JP4693968B2 - Furnace operation method - Google Patents

Furnace operation method Download PDF

Info

Publication number
JP4693968B2
JP4693968B2 JP2000274595A JP2000274595A JP4693968B2 JP 4693968 B2 JP4693968 B2 JP 4693968B2 JP 2000274595 A JP2000274595 A JP 2000274595A JP 2000274595 A JP2000274595 A JP 2000274595A JP 4693968 B2 JP4693968 B2 JP 4693968B2
Authority
JP
Japan
Prior art keywords
flow rate
liquid fuel
furnace
spray
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000274595A
Other languages
Japanese (ja)
Other versions
JP2002081865A (en
Inventor
義之 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2000274595A priority Critical patent/JP4693968B2/en
Publication of JP2002081865A publication Critical patent/JP2002081865A/en
Application granted granted Critical
Publication of JP4693968B2 publication Critical patent/JP4693968B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、炉の運転方法に関し、詳しくは、化石燃料、特に液体燃料を支燃性ガスで燃焼させるバーナ火炎の対流伝熱能力を利用して直接加熱方式で被加熱物を加熱溶解することを主目的とした炉の運転方法に関する。
【0002】
【従来の技術】
各種工業炉の加熱源として、化石燃料を支燃性ガスで燃焼させるバーナが広く用いられている。バーナの使用目的としては、立ち上げ時の炉体の昇温に始まり、操業時における被加熱物の昇温、溶解、反応等、多岐にわたっている。さらに、バーナに求められる伝熱性能も、金属溶解炉のように直接加熱による溶解を主目的としたものでは対流伝熱性能が、ガラス溶解炉のような反射炉においては輻射伝熱性能が、それぞれ求められている。
【0003】
【発明が解決しようとする課題】
対流伝熱性能を主とするバーナを設置した直接加熱方式の耐火物製金属溶解炉では、立ち上げ時の炉体の昇温にも同じバーナを使用しているが、その際、バーナ火炎が耐火物に直接衝突する部分では、耐火物の摩耗が激しくなり、炉体の寿命が短くなるという問題がある。
【0004】
一方、このような金属溶解炉に輻射伝熱性能を主とするバーナを設置した場合は、伝熱形態が間接加熱となるため、耐火物の摩耗はほとんど生じないが、被加熱物(金属原料)を装入したときの加熱溶解性能が十分に得られなくなってしまう。
【0005】
そこで本発明は、立ち上げ時の炉体の昇温を効率よく行うことができ、被加熱物の加熱溶解も効果的に行うことができる炉の運転方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本発明の炉の運転方法は、液体燃料と噴霧流体とを混合して噴霧口から液体燃料を霧状に噴出する燃料噴霧室と、前記噴霧口を中心とする円周部に設けられた支燃性ガス噴出口と、前記噴霧流体の流量を調節する流量調節手段とを備えた一つの液体燃料バーナから得られるバーナー火炎を利用して被加熱物を加熱・溶解する炉の運転方法において、液体燃料流量に対する噴霧流体流量の流量比を調節して、被加熱物の装入前の炉内を昇温する際には、前記流量比を小さくすることにより、輻射伝熱特性に優れた火炎とし、炉内昇温後に炉内に装入した被加熱物を加熱・溶解する際には、前記流量比を大きくすることにより、対流伝熱特性に優れた火炎とすることを特徴としている。
【0008】
【発明の実施の形態】
図1は、本発明の炉の運転方法を実施するための工業炉の一例を示す概略図である。この工業炉は、例えば金属原料を溶解するためのものであって、炉1の一側に、被加熱物である金属原料2を装入するための原料装入部3を兼ねる排気口4を設けるとともに、炉の他側に、加熱源となる火炎を形成するための液体燃料バーナ11を設置している。また、金属原料2の炉内への装入は、駆動源であるモータ5を有する金属原料投入装置6を使用しており、炉1の天井部には、炉内温度を測定するための温度測定手段7が設けられている。
【0009】
液体燃料用バーナ11には、各種構造のものを使用可能であるが、例えば、図2の断面側面図及び図3の正面図に示すように、酸素や空気、水蒸気等の噴霧流体によって重油や灯油等の液体燃料を噴霧する構造のノズルを用いた液体燃料用バーナが最適である。この液体燃料用バーナ11は、液体燃料流路12と、噴霧流体流路13と、支燃性ガス流路14とを同心状に設けた多重管構造を有しており、液体燃料流路12及び噴霧流体流路13の先端部に、液体燃料を霧状に噴出するための燃料噴霧室15が設けられている。
【0010】
