JPS60224775A - Sputtering device - Google Patents

Sputtering device

Info

Publication number
JPS60224775A
JPS60224775A JP7946784A JP7946784A JPS60224775A JP S60224775 A JPS60224775 A JP S60224775A JP 7946784 A JP7946784 A JP 7946784A JP 7946784 A JP7946784 A JP 7946784A JP S60224775 A JPS60224775 A JP S60224775A
Authority
JP
Japan
Prior art keywords
magnet
target
wafer
length
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7946784A
Other languages
Japanese (ja)
Inventor
Hideaki Otake
秀明 大竹
Ichiro Fujita
藤田 一朗
Toru Takeuchi
竹内 透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP7946784A priority Critical patent/JPS60224775A/en
Publication of JPS60224775A publication Critical patent/JPS60224775A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Abstract

PURPOSE:To provide a sputtering device which improves the stickability of a target material to the peripheral part of a wafer by disposing a disk-shaped opposed magnet part which consists of both N-pole and S-pole magnets and has recesses in at least part thereof below the target. CONSTITUTION:The opposed magnet part 10 which consists of the N-pole magnet 11 and the S-pole magnet 12 and forms approximately the concentrical circle smaller than the diameter of the target 13 is eccentric in the circle from the circle by the target 13 and has the recesses in part of the respective magnets 11, 12. Each recess is formed of the two sides of the isosceles triangle extending to the neibhorhood of the center of the magnet part 10. The arc part corresponding to the two sides of said triangle is so set as to have about 10- 20% length of the circumference of the magnet part 10. The part 10 is disposed below the target 13. The above-mentioned recess is formed of a chord and even if the length of the arc for said chord is set to about 20-30% length of the circumference of the magnet part 10, the similar effect is obtd.

Description

【発明の詳細な説明】 fi+発明の技術分野 本発明はスパッタ装置、詳しくはウェハ一枚処理のスパ
ッタにおいてターゲツト材の被着性カバレンジ(cov
erage)が改良されたスパッタ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION FI+ Technical Field of the Invention The present invention relates to a sputtering apparatus, specifically, to a sputtering apparatus for sputtering a single wafer.
The present invention relates to a sputtering apparatus with improved erage.

(2)技術の背景 例えばウェハ上にアルミニウム(An配線層を形成する
場合にはマグネトロンスパッタで一枚処理によりウェハ
上にAj2薄膜を形成することが行われ、それには第1
図に概略断面図で示される装置が用いられる。同図にお
いて、■は真空チャンバ、2はウェハ、3はAfiのタ
ーゲット、4は偏心回転方式のN極磁石およびS極磁石
からなる対向磁石部を示し、操作において、チャンバ1
は5 X 1O−7Torr程度の真空にひかれ、次い
でチャンバ内に2〜20m Torrのアルゴン(Ar
)を供給しチャンバ内の真空度を10−’ Torrの
オーダーに下げ、ターゲット3に一500vの電圧を印
加してプラズマを発生させ、ArからAr+と電子e−
を発生させ、Ar+がターゲット3を衝撃してAIをた
たき出すと、このAIがウェハ上に被着しへβ薄膜が形
成される。ウェハ2はターゲット3に対しては対向配置
の状態にあり、対向磁石部4はターゲ・ノドに対し偏心
的に配置されている。そのための磁石4は第2図に模式
的に示され、対向磁石部4は矢印の方向に偏心回転する
(2) Background of the technology For example, when forming an aluminum (An) wiring layer on a wafer, an Aj2 thin film is formed on the wafer by single-layer processing using magnetron sputtering.
The apparatus shown in schematic cross-section in the figure is used. In the same figure, ■ indicates a vacuum chamber, 2 indicates a wafer, 3 indicates an Afi target, and 4 indicates an opposing magnet section consisting of an eccentric rotation type N-pole magnet and a S-pole magnet.
is drawn to a vacuum of about 5 x 1O-7 Torr, and then 2 to 20 m Torr of argon (Ar
), the degree of vacuum in the chamber is lowered to the order of 10-' Torr, and a voltage of -500 V is applied to the target 3 to generate plasma, which converts Ar to Ar+ and electrons e-
When Ar+ bombards the target 3 and knocks out AI, this AI adheres to the wafer, forming a β thin film. The wafer 2 is placed opposite the target 3, and the opposing magnet section 4 is placed eccentrically with respect to the target nod. The magnet 4 for this purpose is schematically shown in FIG. 2, and the opposing magnet portion 4 rotates eccentrically in the direction of the arrow.

