JPH11141811A - Burner for liquid fuel, and its mounting structure, and combustion method - Google Patents

Burner for liquid fuel, and its mounting structure, and combustion method

Info

Publication number
JPH11141811A
JPH11141811A JP30715997A JP30715997A JPH11141811A JP H11141811 A JPH11141811 A JP H11141811A JP 30715997 A JP30715997 A JP 30715997A JP 30715997 A JP30715997 A JP 30715997A JP H11141811 A JPH11141811 A JP H11141811A
Authority
JP
Japan
Prior art keywords
burner
liquid fuel
fuel
flame
mixing chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30715997A
Other languages
Japanese (ja)
Other versions
JP3770356B2 (en
Inventor
Kimio Iino
公夫 飯野
Kazumichi Suzuki
一路 鈴木
Yoshiyuki Hagiwara
義之 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP30715997A priority Critical patent/JP3770356B2/en
Publication of JPH11141811A publication Critical patent/JPH11141811A/en
Application granted granted Critical
Publication of JP3770356B2 publication Critical patent/JP3770356B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a burner for liquid fuel suitable especially for a glass furnace utilizing the radiant heat conducted from flame, and its mounting structure and combustion method. SOLUTION: This is a burner for liquid fuel which has a coaxial combustion supporting gas passage around a fuel jet nozzle 15 where the tip of a fuel supply nozzle 16 for jetting liquid fuel is inserted into the center of one end in axial direction of a cylindrical mixing chamber 17 and an atomized flow passage 18 is made around the fuel supply nozzle 16 and an atomized fuel jet 19 is provided at the center of the other end of the mixing chamber 17, and the relation between the inside diameter Da and the length La of the mixing chamber 17 is put in the range of La/Da=0.75-1.75.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、火炎からの輻射伝
熱を利用するガラス溶解炉に特に好適な液体燃料用バー
ナー及びその装着構造並びに燃焼方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid fuel burner particularly suitable for a glass melting furnace utilizing radiant heat transfer from a flame, a mounting structure thereof, and a combustion method.

【0002】[0002]

【従来の技術】ガラス溶解炉では、ガラスを均等に加熱
溶解するために、重油や灯油等の液体燃料を空気で燃焼
する方法を用い、火炎をガラスに接触させることなく、
輻射伝熱を主体とした溶解方法を採用している。
2. Description of the Related Art In a glass melting furnace, in order to uniformly heat and melt glass, a method of burning a liquid fuel such as heavy oil or kerosene with air is used without causing a flame to contact the glass.
A melting method mainly using radiant heat transfer is adopted.

【0003】しかし、支燃ガスとして空気を用いると、
空気中の窒素ガスが燃焼に寄与しないため、多量の排ガ
スが発生するとともに、窒素ガスの温度上昇に使われる
熱量損失が避けられない。
However, if air is used as a supporting gas,
Since the nitrogen gas in the air does not contribute to the combustion, a large amount of exhaust gas is generated, and the loss of heat used for increasing the temperature of the nitrogen gas is inevitable.

【0004】ところが、支燃ガスとして酸素ガスを使う
と、排ガス量の減少と熱効率の向上とが期待されるとと
もに、有害なNOxの低減も図れる。そのため、酸素燃
焼に対する関心が高まり、ガラス溶解炉に実質的に純酸
素による酸素バーナーの使用が要望されていた。
However, when oxygen gas is used as the supporting gas, it is expected that the amount of exhaust gas is reduced and the thermal efficiency is improved, and harmful NOx can be reduced. Therefore, interest in oxyfuel combustion has increased, and there has been a demand for the use of an oxygen burner with substantially pure oxygen in a glass melting furnace.

【0005】しかし、酸素燃焼は、空気燃焼に比べて燃
焼後のガス量が少なくて高温火炎が得られるため、従来
の液体燃料用酸素バーナーは、主として、火炎長の短い
高温の火炎を被加熱物に直接当てて加熱するのに適して
いた。
However, in oxyfuel combustion, since the amount of gas after combustion is smaller than in air combustion and a high-temperature flame is obtained, the conventional oxygen burner for liquid fuel mainly heats a high-temperature flame having a short flame length. It was suitable for heating directly against objects.

【0006】一方、ガラス溶解炉では、上述のように、
輻射伝熱を主体としているので、広い温度分布が得られ
る長い火炎長が望ましい。そのために、本発明者らは、
先に、図11に示すような、緩慢燃焼によって長い火炎
を形成する液体燃料用酸素バーナーを提案した(特開平
6―347008号公報参照)。このバーナーは、非水
冷の自冷式であって、メンテナンス性にも優れており、
ガラス溶解炉に適している。
On the other hand, in a glass melting furnace, as described above,
Since the radiant heat transfer is mainly used, a long flame length that can obtain a wide temperature distribution is desirable. To that end, we have:
Previously, as shown in FIG. 11, an oxygen burner for liquid fuel that forms a long flame by slow combustion was proposed (see Japanese Patent Application Laid-Open No. Hei 6-347008). This burner is a non-water-cooled, self-cooling type, and has excellent maintainability.
Suitable for glass melting furnace.

