JPS641952Y2 - - Google Patents

Info

Publication number
JPS641952Y2
JPS641952Y2 JP5736684U JP5736684U JPS641952Y2 JP S641952 Y2 JPS641952 Y2 JP S641952Y2 JP 5736684 U JP5736684 U JP 5736684U JP 5736684 U JP5736684 U JP 5736684U JP S641952 Y2 JPS641952 Y2 JP S641952Y2
Authority
JP
Japan
Prior art keywords
burner
melting
supply passage
blowing hole
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5736684U
Other languages
Japanese (ja)
Other versions
JPS60172761U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5736684U priority Critical patent/JPS60172761U/en
Publication of JPS60172761U publication Critical patent/JPS60172761U/en
Application granted granted Critical
Publication of JPS641952Y2 publication Critical patent/JPS641952Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Spray-Type Burners (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案はアルミニウムを重油等の燃焼にて高
速・高熱効率で溶解するアルミニウムの溶解炉に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an aluminum melting furnace that melts aluminum at high speed and with high thermal efficiency by burning heavy oil or the like.

〔従来の技術〕[Conventional technology]

アルミニウムは、文献「軽金属」(Vo1.30、No.
3、1980)に記載されている如く非常にエミシビ
テイーが小さく、特に溶けたアルミニウムはメタ
ルミラーとなり熱を吸収しにくいものとして知ら
れている。
Aluminum is described in the literature “Light Metals” (Vo1.30, No.
3, 1980), it is known that emisivity is very small, and in particular, molten aluminum becomes a metal mirror and is difficult to absorb heat.

従来アルミニウム溶解炉は反射炉として輻射伝
熱を主体としたものであつたが近年溶解率の向上
を目的とし、バーナーの高温燃熱ガスを直接冷材
に当てて伝熱促進を計つたいわゆる対流加熱が注
目されてきている。
Conventionally, aluminum melting furnaces were reverberatory furnaces that mainly used radiation heat transfer, but in recent years, with the aim of improving the melting rate, so-called convection has been used to promote heat transfer by applying high-temperature combustion gas from the burner directly to the cool material. Heating is attracting attention.

この場合燃焼速度を上げるために空気に旋回を
与え、バーナータイルからの噴出速度を速くする
手段が一般的である。但しタイルの寿命、NOX
濃度の問題などから噴出ガス速度は60〜80m/
sec以下が普通である。
In this case, in order to increase the combustion rate, it is common to swirl the air and increase the jetting rate from the burner tile. However, the life of the tile, NO
Due to concentration issues, the ejected gas velocity is 60 to 80 m/
sec or less is normal.

この場合のバーナータイル部噴出ガスの減衰例
を第1図に示す。第1図に示す如く噴出ガスはタ
イル部を離れるにつれて急激な速度低下を起こ
す。
An example of attenuation of the gas ejected from the burner tile section in this case is shown in FIG. As shown in FIG. 1, the velocity of the ejected gas decreases rapidly as it leaves the tile section.

最近の大型溶解炉の場合バーナーから溶湯面ま
で3m以上の距離があり、前述程度の噴出スピー
ドがないと対流伝熱効果は期待できない。一方溶
解炉の温度パターンと制御及びその時の燃料投入
量の例を第2図に示す。同図から明らかなよう
に、サイクルタイム中、炉温制御からアルミニウ
ム溶湯温度制御へ切換えた時、バーナー焚量(燃
料投入率)はスタート時の数分の1となりバーナ
ーのいわゆるターンダウン率は大きなものとな
る。
In the case of recent large-scale melting furnaces, the distance from the burner to the molten metal surface is 3 m or more, and convection heat transfer effects cannot be expected unless the ejection speed is as high as described above. On the other hand, an example of the temperature pattern and control of the melting furnace and the amount of fuel input at that time is shown in FIG. As is clear from the figure, when switching from furnace temperature control to molten aluminum temperature control during cycle time, the burner firing rate (fuel input rate) becomes a fraction of the starting rate, and the so-called turndown rate of the burner is large. Become something.

