることができることを示している。さら
に、第4図および第5図からわかるように、偏心
距離を変化させることにより膜厚分布を変化させ
ることができ、したがつて、被処理物の大きさに
応じて所望の膜厚分布を得ることができる。 In addition, Figures 3 to 5 show Ar in the vacuum container.
Under the conditions that the pressure is 5 × 10 -3 Torr, the sputtering power is 380 W, the distance between the workpiece and the target is 6.5 cm, and the diameter of the magnet is 11.5 cm, the eccentric distance D is calculated as D = 0 in Fig. 3. Figure 4 is D=7.5cm, 5th
The figures show the film thickness distribution when D = 7.0 cm. When the eccentric distance is 0, the film thickness between the center and the peripheral part of the object is significantly different, whereas when the magnet is This shows that a more uniform film thickness distribution can be obtained by making the film eccentric. Furthermore, as can be seen from FIGS. 4 and 5, the film thickness distribution can be changed by changing the eccentric distance, and therefore the desired film thickness distribution can be adjusted depending on the size of the workpiece. Obtainable.
また、第6図は種々の偏心距離における膜厚分
布が100±10%および100±5%となるようなスパ
ツタ領域での、単位電力および単位時間当りのス
パツタ速度を示したもので、例えば100±10%お
よび100±5%の膜厚分布を得ることができる範
囲の直径が8cm(r=4cm)および10cm(r=5
cm)の場合、スパツタ速度はそれぞれ1.2倍およ
び1.3倍となつており、被処理物の寸法に応じて、
すなわち、膜厚範囲が小さくてよい場合に偏心距
離を変化させることにより、スパツタ速度を大幅
に高めることができることを示している。 Furthermore, Figure 6 shows the sputtering speed per unit power and unit time in the sputtering region where the film thickness distribution at various eccentric distances is 100±10% and 100±5%. The diameters of the range in which film thickness distributions of ±10% and 100±5% can be obtained are 8 cm (r = 4 cm) and 10 cm (r = 5 cm).
cm), the sputtering speed is 1.2 times and 1.3 times, respectively, depending on the size of the workpiece.
In other words, it is shown that the sputtering speed can be significantly increased by changing the eccentric distance when the film thickness range is small.
さらに、第7図は偏心距離Dを7.5cmとして長
時間スパツタリングを行なつた場合におけるター
ゲツトの侵食状態を示したもので、従来のものに
比較してターゲツトの利用効率が著しく高まるこ
とを示している。 Furthermore, Fig. 7 shows the state of target erosion when sputtering is performed for a long time with an eccentric distance D of 7.5 cm, indicating that the target utilization efficiency is significantly increased compared to the conventional method. There is.
また、プラズマや荷電粒子の被処理面への流入
度等の影響を少なくするため、マスクを設ける場
合には、マスクの寸法形状に合わせて、偏心距離
を調整することにより適正な膜厚分布を得ること
ができる。 In addition, in order to reduce the influence of plasma and charged particles on the surface to be processed, when installing a mask, adjust the eccentric distance according to the dimensions and shape of the mask to ensure an appropriate film thickness distribution. Obtainable.
なお、処理物又は被処理物を保持するホルダー
とターゲツトの距離を調製可能なスパツタ装置に
も、本発明を適用することが十分可能である。 The present invention can also be applied to a sputtering device in which the distance between the target and the holder that holds the object to be processed or the object to be processed can be adjusted.
本発明は上記のような構成あるので、真空容器
の外部に配置したマグネツト取付板へのマブネツ
トの取付け位置を調節することにより、種々の条
件下において、最適な膜厚分布を得ることがで
き、特に被処理物の面積が小さい場合には、適当
な膜厚分布を確保するとともに、スパツタ速度の
向上を図ることも可能である。更に、ターゲツト
の冷却効率の向上及びターゲツトの利用効率の向
上を図ることができるといつた効果がある。
Since the present invention has the above-described configuration, by adjusting the mounting position of the magnet to the magnet mounting plate placed outside the vacuum container, an optimal film thickness distribution can be obtained under various conditions. Particularly when the area of the object to be treated is small, it is possible to ensure an appropriate film thickness distribution and also to improve the sputtering speed. Further, there is an effect that it is possible to improve the cooling efficiency of the target and the utilization efficiency of the target.
第1図乃至第7図はそれぞれ本発明の実施例を
示したもので、第1図はスパツタ装置の概略構成
図、第2図はモータ部分の斜視図、第3図,第4
図および第5図はそれぞれマグネツトの偏心距離
に対する膜厚分布を示す線図、第6図はスパツタ
領域に対するスパツタ速度を示す線図、第7図は
ターゲツトの侵食状態を示す説明図、第8図は従
来のスパツタ装置を示す概略構成図である。
1…ターゲツト、2…マグネツト、3…被処理
物、4…ホルダ、5…真空容器、6…支持台、7
…モータ、8…シヤフト、9…取付孔、10…マ
グネツト取付板。
1 to 7 each show an embodiment of the present invention. FIG. 1 is a schematic diagram of the sputtering device, FIG. 2 is a perspective view of the motor, and FIGS.