燃料噴霧室15は、バーナ軸線を中心軸とした円筒状に形成されており、バーナ基端部側には、液体燃料流路12に連通する燃料供給ノズル16の先端が軸線方向に挿入され、該燃料供給ノズル16の先端外周と燃料噴霧室15の内周との間に、前記噴霧流体流路13に連通する噴霧流体通路17が形成されている。
【0011】
前記燃料噴霧室15の先端部中央には、燃料噴霧室15内で噴霧流体と混合した液体燃料を霧状に噴出する噴霧口18がバーナ軸線方向に設けられており、この噴霧口18の周囲には、該噴霧口18を中心とする円周上に、前記支燃性ガス流路14に連通する支燃ガス性ガス噴出口19が設けられている。
【0012】
さらに、前記噴霧口18及び及び支燃性ガス噴出口19を有するバーナノズル11aを含む液体燃料用バーナ11の先端側外周は、冷却水が供給される二重円筒状の冷却ジャケット20により覆われている。該冷却ジャケット20の先端は、前記バーナノズル11aの先端より前方に突出した状態で配置されており、バーナノズル11aの先端側に、冷却ジャケット20の内周面で囲まれた円筒状の燃焼室21を形成している。
【0013】
そして、図1に示すように、前記液体燃料流路12、噴霧流体流路13及び支燃性ガス流路14に液体燃料、噴霧流体、支燃性ガスをそれぞれ供給する経路31,41,51には、流量計32,42,52と流量制御弁33,43,53とを備えた流量制御装置34,44,54がそれぞれ設けられており、液体燃料、噴霧流体及び支燃性ガスの流量を、個別に制御できるように形成されている。なお、冷却ジャケット20に冷却水を供給する経路の図示は省略する。
【0014】
さらに、液体燃料の流量制御装置34と噴霧流体の流量制御装置44とには、火炎特性を制御するための火炎特性制御回路61が接続され、液体燃料の流量制御装置34と支燃性ガスの流量制御装置54とには、燃焼量を制御するための燃焼量制御回路62が接続されるとともに、前記金属原料投入装置6のモータ5からの作動信号63が火炎特性制御回路61に入力され、温度測定手段7からの温度信号64が火炎特性制御回路61と燃焼量制御回路62とに入力されている。
【0015】
前述のように、液体燃料と噴霧流体とを燃料噴霧室15で混合して噴霧口18から噴出させるように形成した液体燃料バーナ11は、液体燃料と噴霧流体との流量比を調節することにより、火炎の伝熱特性を制御することができる。すなわち、液体燃料流量(QL)に対する噴霧流体流量(QG)の流量比(QG/QL)を調節し、この流量比(QG/QL)を小さくすることにより、噴霧口18から噴出する液体燃料の液滴径が大きくなるので、比較的緩慢に燃焼する状態となり、輻射伝熱特性に優れた火炎が得られる。逆に流量比(QG/QL)を大きくすると、液体燃料の液滴径が小さくなるので、燃焼速度が速くなって対流伝熱特性に優れた火炎が得られる。
【0016】
したがって、炉内を昇温する際、すなわち、前記温度測定手段7の測定温度が所定温度以下の場合には、温度測定手段7からの温度信号64が火炎特性制御回路61と燃焼量制御回路62とに入力され、火炎特性制御回路61では、炉内の昇温に適した輻射伝熱特性に優れた火炎を発生させるため、液体燃料流量(QL)に対する噴霧流体流量(QG)の流量比(QG/QL)が小さくなるように液体燃料の流量制御装置34と噴霧流体の流量制御装置44とを制御する。これにより、液体燃料バーナ11から炉内に輻射伝熱特性に優れた火炎が投入されるので、炉1を構成する耐火物に損傷を与えることなく、炉体の昇温を速やかに行うことができる。このとき、燃焼量制御回路62は、液体燃料流量に応じた流量で支燃性ガスを供給するように、支燃性ガスの流量制御装置54に指示を与える。
【0017】
炉内が所定温度に昇温すると、金属原料投入装置6が作動して金属原料2を炉内に装入するとともに、モータ5の作動信号63が火炎特性制御回路61に入力され、火炎特性制御回路61は、金属原料の加熱溶解に適した対流伝熱特性に優れた火炎を発生させるため、液体燃料流量(QL)に対する噴霧流体流量(QG)の流量比(QG/QL)が大きくなるように液体燃料の流量制御装置34と噴霧流体の流量制御装置44とを制御する。これにより、液体燃料バーナ11から炉内に対流伝熱特性に優れた火炎が投入されるので、金属原料2を迅速に溶解することができる。
【0018】
このように、炉体昇温時と金属原料溶解時とで火炎特性を切換えることにより、炉体の昇温に要する時間を短縮でき、炉の運転効率を高めることができるとともに、重油等の液体燃料の使用量を削減することができる。
【0019】
なお、設備コストの上昇等を問題にしない場合は、輻射伝熱特性に優れた火炎を形成するバーナと、対流伝熱特性に優れた火炎を形成するバーナとを設置したり、これらのバーナを交換可能に設置したりして、炉体昇温時と金属原料溶解時とで切換使用することも可能である。
【0020】
【実施例】
図1に示す構成の炉に図2,図3に示した構造のバーナを設置し、同じ炉で同じ燃焼量のバーナで、同じ量の金属原料を溶解するにあたり、炉体の昇温を輻射伝熱特性に優れた火炎を利用して行った場合と対流伝熱特性に優れた火炎を利用して行った場合との比較、及び、金属原料の溶解を対流伝熱特性に優れた火炎を利用して行った場合と輻射伝熱特性に優れた火炎を利用して行った場合との比較をそれぞれ行った。なお、液体燃料には重油を使用し、毎時70リットルで供給した。噴霧流体及び支燃性ガスには純酸素を使用し、支燃性ガスの酸素量は、燃料に対する酸素比が1.0になるように設定した。なお、燃焼量は20万kcal/hである。炉体昇温時における結果を表1に、金属原料溶解時における結果を表2にそれぞれ示す。
【0021】
【表1】