(3)従来技術と問題点 上記の装置を用いてスパッタするときに、ウェハ2上に
段差があるとAIの被着について問題があることを本発
明者は見出した。第3図の概略断面図には、ウェハ2と
ターゲット3とは第1図に示すものとは倒置して示され
るが、ウェハ2上に段差部2a(外側の段差部)と2b
(内側の段差部)とがある場合、段差部2b上へのAI
3aの被着状態は良好であるが、段差部2aについては
、段差部2bに面する内側部分とその反対の外側部分と
では図に示す如(A7!3aの被着状態が異なり、外側
部分で十分にAj!3aが被着しない、すなわちカバレ
ッジが悪いことが確認され、かかる現象はスパッタの片
効きともいわれる。なお第2図において対向磁石部の磁
石はN、Sで表示する。いいかえると、従来のスパッタ
装置を用いると、ウェハの周辺部分においてはターゲッ
ト材料の被着性が悪い。
(3) Prior Art and Problems The present inventor has found that when sputtering is performed using the above-mentioned apparatus, there is a problem with the adhesion of AI if there is a step on the wafer 2. In the schematic cross-sectional view of FIG. 3, the wafer 2 and target 3 are shown upside down from those shown in FIG.
(Inner step part) If there is an AI on the step part 2b
The adhesion state of A7!3a is good, but as shown in the figure, the inner part facing the step part 2b and the opposite outer part of the step part 2a are different (the adhesion state of A7!3a is different, and the outer part is different). It was confirmed that Aj!3a was not sufficiently adhered, that is, the coverage was poor, and this phenomenon is also called sputtering effect.In addition, in Fig. 2, the magnets in the opposing magnet part are indicated by N and S.In other words, However, when conventional sputtering equipment is used, adhesion of the target material is poor in the periphery of the wafer.

上記した片効きの原因は、ターゲット3からのAa3a
の寄与分が、段差部2aの外側部分では少ないからであ
る。対向磁石部を偏心的に回転させつつスパッタを行う
とき、ターゲットは図示の如くえくられ(エロージョン
され) AP環原子図に矢印で示す如くに飛んでウェハ
2に到達するが、図から理解される如く、内側段差部2
bに対してはその両方側からへρ原子が飛んでくるが、
外側段差部2aの外側部分に対してはそうでなく、その
結果この外側部分への^lのカバレッジが悪くなるので
ある。
The cause of the above-mentioned one-sided effect is Aa3a from target 3.
This is because the contribution is small in the outer portion of the stepped portion 2a. When sputtering is performed while rotating the facing magnet eccentrically, the target is eroded as shown in the figure, and flies as shown by the arrow in the AP ring atomic diagram to reach wafer 2, but this is not understood from the figure. Inner step part 2
ρ atoms fly towards b from both sides,
This is not the case for the outer portion of the outer stepped portion 2a, and as a result, the coverage of ^l to this outer portion is poor.

かかるカバレッジ不良を解決するには、理論上はターゲ
ットの径りを限りなく大にすればよいのであるが、本発
明者の行った実験によると、ターゲット3の径りをウェ
ハの径(d)に対し、少なくともD>2dに、好ましく
はD = 3dに、またターゲットとウェハ間の距離を
Sとするときに、5=(1/2〜2/3)dに設定しな
ければならない。
In order to solve such poor coverage, the diameter of the target should theoretically be made as large as possible, but according to experiments conducted by the present inventor, the diameter of the target 3 can be adjusted to the diameter of the wafer (d). However, it is necessary to set at least D>2d, preferably D=3d, and when S is the distance between the target and the wafer, 5=(1/2 to 2/3)d.

最近ウェハは大口径化するイ頃向にあり、約20cm(
8!ン)径のウェハが用いられている。クーゲットの経
りを20cmX 3 = 60c+++にすると、材料
コスI・が著しく高くなり、またそのような大口径のタ
ーゲットに対応する大口径の対向磁石部を回転させるに
は装置が大型化複雑化する。そこで、大口径化するウェ
ハに対し、ターゲット材料が被着性よくスパッタされる
装置が要望されている。
Recently, wafers are on the verge of becoming larger in diameter, about 20 cm (
8! Wafers with a diameter of If the diameter of the Kuget is set to 20 cm x 3 = 60 c +++, the material cost I will be significantly higher, and the equipment will become larger and more complicated to rotate the large-diameter opposing magnet part that corresponds to such a large-diameter target. . Therefore, there is a need for an apparatus that can sputter target materials with good adhesion to wafers that are becoming larger in diameter.