ターンダウンした場合のバーナーの噴出ガスス
ピードはターンダウン率に略々比例して小さくな
り、燃焼フレームの短炎化と火炎の浮き上がりが
起こり加熱効率の低下と炉温の不均一化が顕著で
ある。
When the burner is turned down, the gas speed ejected from the burner decreases approximately in proportion to the turndown rate, causing the combustion flame to become shorter and the flame to rise, resulting in a significant decrease in heating efficiency and uneven furnace temperature. .

これを第3図に模式的に示す。(図においてb
はバーナーを示し、Fはフレーム形状を示す。上
段がフル燃焼時、下段がターンダウン時を表す。) 〔考案の目的〕 本考案は以上のような問題を解消しようとする
ものでアルミニウム高速溶解炉の溶解後半から溶
湯温度保持中の加熱効率の低下及び炉温の不均一
を防止することを目的とする。
This is schematically shown in FIG. (In the figure b
indicates the burner, and F indicates the frame shape. The upper row represents full combustion, and the lower row represents turndown. ) [Purpose of the invention] The present invention is an attempt to solve the above-mentioned problems, and its purpose is to prevent a decrease in heating efficiency and unevenness of the furnace temperature during the latter half of melting and while maintaining the temperature of the molten metal in an aluminum high-speed melting furnace. shall be.

〔考案の構成〕[Structure of the idea]

本考案の前記の目的はバーナー中心軸に燃料供
給路及びその噴出孔を形成し、一方空気供給路
は、燃料供給路の外周に且つバーナー本体半径方
向に位相をずらした内流及び外流の2層で構成す
ると共に、内流空気の噴出孔は燃料噴出孔の近傍
に、外流空気の噴出孔は該内流空気噴出孔より離
隔した位置に形成して溶解用バーナーを構成し、
該溶解用バーナーを直接被加熱材に指向せしめる
如く配置したことを特徴とするアルミニウム溶解
炉によつて達成される。
The above-mentioned object of the present invention is to form a fuel supply passage and its jet hole in the central axis of the burner, while an air supply passage is formed on the outer periphery of the fuel supply passage and has two streams, an inner flow and an outer flow, which are shifted in phase in the radial direction of the burner body. The melting burner is constructed of layers, and the internal air jet holes are formed in the vicinity of the fuel jet holes, and the external air jet holes are formed at a position separated from the internal air jet holes,
This is achieved by an aluminum melting furnace characterized in that the melting burner is arranged so as to point directly at the material to be heated.

次に本考案を図面に示す実施例を基にして説明
する。
Next, the present invention will be explained based on embodiments shown in the drawings.

まず、溶解用バーナー自体の構成を第4図に
より説明すると、バーナー本体1の軸心に燃料供
給路4と、その噴出孔4′を形成する。8は燃料
オイルの入口で、9は該燃料を霧化するための噴
霧媒体の入口を示す。
First, the structure of the melting burner B itself will be explained with reference to FIG. 4. A fuel supply passage 4 and its ejection holes 4' are formed in the axis of the burner body 1. 8 is an inlet for fuel oil, and 9 is an inlet for an atomizing medium for atomizing the fuel.

本考案にあつては、燃焼用空気の供給路は、上
記燃料供給路4の外周に、内流管3及び外流管2
と位相をずらした2層で形成されている。その
際、内流管3の噴出孔3′は、燃料噴出孔4′の近
傍に位置し、外流管2の噴出孔2′は、上記内流
管用噴出孔3′よりも先方に離隔した位置に形成
されている。なお5は覗き窓、6は点火孔、7は
外流空気のダンパーを示す。
In the present invention, the combustion air supply path includes an inner flow pipe 3 and an outer flow pipe 2 on the outer periphery of the fuel supply path 4.
It is made up of two layers that are out of phase. At this time, the ejection hole 3' of the inner flow pipe 3 is located near the fuel ejection hole 4', and the ejection hole 2' of the outer flow pipe 2 is located at a position further away from the above-mentioned inner flow pipe ejection hole 3'. is formed. Note that 5 is a viewing window, 6 is an ignition hole, and 7 is a damper for external air.

次に、本考案にあつては第5図に示す如く、上
記の如き構造になる溶解用バーナーを円形炉本
体10の側壁に装入材料(被溶解材料)11に向
けて取付ける。なお12は溶湯を示し、13は排
気煙道、14は扉、15は天井カバーを示す。
Next, in the present invention, as shown in FIG. 5, the melting burner B having the above-described structure is attached to the side wall of the circular furnace body 10 facing the charge material (material to be melted) 11. Note that 12 indicates a molten metal, 13 an exhaust flue, 14 a door, and 15 a ceiling cover.