Figure 0004693968
【表2】
Figure 0004693968
【0022】
【発明の効果】
以上説明したように、本発明の炉の運転方法によれば、炉体の昇温を短時間で効率よく行えるとともに、溶解時間も短縮することができるので、液体燃料の使用量の削減を図れるだけでなく、生産性を大幅に向上させることができる。
【図面の簡単な説明】
【図1】 本発明の炉の運転方法を実施するための工業炉の一例を示す概略図である。
【図2】 液体燃料バーナの一例を示す断面側面図である。
【図3】 同じく正面図である。
【符号の説明】
1…炉、2…金属原料、3…原料装入部、4…排気口、5…モータ、6…金属原料投入装置、7…温度測定手段、11…液体燃料用バーナ、11a…バーナノズル、12…液体燃料流路、13…噴霧流体流路、14…支燃性ガス流路、15…燃料噴霧室、16…燃料供給ノズル、17…噴霧流体通路、18…噴霧口、19…支燃ガス性ガス噴出口、20…冷却ジャケット、21…燃焼室、22…ポンプ、23…冷却水経路、31…液体燃料経路、41…噴霧流体経路、51…支燃性ガス経路、32,42,52…流量計、33,43,53…流量制御弁、34,44,54…流量制御装置、61…火炎特性制御回路、62…燃焼量制御回路、63…作動信号、64…温度信号[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of operating a furnace, and more particularly, to heat and melt an object to be heated by a direct heating method using the convective heat transfer capability of a burner flame that burns fossil fuel, particularly liquid fuel, with a combustion-supporting gas. It is related with the operation method of the furnace aiming at.
[0002]
[Prior art]
As a heat source for various industrial furnaces, a burner for burning fossil fuel with a combustion-supporting gas is widely used. The purpose of use of the burner ranges from the temperature rise of the furnace body at the start-up to the temperature rise, dissolution, reaction, etc. of the object to be heated at the time of operation. In addition, the heat transfer performance required for the burner is convection heat transfer performance for the main purpose of melting by direct heating like a metal melting furnace, and radiation heat transfer performance for a reflection furnace such as a glass melting furnace, Each is required.
[0003]
[Problems to be solved by the invention]
In a direct-heating refractory metal melting furnace equipped with a burner mainly for convection heat transfer performance, the same burner is used to raise the temperature of the furnace body at startup. In the portion that directly collides with the refractory, there is a problem that the wear of the refractory becomes intense and the life of the furnace body is shortened.
[0004]
On the other hand, when a burner mainly composed of radiant heat transfer performance is installed in such a metal melting furnace, the heat transfer mode is indirect heating, so that refractory wear hardly occurs. ) Will not be able to obtain sufficient heat-dissolving performance.
[0005]
Accordingly, an object of the present invention is to provide a method of operating a furnace that can efficiently raise the temperature of the furnace body at the time of start-up and can also effectively heat and melt the object to be heated.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a method of operating a furnace according to the present invention includes a fuel spray chamber in which liquid fuel and spray fluid are mixed and liquid fuel is sprayed from the spray port in a mist state, and a circle centered on the spray port. The object to be heated is heated and melted by using a burner flame obtained from one liquid fuel burner provided with a combustion-supporting gas injection port provided in the periphery and a flow rate adjusting means for adjusting the flow rate of the spray fluid. In the operation method of the furnace, when adjusting the flow rate ratio of the spray fluid flow rate relative to the liquid fuel flow rate to raise the temperature inside the furnace before charging the object to be heated, the radiation rate is reduced by reducing the flow rate ratio. A flame with excellent heat transfer characteristics, and when heating and melting the heated object charged in the furnace after raising the temperature in the furnace, by increasing the flow rate ratio, a flame with excellent convective heat transfer characteristics It is characterized in that.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic view showing an example of an industrial furnace for carrying out the furnace operating method of the present invention. This industrial furnace is for melting a metal raw material, for example, and has an exhaust port 4 serving also as a raw material charging portion 3 for charging a metal raw material 2 to be heated on one side of the furnace 1. At the same time, a liquid fuel burner 11 is provided on the other side of the furnace to form a flame as a heating source. Moreover, the charging of the metal raw material 2 into the furnace uses a metal raw material charging device 6 having a motor 5 as a driving source, and a temperature for measuring the furnace temperature is placed on the ceiling of the furnace 1. A measuring means 7 is provided.
[0009]
As the liquid fuel burner 11, those having various structures can be used. For example, as shown in the sectional side view of FIG. 2 and the front view of FIG. A liquid fuel burner using a nozzle having a structure for spraying liquid fuel such as kerosene is optimal. This liquid fuel burner 11 has a multi-tube structure in which a liquid fuel flow path 12, a spray fluid flow path 13, and a combustion-supporting gas flow path 14 are provided concentrically. In addition, a fuel spray chamber 15 for ejecting liquid fuel in the form of a mist is provided at the tip of the spray fluid passage 13.