(4)発明の目的 本発明は上記従来の問題に鑑み、偏心回転式電極を用い
る一枚処理のウェハが対向配置される構成のスパッタ装
置において、ウェハ周辺部におけるターゲット材料の被
着性が改善される装置を提供することを目的とする。
(4) Purpose of the Invention In view of the above-mentioned conventional problems, the present invention provides a sputtering apparatus in which single-processing wafers are arranged facing each other using eccentric rotating electrodes, and the adhesion of target material at the periphery of the wafer is improved. The purpose is to provide a device that can

(5)発明の構成 そしてこの目的は本発明によれば、磁石偏心回転方式の
スパッタ装置において、ターゲットの下方に配置される
N極磁石およびS極磁石から成り、少なくとも一部に凹
みを有する円状の対向磁石部を具備することを特徴とす
るスパック装置を提供すること、更に前記凹みが二等辺
三角形の二辺を形成し、前記対向磁石部の中心近くまで
延びる構成を有し、前記二等辺三角形の二辺に対応する
弧の長さ全体が前記対向磁石部の円周の長さの10〜2
0%であること、及び前記凹みが弦を形成し、該弦に対
する弧の長さ全体が前記対向磁石部の円周の長さの20
〜30%であることを提供することにより達成される。
(5) Structure and object of the invention According to the present invention, in a magnet eccentric rotation type sputtering apparatus, the sputtering apparatus is composed of a north-pole magnet and a south-pole magnet disposed below a target, and has a circular shape having a recess in at least a part of the sputtering apparatus. There is provided a spuck device characterized in that the spacing device is provided with a facing magnet portion having a shape, and further having a configuration in which the recess forms two sides of an isosceles triangle and extends to near the center of the facing magnet portion; The entire length of the arc corresponding to the two sides of the equilateral triangle is 10 to 2 times the length of the circumference of the opposing magnet part.
0%, and the recess forms a chord, and the entire arc length for the chord is 20% of the circumference of the opposing magnet portion.
This is achieved by providing ~30%.

(6)発明の実施例 以下本発明実施例を図面によって詳説する。(6) Examples of the invention Embodiments of the present invention will be explained in detail below with reference to the drawings.

第2図に示した磁石偏心回転方式においては、ターゲッ
トの有効利用のみが着目されたものであるが、最近はウ
ェハ上に形成される股の膜厚分布とカバレッジも注目さ
れるようになってきた。その理由は、前記した如くウェ
ハは大口径化する一方で、集積回路の微細化が進むにつ
れて、ウェハ上に設けられる膜が、膜厚均一にかつカバ
レッジよく形成されることが要求されるからである。こ
のカバレッジをよくするについて本発明者は実験を重ね
、ターゲットの周辺部分で深く、かつ、同時に中心部の
近くでもエロージョンが進むとよいことを確認した。第
4図を参照すると、ウェハとターゲットの径がほぼ等し
いときに、ターゲツト材図示の如くエロージョンされる
とき、すなわちターゲットの周辺部分で1の深さにエロ
ージョンが進んだとき中心に近い部分で約1/4の深さ
にエロージョンが起ると、ウェハ上には均一な膜厚の薄
膜がカバレンジよく形成される。
In the magnet eccentric rotation method shown in Figure 2, the focus was only on the effective use of the target, but recently, attention has also been paid to the thickness distribution and coverage of the crotch film formed on the wafer. Ta. The reason for this is that, as mentioned above, as wafers become larger in diameter and as integrated circuits become smaller, it is required that the film provided on the wafer be formed with uniform thickness and good coverage. be. In order to improve this coverage, the present inventor has conducted repeated experiments and has confirmed that it is good for the erosion to be deep in the periphery of the target and at the same time proceed near the center. Referring to FIG. 4, when the diameters of the wafer and the target are approximately equal, when the target material is eroded as shown in the figure, that is, when the erosion progresses to a depth of 1 at the peripheral part of the target, the part near the center is approximately When erosion occurs at a depth of 1/4, a thin film of uniform thickness is formed on the wafer with good coverage.

上記の如きターゲットのエロージョンを発生させるには
、対向磁石部を第5図に示す如くに形成すればよいこと
が同じく実験により確かめられた。
It has also been confirmed through experiments that in order to cause the target erosion as described above, it is sufficient to form the opposing magnet portions as shown in FIG.