〔考案の作用及び効果〕[Functions and effects of the invention]

本考案の溶解炉の操業の態様について説明す
る。先ず被溶解材の装入は天井カバー15を取外
しバケツト等の手段でクレーン等の利用により行
なわれる。
The operation of the melting furnace of the present invention will now be described. First, the material to be melted is charged by removing the ceiling cover 15 and using a crane or the like to load the material in a bucket or other means.

材料装入後再びカバー15を取付けて、バーナ
を点火することにより溶解作業が開始され
る。点火されたバーナーの火炎が装入材料11
とヒツトし予熱更には溶解が始まる。溶解スター
トから溶解後半にかけてバーナー燃焼量は最大も
しくはそれに近い値を示し火炎は装入材料11を
ヒツトし対流伝熱及び火炎輻射の相乗効果で高速
溶解が行なわれることになる。
After charging the materials, the cover 15 is attached again and the burner B is ignited to start the melting operation. The flame of the ignited burner B is the charging material 11
Then, preheating begins and melting begins. From the start of melting to the latter half of melting, the burner combustion amount reaches a maximum value or a value close to it, and the flame hits the charged material 11, resulting in high-speed melting due to the synergistic effect of convection heat transfer and flame radiation.

ところが溶解後半から完全溶け落ち更には溶湯
の温度制御域においてはバーナー燃焼量はターン
ダウンし、バーナーフレームは最大燃焼時より短
かくなる。一方装入材料11も溶けて落ちて小さ
くなつていくためバーナーフレームは装入材料に
届き難くなつていく。その時、エアーダンパー7
を操作して、外流空気を遮断し、内流空気だけを
使用してあたかも小容量のバーナーの最大燃焼に
相当するような直進性のある火炎を形成する(第
6図参照、a)からb)へ)。こうすることによ
り従来バーナーで問題となつていたターンダウン
時の加熱効率の低下と炉温の不均一性を改善でき
る。
However, in the latter half of melting, complete melting, and further in the molten metal temperature control range, the burner combustion amount turns down, and the burner flame becomes shorter than during maximum combustion. On the other hand, the charge material 11 also melts, falls down, and becomes smaller, making it difficult for the burner frame to reach the charge material. At that time, air damper 7
, cut off the outside air and use only the internal air to form a flame that moves in a straight line, as if it were the maximum combustion of a small-capacity burner (see Figure 6, a) to b )fart). By doing so, it is possible to improve the problems of conventional burners, such as the decrease in heating efficiency during turndown and the non-uniformity of the furnace temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は大気中での噴出ガスの減衰状態を示す
図、第2図は溶解炉の温度制御と燃料投入率の関
係を示す図表、第3図は従来構造のバーナーでタ
ーンダウンした時のフレーム形状の説明図、第4
図は本考案に従つたバーナー構造を示す説明図、
第5図は本考案溶解炉の説明図で、aは平面図、
bは側面図、第6図は本考案におけるバーナーの
最大使用時a及びターンダウン時bのフレーム形
状の説明図である。 1:バーナー本体、2:外流管、3:内流管、
4:燃料供給路、5:覗き窓、6:点火孔、7:
エアーダンパー、8:燃料オイルの入口、9:噴
霧媒体の入口、10:円形炉本体、11:装入材
料、12:溶湯、13:排気煙道、14:扉、1
5:天井カバー。
Figure 1 is a diagram showing the attenuation state of ejected gas in the atmosphere, Figure 2 is a diagram showing the relationship between melting furnace temperature control and fuel input rate, and Figure 3 is a diagram showing the relationship between melting furnace temperature control and fuel input rate. Explanatory diagram of frame shape, 4th
The figure is an explanatory diagram showing the burner structure according to the present invention,
Figure 5 is an explanatory diagram of the melting furnace of the present invention, where a is a plan view;
b is a side view, and FIG. 6 is an explanatory view of the frame shape of the burner according to the present invention at the time of maximum use a and at the time of turndown b. 1: burner body, 2: outer flow pipe, 3: inner flow pipe,
4: Fuel supply path, 5: Peephole, 6: Ignition hole, 7:
Air damper, 8: Fuel oil inlet, 9: Spray medium inlet, 10: Circular furnace body, 11: Charge material, 12: Molten metal, 13: Exhaust flue, 14: Door, 1
5: Ceiling cover.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] バーナー中心軸に燃料供給路及びその噴出孔を
形成し、一方空気供給路は、燃料供給路の外周に
且つバーナー本体半径方向に位相をずらした内流
及び外流の2層で構成すると共に、内流空気の噴
出孔は燃料噴出孔の近傍に、外流空気の噴出孔は
該内流空気噴出孔より離隔した位置に形成して溶
解用バーナーを構成し、該溶解用バーナーを直接
被加熱材に指向せしめる如く配置したことを特徴
とするアルミニウム溶解炉。
A fuel supply passage and its jet holes are formed on the central axis of the burner, while the air supply passage consists of two layers, an inner flow and an outer flow, which are located on the outer periphery of the fuel supply passage and whose phases are shifted in the radial direction of the burner body. A melting burner is formed by forming a blowing hole for the flowing air near the fuel blowing hole and a blowing hole for the external air at a position separated from the blowing hole for the internal air. An aluminum melting furnace characterized by being arranged so as to be oriented.
JP5736684U 1984-04-20 1984-04-20 aluminum melting furnace Granted JPS60172761U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5736684U JPS60172761U (en) 1984-04-20 1984-04-20 aluminum melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5736684U JPS60172761U (en) 1984-04-20 1984-04-20 aluminum melting furnace