[0010]
The fuel spray chamber 15 is formed in a cylindrical shape with the burner axis as the central axis, and the tip of the fuel supply nozzle 16 communicating with the liquid fuel flow path 12 is inserted in the axial direction on the burner base end side. A spray fluid passage 17 communicating with the spray fluid passage 13 is formed between the outer periphery of the tip of the fuel supply nozzle 16 and the inner periphery of the fuel spray chamber 15.
[0011]
At the center of the front end of the fuel spray chamber 15, a spray port 18 for spraying liquid fuel mixed with the spray fluid in the fuel spray chamber 15 in the form of a mist is provided in the burner axis direction. Is provided with a combustion-supporting gas gas outlet 19 that communicates with the combustion-supporting gas flow path 14 on a circumference centered on the spray port 18.
[0012]
Further, the outer periphery of the front end of the liquid fuel burner 11 including the burner nozzle 11a having the spray port 18 and the combustion-supporting gas jet port 19 is covered with a double cylindrical cooling jacket 20 to which cooling water is supplied. Yes. The front end of the cooling jacket 20 is arranged in a state of protruding forward from the front end of the burner nozzle 11a, and a cylindrical combustion chamber 21 surrounded by the inner peripheral surface of the cooling jacket 20 is provided on the front end side of the burner nozzle 11a. Forming.
[0013]
As shown in FIG. 1, paths 31, 41, 51 for supplying liquid fuel, spray fluid, and combustion-supporting gas to the liquid fuel flow path 12, the spray fluid flow path 13, and the combustion-supporting gas flow path 14, respectively. Are provided with flow rate control devices 34, 44, 54 provided with flow meters 32, 42, 52 and flow rate control valves 33, 43, 53, respectively, and the flow rates of liquid fuel, spray fluid and combustion-supporting gas. Are configured to be individually controllable. Note that illustration of a path for supplying cooling water to the cooling jacket 20 is omitted.
[0014]
Further, a flame characteristic control circuit 61 for controlling the flame characteristic is connected to the liquid fuel flow rate control device 34 and the spray fluid flow rate control device 44, and the liquid fuel flow rate control device 34 and the combustion-supporting gas flow rate are controlled. A combustion amount control circuit 62 for controlling the combustion amount is connected to the flow rate control device 54, and an operation signal 63 from the motor 5 of the metal raw material charging device 6 is input to the flame characteristic control circuit 61. A temperature signal 64 from the temperature measuring means 7 is input to the flame characteristic control circuit 61 and the combustion amount control circuit 62.
[0015]
As described above, the liquid fuel burner 11 formed so that the liquid fuel and the spray fluid are mixed in the fuel spray chamber 15 and ejected from the spray port 18 is adjusted by adjusting the flow rate ratio between the liquid fuel and the spray fluid. Can control the heat transfer characteristics of the flame. That is, the flow rate ratio (QG / QL) of the spray fluid flow rate (QG) with respect to the liquid fuel flow rate (QL) is adjusted, and the flow rate ratio (QG / QL) is reduced to reduce the liquid fuel jetted from the spray port 18. Since the droplet diameter becomes large, the flame burns relatively slowly, and a flame with excellent radiation heat transfer characteristics can be obtained. Conversely, when the flow rate ratio (QG / QL) is increased, the droplet diameter of the liquid fuel is decreased, so that the combustion speed is increased and a flame excellent in convective heat transfer characteristics is obtained.
[0016]
Therefore, when the temperature inside the furnace is raised, that is, when the temperature measured by the temperature measuring means 7 is not more than a predetermined temperature, the temperature signal 64 from the temperature measuring means 7 is sent to the flame characteristic control circuit 61 and the combustion amount control circuit 62. In the flame characteristic control circuit 61, a flow ratio of the spray fluid flow rate (QG) to the liquid fuel flow rate (QL) in order to generate a flame excellent in radiation heat transfer characteristics suitable for temperature rise in the furnace ( The liquid fuel flow control device 34 and the spray fluid flow control device 44 are controlled so that (QG / QL) becomes small. As a result, a flame excellent in radiation heat transfer characteristics is introduced from the liquid fuel burner 11 into the furnace, so that the furnace body can be quickly heated without damaging the refractory constituting the furnace 1. it can. At this time, the combustion amount control circuit 62 gives an instruction to the combustion support gas flow control device 54 so as to supply the combustion support gas at a flow rate corresponding to the liquid fuel flow rate.