なお第5図において、11は対向磁石部のN極磁石、1
2は対向磁石部のS極磁石、13はターゲットを示し、
N極磁石11およびS極磁石12からなり、クーゲット
13の径より小なるほぼ同心円を形成する対向磁石部1
0は、その円がクーゲット13による円とは偏心的であ
り、各磁石の一部は各磁石の形成する円の中心に向は二
等辺三角形の二辺を形成する如くに延び、かかる三角形
の二辺に対応する弧の部分は、対応磁石部IOの円周の
10〜20%程の長さになるよう設定する。
In FIG. 5, 11 is the N-pole magnet of the opposing magnet part, 1
2 is the S pole magnet of the opposing magnet part, 13 is the target,
An opposing magnet section 1 consisting of a N-pole magnet 11 and a S-pole magnet 12 and forming a substantially concentric circle smaller than the diameter of the Kugett 13.
0, the circle is eccentric from the circle according to Kugett 13, and a part of each magnet extends from the center of the circle formed by each magnet so as to form two sides of an isosceles triangle. The arc portions corresponding to the two sides are set to have a length of approximately 10 to 20% of the circumference of the corresponding magnet portion IO.

上記した構成の対向磁石部10を第6図の断面図に示さ
れる如く配置する。第6図において、14は真空チャン
バ、15はウェハ、16はウェハ支持体、17は支持爪
、18はターゲット13のための銅製バッキングプレー
ト、19は冷却室、20は冷却水導入孔、21は冷却水
排出孔、22は対向磁石部回転軸、23は密封用の例え
ばOリングを示し、チャンバの真空度等は第1図を参照
して説明した場合と同様であり、対向磁石部lOは第5
図における切断線Vl−Vlで切断した状態で示される
The opposing magnet section 10 having the above-mentioned configuration is arranged as shown in the cross-sectional view of FIG. In FIG. 6, 14 is a vacuum chamber, 15 is a wafer, 16 is a wafer support, 17 is a support claw, 18 is a copper backing plate for the target 13, 19 is a cooling chamber, 20 is a cooling water introduction hole, and 21 is a The cooling water discharge hole, 22 is the rotating shaft of the opposing magnet part, 23 is an O-ring for sealing, etc. The degree of vacuum of the chamber is the same as that described with reference to FIG. 1, and the opposing magnet part lO is Fifth
It is shown cut along the cutting line Vl-Vl in the figure.

かかる対向磁石部を用いてスパッタを行ったところ、タ
ーゲット13のエロージョンは第4図に示す如きもので
あり、また第3図を参照して説明した片効きは見られず
、均一な膜厚のAj!薄膜がカバレンジよく形成される
ことが確認された。
When sputtering was performed using such a facing magnet section, the erosion of the target 13 was as shown in FIG. 4, and the unilateral effect explained with reference to FIG. Aj! It was confirmed that a thin film was formed with good coverage.

本発明の第2実施例においては、対向磁石部10を第7
図に示される如くに形成する。すなわち、ターゲット1
3とは偏心的な円状の対向磁石部lOの一部に弦が形成
されており、その弦に対応する弧の長さが対向磁石部1
0の円周の長さの20〜30%程となる如くに形成し、
これらの対向磁石部1oを第6図に示す場合と同様に配
置する。かがる対向磁石部10を用いても第5図に示し
た対向磁石部1oを用いた場合と同様の良好な結果が得
られることが確認された。
In the second embodiment of the present invention, the opposing magnet section 10 is
Form as shown in the figure. That is, target 1
3, a chord is formed in a part of the eccentric circular opposing magnet part lO, and the length of the arc corresponding to the chord is the opposing magnet part 1.
It is formed so that it is about 20 to 30% of the length of the circumference of 0,
These opposing magnet portions 1o are arranged in the same manner as shown in FIG. It was confirmed that the same good results as in the case of using the facing magnet part 1o shown in FIG. 5 can be obtained even when the bent facing magnet part 10 is used.