5 and 5 are diagrams showing the film thickness distribution with respect to the eccentric distance of the magnet, FIG. 6 is a diagram showing the sputtering speed with respect to the sputtering area, FIG. 7 is an explanatory diagram showing the state of target erosion, and FIG. 8 1 is a schematic configuration diagram showing a conventional sputtering device. DESCRIPTION OF SYMBOLS 1... Target, 2... Magnet, 3... Processing object, 4... Holder, 5... Vacuum container, 6... Support stand, 7
...Motor, 8...Shaft, 9...Mounting hole, 10...Magnet mounting plate.
Claims (1)
隔を有するように配置し、上記ターゲツトの裏面
側に配置したマグネツトを上記ターゲツトの中心
に対して公転させながら上記被処理物へのスパツ
タリングを行なうスパツタ装置において、上記真
空容器の外方に上記ターゲツトの中心と一致する
軸線を中心として回転し、上面にマグネツトを取
付けるマグネツト取付板を配置するとともに、こ
のマグネツトの中心と上記マグネツト取付板の回
転中心との距離を調節自在に構成し、上記ターゲ
ツトの裏面側にターゲツト冷却用水を導通するた
めの空間を設けたことを特徴とするスパツタ装
置。1. A sputtering apparatus in which a target is placed in a vacuum container at a constant distance from the workpiece, and a magnet placed on the back side of the target is rotated around the center of the target to sputter the workpiece. In the apparatus, a magnet mounting plate is disposed outside the vacuum container and rotates around an axis that coincides with the center of the target, and a magnet is attached to the top surface thereof, and the center of the magnet and the rotation center of the magnet mounting plate are connected to each other. 1. A sputtering device characterized in that the distance between the sputtering device and the sputtering device is adjustable, and a space is provided on the back side of the target to conduct water for cooling the target.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21577984A JPS6199673A (en) | 1984-10-15 | 1984-10-15 | Sputtering device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21577984A JPS6199673A (en) | 1984-10-15 | 1984-10-15 | Sputtering device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6199673A JPS6199673A (en) | 1986-05-17 |
JPS642189B2 true JPS642189B2 (en) | 1989-01-13 |
Family
ID=16678088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21577984A Granted JPS6199673A (en) | 1984-10-15 | 1984-10-15 | Sputtering device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6199673A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63282263A (en) * | 1987-05-13 | 1988-11-18 | Fuji Electric Co Ltd | Magnetron sputtering device |
GB8909747D0 (en) * | 1989-04-27 | 1989-06-14 | Ionic Coatings Limited | Sputtering apparatus |
US6228236B1 (en) * | 1999-10-22 | 2001-05-08 | Applied Materials, Inc. | Sputter magnetron having two rotation diameters |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5956580A (en) * | 1982-09-27 | 1984-04-02 | Fujitsu Ltd | Sputtering method |
-
1984
- 1984-10-15 JP JP21577984A patent/JPS6199673A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6199673A (en) | 1986-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5130005A (en) | Magnetron sputter coating method and apparatus with rotating magnet cathode | |
JPH04276071A (en) | Spatter cathode for covering substrate by cathode spattering device | |
US20110186427A1 (en) | Cylindrical Magnetron Having a Shunt | |
JPH0525626A (en) | Rotational sputtering device for selected corrosion | |
JP2970317B2 (en) | Sputtering apparatus and sputtering method | |
JPH07166346A (en) | Magnetron sputtering device | |
JP2005187830A (en) | Sputtering apparatus | |
JPS642189B2 (en) | ||
JPH0240739B2 (en) | SUPATSUTASOCHI | |
JP3056222B2 (en) | Sputtering apparatus and sputtering method | |
JPS60224775A (en) | Sputtering device | |
JPH0768614B2 (en) | Carousel type sputtering device and spattering method thereof | |
JP2009001912A (en) | Sputtering method, device and method for producing electronic component | |
JP2895506B2 (en) | Sputtering equipment | |
JP2746695B2 (en) | Sputtering apparatus and sputtering method | |
JPS6365069A (en) | Sputtering device | |
JP2000319780A (en) | Sputtering cathode and magnetron type sputtering device equipped with the same | |
JPH0211761A (en) | Sputtering device | |
JP3545050B2 (en) | Sputtering apparatus and sputtering thin film production method | |
JPH02290971A (en) | Sputtering device | |
JPH04371575A (en) | Sputtering device | |
JPH0768617B2 (en) | Magnetron sputtering equipment | |
JPS5931847B2 (en) | High frequency sputtering equipment | |
JPH0593268A (en) | Sputtering cathode and sputtering apparatus using it | |
JPS59200763A (en) | Sputtering device |