[0017]
When the temperature in the furnace rises to a predetermined temperature, the metal raw material charging device 6 operates to charge the metal raw material 2 into the furnace, and the operation signal 63 of the motor 5 is input to the flame characteristic control circuit 61 to control the flame characteristics. Since the circuit 61 generates a flame having excellent convective heat transfer characteristics suitable for heating and melting the metal raw material, the flow rate ratio (QG / QL) of the spray fluid flow rate (QG) to the liquid fuel flow rate (QL) is increased. The liquid fuel flow control device 34 and the spray fluid flow control device 44 are controlled. Thereby, since the flame excellent in the convective heat transfer characteristic is thrown in from the liquid fuel burner 11 in the furnace, the metal raw material 2 can be melt | dissolved rapidly.
[0018]
In this way, by switching the flame characteristics between when the furnace body is heated and when the metal raw material is melted, the time required for raising the temperature of the furnace body can be shortened, the operating efficiency of the furnace can be increased, and a liquid such as heavy oil can be used. The amount of fuel used can be reduced.
[0019]
If the increase in equipment costs is not a problem, install a burner that forms a flame with excellent radiant heat transfer characteristics and a burner that forms a flame with excellent convective heat transfer characteristics, or install these burners. It is also possible to install it so that it can be exchanged for switching between heating the furnace body and melting the metal raw material.
[0020]
【Example】
The burner having the structure shown in FIGS. 2 and 3 is installed in the furnace shown in FIG. 1, and when the same amount of the metal raw material is melted in the same furnace with the same combustion amount, the temperature rise of the furnace body is radiated. Comparison between the case of using a flame with excellent heat transfer characteristics and the case of using a flame with excellent convective heat transfer characteristics, and a flame with excellent convective heat transfer characteristics for melting metal raw materials A comparison was made between the case of using the flame and the case of using a flame excellent in radiation heat transfer characteristics. In addition, heavy oil was used for the liquid fuel and was supplied at 70 liters per hour. Pure oxygen was used for the spray fluid and the combustion-supporting gas, and the oxygen amount of the combustion-supporting gas was set so that the oxygen ratio to the fuel was 1.0. The combustion amount is 200,000 kcal / h. Table 1 shows the results when the furnace temperature was raised, and Table 2 shows the results when the metal raw material was dissolved.
[0021]
[Table 1]
Figure 0004693968
[Table 2]
Figure 0004693968
[0022]
【The invention's effect】
As described above, according to the furnace operating method of the present invention, the temperature of the furnace body can be increased efficiently in a short time and the melting time can be shortened, so that the amount of liquid fuel used can be reduced. Not only can productivity be greatly improved.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of an industrial furnace for carrying out the furnace operating method of the present invention.
FIG. 2 is a sectional side view showing an example of a liquid fuel burner.
FIG. 3 is a front view of the same.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Furnace, 2 ... Metal raw material, 3 ... Raw material charging part, 4 ... Exhaust port, 5 ... Motor, 6 ... Metal raw material injection device, 7 ... Temperature measuring means, 11 ... Burner for liquid fuel, 11a ... Burner nozzle, 12 DESCRIPTION OF SYMBOLS ... Liquid fuel flow path, 13 ... Spray fluid flow path, 14 ... Combustion gas flow path, 15 ... Fuel spray chamber, 16 ... Fuel supply nozzle, 17 ... Spray fluid passage, 18 ... Spray port, 19 ... Combustion gas 20 ... Cooling jacket, 21 ... Combustion chamber, 22 ... Pump, 23 ... Cooling water passage, 31 ... Liquid fuel passage, 41 ... Spray fluid passage, 51 ... Combustion gas passage, 32, 42, 52 ... Flow meter, 33, 43, 53 ... Flow control valve, 34, 44, 54 ... Flow control device, 61 ... Flame characteristic control circuit, 62 ... Combustion amount control circuit, 63 ... Operation signal, 64 ... Temperature signal