(7)発明の効果 以上詳細に説明した如く本発明によれば、磁石偏心回転
方式のスパッタ装置において、少なくとも一部に凹みを
有する円状の対向磁石部を具備することにより、ターゲ
ットのエロージョンの形状は、ターゲット周辺部分が深
(削られると共に中心部付近においても削られたものと
なり、ターゲット外周側からより多くのターゲツト材が
対向配置されたウェハに飛来するので、ウェハ周辺部に
も均一な膜厚の薄膜がカバレッジよく形成される効果が
ある。
(7) Effects of the Invention As described in detail above, according to the present invention, in an eccentric magnet rotation type sputtering apparatus, target erosion is prevented by providing a circular opposing magnet portion having at least a portion of a recess. The shape of the target is that the peripheral part of the target is deeply shaved (and the center area is also scraped), and as more target material comes from the outer circumferential side of the target to the wafer placed opposite to it, it is uniform around the wafer. This has the effect of forming a thin film with good coverage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はスパッタ装置の概略断面図、第2図は従来の装
置の対向磁石部を示す平面図、第3図はターゲットと対
向磁石部の配置を示す断面図、第4図はクーゲットのエ
ロージョンを示す断面図、第5図と第7図は本発明にが
がる対向磁石部の平面図、第6図は第5図と第7図の対
向磁石部を用いるスパッタ装置の断面図である。 4 、10−一対向磁石部、11.12一対向磁石部の
磁石、13.23 ターゲット、14−チャンバ、15
 ウェハ、 16 ウェハ支持体、17 ウェハ支持爪、18−バッ
キングプレート、19 冷却室、20 冷却水導入孔、
21 冷却水排出孔、22−回転軸、23−oリング 第1図 第2図 第3図 NS φ−−d −一ゆ 第4図
Fig. 1 is a schematic cross-sectional view of the sputtering device, Fig. 2 is a plan view showing the opposing magnet section of a conventional device, Fig. 3 is a sectional view showing the arrangement of the target and the opposing magnet section, and Fig. 4 is the erosion of the Couget. FIGS. 5 and 7 are plan views of the opposing magnet sections according to the present invention, and FIG. 6 is a sectional view of a sputtering apparatus using the opposing magnet sections shown in FIGS. 5 and 7. . 4, 10-one opposing magnet section, 11.12 magnet of one opposing magnet section, 13.23 target, 14-chamber, 15
wafer, 16 wafer support, 17 wafer support claw, 18 backing plate, 19 cooling chamber, 20 cooling water introduction hole,
21 Cooling water discharge hole, 22-Rotating shaft, 23-O ring Fig. 1 Fig. 2 Fig. 3 NS φ--d -1-Yu Fig. 4

Claims (1)

【特許請求の範囲】 +11磁石偏心回転方式のスパッタ装置において、ター
ゲットの下方に配置されるN極磁石およびS極磁石から
成り、少なくとも一部に凹みを有する円状の対向磁石部
を具備することを特徴とするスパッタ装置。 (2)前記凹みが二等辺三角形の二辺を形成し、前記対
向磁石部の中心近くまで延びる構成を有し、前記二等辺
三角形の二辺に対応する弧の長さ全体が前記対向磁石部
の円周の長さの10〜20%であることを特徴とする特
許請求の範囲第1項記載のスパッタ装置。 (3)前記凹みが弦を形成し、該弦に対する弧の長さ全
体が前記対向磁石部の円周の長さの20〜30%である
ことを特徴とする特許請求の範囲第1項記載のスパッタ
装置。
[Scope of Claims] A +11 magnet eccentric rotation type sputtering apparatus, comprising a circular opposing magnet portion having a recess in at least a portion, the sputtering device comprising a north pole magnet and a south pole magnet arranged below the target. A sputtering device featuring: (2) The recess forms two sides of an isosceles triangle and extends to near the center of the opposing magnet portion, and the entire length of the arc corresponding to the two sides of the isosceles triangle is the opposing magnet portion. 2. The sputtering apparatus according to claim 1, wherein the length is 10 to 20% of the circumference of the sputtering apparatus. (3) The recess forms a chord, and the entire length of the arc with respect to the chord is 20 to 30% of the length of the circumference of the opposing magnet portion. sputtering equipment.
JP7946784A 1984-04-20 1984-04-20 Sputtering device Pending JPS60224775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7946784A JPS60224775A (en) 1984-04-20 1984-04-20 Sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7946784A JPS60224775A (en) 1984-04-20 1984-04-20 Sputtering device

Publications (1)

Publication Number Publication Date
JPS60224775A true JPS60224775A (en) 1985-11-09

Family

ID=13690686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7946784A Pending JPS60224775A (en) 1984-04-20 1984-04-20 Sputtering device

Country Status (1)