Publications (2)

Publication Number Publication Date
JPS60172761U JPS60172761U (en) 1985-11-15
JPS641952Y2 true JPS641952Y2 (en) 1989-01-18

Family

ID=30581823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5736684U Granted JPS60172761U (en) 1984-04-20 1984-04-20 aluminum melting furnace

Country Status (1)

Country Link
JP (1) JPS60172761U (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4693968B2 (en) * 2000-09-11 2011-06-01 大陽日酸株式会社 Furnace operation method
JP5551857B2 (en) * 2008-07-09 2014-07-16 大阪瓦斯株式会社 Burner combustion furnace
JP5203421B2 (en) * 2010-06-04 2013-06-05 中外炉工業株式会社 melting furnace

Also Published As

Publication number Publication date
JPS60172761U (en) 1985-11-15

Similar Documents

Publication Publication Date Title
JP3913450B2 (en) Method for improving the performance of a glass melting furnace using a ceiling-mounted oxygen burner
CN207350378U (en) Gutter oil itself heat atomization clean combustion furnace
JPH06293522A (en) Method of melting and refining charge
TW202117254A (en) Multi-burner rotary furnace melting system and method
CN203653595U (en) Hot-blast stove with high-speed swirl premixed heat storage self-preheating combustion device
JPS641952Y2 (en)
WO2012163274A1 (en) Gas-burning and electric-arc dual-heating high-efficiency silicon refining furnace and heating method thereof
CN103725866B (en) The heating system of a kind of soaking pit and heat supply method
CN106766901B (en) A kind of aluminium melting furnace using smoke backflow low-oxygen high-temperature combustion
CN100478611C (en) Heat accumulation type low-oxidization heating furnace
CN214108770U (en) Ladle baking device and ladle baking device system
CN104848220B (en) Heat-storage-type burning device
KR100417156B1 (en) Combustion apparatus and melting furnace for nonferrous metals
CN106052377B (en) Gas-fired cupola
CN107101500A (en) A kind of high-efficiency heat-accumulating Non-ferrous metal melting furnace
CN206056234U (en) Gas-fired cupola
CN202885517U (en) Sandwich heating aluminum melting furnace system
CN205939111U (en) Heat accumulating type burning device
CN206609286U (en) Metallic gas smelting furnace
JPH0359389A (en) Melting of metal
CN206609290U (en) Metallic gas smelting furnace nozzle mechanism
CN206549953U (en) A kind of plastic-spraying baking and curing stove
JPH06306501A (en) Rapid melting and holding method for aluminium
CN1171536A (en) Reverberatory melting keeping furnace
CN2505789Y (en) Quick calcining device for shuttle kiln