Claims (1)

液体燃料と噴霧流体とを混合して噴霧口から液体燃料を霧状に噴出する燃料噴霧室と、前記噴霧口を中心とする円周部に設けられた支燃性ガス噴出口と、前記噴霧流体の流量を調節する流量調節手段とを備えた一つの液体燃料バーナから得られるバーナー火炎を利用して被加熱物を加熱・溶解する炉の運転方法において、液体燃料流量に対する噴霧流体流量の流量比を調節して、被加熱物の装入前の炉内を昇温する際には、前記流量比を小さくすることにより、輻射伝熱特性に優れた火炎とし、炉内昇温後に炉内に装入した被加熱物を加熱・溶解する際には、前記流量比を大きくすることにより、対流伝熱特性に優れた火炎とすることを特徴とする炉の運転方法。 A fuel spray chamber in which liquid fuel and spray fluid are mixed and liquid fuel is sprayed from the spray port in a mist form, a combustion-supporting gas spray port provided in a circumferential portion centering on the spray port, and the spray The flow rate of the spray fluid flow rate relative to the liquid fuel flow rate in the operation method of the furnace for heating and melting the object to be heated using a burner flame obtained from one liquid fuel burner provided with a flow rate adjusting means for adjusting the flow rate of the fluid When the temperature inside the furnace before charging the object to be heated is adjusted by adjusting the ratio, a flame with excellent radiant heat transfer characteristics is obtained by reducing the flow rate ratio. A furnace operating method characterized in that when the object to be heated is heated and melted, a flame having excellent convective heat transfer characteristics is obtained by increasing the flow rate ratio.
JP2000274595A 2000-09-11 2000-09-11 Furnace operation method Expired - Lifetime JP4693968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000274595A JP4693968B2 (en) 2000-09-11 2000-09-11 Furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000274595A JP4693968B2 (en) 2000-09-11 2000-09-11 Furnace operation method