Country Link
JP (1) JPS60224775A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142764A (en) * 1985-12-17 1987-06-26 Rohm Co Ltd Method for regulating film thickness during magnetron sputtering
JPS62195109A (en) * 1986-02-21 1987-08-27 Hitachi Ltd Sputtering device
JPH02259071A (en) * 1989-03-31 1990-10-19 Ulvac Corp Electrode device for magnetron sputtering
JPH04183857A (en) * 1990-11-16 1992-06-30 Tokuda Seisakusho Ltd Structure of magnet for planar magnetron sputtering source
JPH04228567A (en) * 1990-03-30 1992-08-18 Applied Materials Inc Planar magnetron sputtering system
US5182003A (en) * 1990-12-07 1993-01-26 Leybold Aktiengesellschaft Stationary magnetron sputtering cathode for a vacuum coating apparatus
JPH0688220A (en) * 1992-08-18 1994-03-29 Internatl Business Mach Corp <Ibm> Metal film having large particle size and method for coating thereof
US5374343A (en) * 1992-05-15 1994-12-20 Anelva Corporation Magnetron cathode assembly
WO2006114229A1 (en) * 2005-04-25 2006-11-02 Steag Hama Tech Ag Magnet system for a spraying cathode
US8470145B2 (en) 2008-06-26 2013-06-25 Ulvac, Inc. Cathode unit and sputtering apparatus provided with the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142764A (en) * 1985-12-17 1987-06-26 Rohm Co Ltd Method for regulating film thickness during magnetron sputtering
JPS62195109A (en) * 1986-02-21 1987-08-27 Hitachi Ltd Sputtering device
JPH02259071A (en) * 1989-03-31 1990-10-19 Ulvac Corp Electrode device for magnetron sputtering
JPH04228567A (en) * 1990-03-30 1992-08-18 Applied Materials Inc Planar magnetron sputtering system
JPH04183857A (en) * 1990-11-16 1992-06-30 Tokuda Seisakusho Ltd Structure of magnet for planar magnetron sputtering source
US5182003A (en) * 1990-12-07 1993-01-26 Leybold Aktiengesellschaft Stationary magnetron sputtering cathode for a vacuum coating apparatus
US5374343A (en) * 1992-05-15 1994-12-20 Anelva Corporation Magnetron cathode assembly
JPH0688220A (en) * 1992-08-18 1994-03-29 Internatl Business Mach Corp <Ibm> Metal film having large particle size and method for coating thereof
WO2006114229A1 (en) * 2005-04-25 2006-11-02 Steag Hama Tech Ag Magnet system for a spraying cathode
DE102005019100B4 (en) * 2005-04-25 2009-02-12 Steag Hamatech Ag Magnetic system for a sputtering cathode
US8470145B2 (en) 2008-06-26 2013-06-25 Ulvac, Inc. Cathode unit and sputtering apparatus provided with the same

Similar Documents

Publication Publication Date Title
KR100740811B1 (en) High-density plasma source for ionized metal deposition
US7618521B2 (en) Split magnet ring on a magnetron sputter chamber
EP0884761B1 (en) Sputtering apparatus with a rotating magnet array
JP4606162B2 (en) Small planetary magnetron
JPH036990B2 (en)
US5194131A (en) Apparatus and method for multiple ring sputtering from a single target
JP2899190B2 (en) Permanent magnet magnetic circuit for magnetron plasma
JPH08176817A (en) Magnetron sputtering device
JPH04268075A (en) Magnetron spattering cathode in fixed position for metallizing device
US5126029A (en) Apparatus and method for achieving via step coverage symmetry
JPS60224775A (en) Sputtering device
JPH0669026B2 (en) Semiconductor processing equipment
JP2912864B2 (en) Magnetron unit for sputtering equipment
JPH0240739B2 (en) SUPATSUTASOCHI
US5919345A (en) Uniform film thickness deposition of sputtered materials
JPS6289864A (en) Magnetron sputtering device
JP2008214709A (en) Magnetron sputtering system
JP3056222B2 (en) Sputtering apparatus and sputtering method
JPS59173265A (en) Sputtering device
JPH0565634A (en) Sputtering apparatus
JPH04371575A (en) Sputtering device
KR20210096255A (en) Sputtering apparatus and sputtering method
JPH024966A (en) Sputtering device
JPS5931847B2 (en) High frequency sputtering equipment
JP3343819B2 (en) Ion etching method and apparatus