Publications (2)

Publication Number Publication Date
JP2002081865A JP2002081865A (en) 2002-03-22
JP4693968B2 true JP4693968B2 (en) 2011-06-01

Family

ID=18760332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000274595A Expired - Lifetime JP4693968B2 (en) 2000-09-11 2000-09-11 Furnace operation method

Country Status (1)

Country Link
JP (1) JP4693968B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2880409B1 (en) * 2004-12-31 2007-03-16 Air Liquide METHOD FOR COMBUSTING A LIQUID FUEL BY VARIABLE SPEED ATOMIZATION
JP4502858B2 (en) * 2005-03-28 2010-07-14 大阪瓦斯株式会社 melting furnace
US7621154B2 (en) * 2007-05-02 2009-11-24 Air Products And Chemicals, Inc. Solid fuel combustion for industrial melting with a slagging combustor
SI2262915T1 (en) * 2008-03-28 2018-11-30 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Burner/injector panel apparatus
JP5203421B2 (en) * 2010-06-04 2013-06-05 中外炉工業株式会社 melting furnace

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60172761U (en) * 1984-04-20 1985-11-15 新日本製鐵株式会社 aluminum melting furnace
JPH06347008A (en) * 1993-06-10 1994-12-20 Nippon Electric Glass Co Ltd Burner for liquid fuel
JPH11141811A (en) * 1997-11-10 1999-05-28 Nippon Sanso Kk Burner for liquid fuel, and its mounting structure, and combustion method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206018A (en) * 1997-01-20 1998-08-07 Tokyo Gas Co Ltd Quick melting furnace of light metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60172761U (en) * 1984-04-20 1985-11-15 新日本製鐵株式会社 aluminum melting furnace
JPH06347008A (en) * 1993-06-10 1994-12-20 Nippon Electric Glass Co Ltd Burner for liquid fuel
JPH11141811A (en) * 1997-11-10 1999-05-28 Nippon Sanso Kk Burner for liquid fuel, and its mounting structure, and combustion method

Also Published As

Publication number Publication date
JP2002081865A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
US5570679A (en) Industrial burner with low NOx emissions
JP4563374B2 (en) Method and apparatus for promoting flameless combustion without a catalyst or high temperature oxidant
CA2211957C (en) Oxygen-fuel burner
JPH03186111A (en) Burner device
US2518364A (en) Direct fired air heater
JP4693968B2 (en) Furnace operation method
CN100439798C (en) Gas burning premixing high speed burning nozzle
US4470798A (en) Method of operating a burner without using a fuel pump, and burner assembly operating in accordance with such method
EP0185340B1 (en) Burner
JP4194231B2 (en) Burner for liquid fuel
WO1994029645A1 (en) Burner for liquid fuel
KR100689657B1 (en) Air cooling burner device for high density fuels and operating method thereof
CN209484591U (en) Water cooling premixing combustion apparatus
JPH0656261B2 (en) Heat recovery type combustion device
US1165835A (en) Gas-burner.
JPH11141811A (en) Burner for liquid fuel, and its mounting structure, and combustion method
JP4420492B2 (en) Liquid fuel burner and operation method thereof
RU2172895C1 (en) Gas burner and process of burning of gaseous fuel
JP6124643B2 (en) Glass melting furnace
KR200275166Y1 (en) Burner
JP2005233483A (en) Combustion control method of burner
RU2186130C2 (en) Furnace heating method
JPS6410730B2 (en)
KR100249225B1 (en) Device for activating flame of oil burner
KR20040019803A (en) Burner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4693968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term