【0007】前記図11に示す液体燃料用酸素バーナー
1は、先端部に燃料噴出孔2を有する燃料通路3の外周
に支燃ガス通路4を同心状に設けるとともに、前記燃料
噴出孔2と偏心した位置に絞り孔5を形成した絞り部材
6を連設している。そのため、液体燃料は、絞り孔5を
通って空隙部7に拡散した後に燃料噴出孔2から噴出す
るが、この際、燃料噴出孔2と絞り孔5とが偏心した位
置にあるので、燃料噴出孔2からの液体燃料は、比較的
小さな噴霧角度で噴出し、飛距離が伸びる。
In the oxygen burner 1 for liquid fuel shown in FIG. 11, a fuel-supplying gas passage 4 is provided concentrically on the outer periphery of a fuel passage 3 having a fuel ejection hole 2 at the tip end, and is eccentric with the fuel ejection hole 2. A diaphragm member 6 having a diaphragm hole 5 formed at the designated position is continuously provided. Therefore, the liquid fuel is diffused into the gap portion 7 through the throttle hole 5 and then ejected from the fuel ejection hole 2. At this time, since the fuel ejection hole 2 and the throttle hole 5 are located at eccentric positions, the fuel ejection is performed. The liquid fuel from the hole 2 is ejected at a relatively small spray angle, and the flight distance is extended.

【0008】一方、支燃ガスは、支燃ガス通路4の開口
端部から霧化状態の液体燃料を包囲するように噴出し、
この状態で燃焼させると、火炎長が長く、かつ、輝炎部
の割合が大きく火炎が得られる。それは、このバーナー
1では、液体燃料と支燃ガスとの混合が緩慢になり、そ
の結果、液体燃料の燃え方が緩慢になるためである。し
かし、このような液体燃料用酸素バーナーによって得ら
れる火炎は、推進力が弱いという弱点がある。
On the other hand, the supporting gas is ejected from the open end of the supporting gas passage 4 so as to surround the atomized liquid fuel.
By burning in this state, a flame having a long flame length and a large ratio of bright flame portions can be obtained. This is because in the burner 1, the mixing of the liquid fuel and the supporting gas becomes slow, and as a result, the burning of the liquid fuel becomes slow. However, the flame obtained by such a liquid fuel oxygen burner has a weak point of low propulsion.

【0009】[0009]

【発明が解決しようとする課題】さて、従来の空気燃焼
によるガラス溶解炉に、液体燃料用酸素バーナーを導入
する形態には、新規に液体燃料用酸素バーナー専用のガ
ラス溶解炉を設置する場合と、部分的に液体燃料用酸素
バーナーに置き換える場合とがある。前者の場合は特に
問題はないが、後者の部分的にバーナーを置き換える場
合には、炉内は、空気燃焼火炎と液体燃料用酸素バーナ
ー火炎とが共存する。この場合、前述のように、液体燃
料用酸素バーナー火炎は、推進力が弱いため、空気燃焼
火炎にあおられて炉サイドウオールやクラウンの温度が
上がり過ぎることが起きる。特に、図12に示すよう
に、ガラス溶解炉8において、液体燃料用酸素バーナー
火炎Foが、空気燃焼火炎Faと対向する場合に著し
い。
[0006] In the conventional mode of introducing an oxygen burner for liquid fuel into a glass melting furnace using air combustion, there is a case where a glass melting furnace dedicated to a liquid fuel oxygen burner is newly installed. In some cases, the oxygen burner for liquid fuel is partially replaced. There is no particular problem in the former case, but when the latter is partially replaced with a burner, an air combustion flame and an oxygen burner flame for liquid fuel coexist in the furnace. In this case, as described above, the oxygen burner flame for liquid fuel has a low propulsive force, so that the temperature of the furnace sidewall and the crown may be excessively increased by the air combustion flame. In particular, as shown in FIG. 12, in the glass melting furnace 8, the case where the oxygen burner flame Fo for liquid fuel is opposed to the air combustion flame Fa is remarkable.

【0010】そこで本発明は、長い高輝度火炎を維持し
つつ、推進力の強い火炎を得ることができ、ガラス溶解
炉中の空気燃焼火炎によってあおられない火炎を形成す
る液体燃料用バーナーを提供するとともに、該液体燃料
用バーナーをガラス溶解炉に装着する際の最適な装着構
造と、そのときの最適な燃焼方法を提供することを目的
としている。
Accordingly, the present invention provides a burner for liquid fuel which can obtain a flame with strong propulsion while maintaining a long high-intensity flame, and which forms a flame which is not lifted by an air combustion flame in a glass melting furnace. It is another object of the present invention to provide an optimal mounting structure for mounting the liquid fuel burner on a glass melting furnace and an optimum combustion method at that time.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明の液体燃料用バーナーは、液体燃料を噴出す
る燃料供給ノズルの先端が、円筒状混合室の軸方向の一
端中央に挿入され、該燃料供給ノズルの先端の外周と前
記混合室の内周とによって噴霧流体の通路を形成し、前
記混合室の軸方向の他端中央に噴霧燃料噴出口を設けた
燃料噴出ノズルの周囲に、該燃料噴出ノズルと同心状に
設けた支燃ガスの通路を設けてなる液体燃料用バーナー
であって、前記混合室の内径Daと長さLaとの関係
が、La/Da=0.75〜1.75の範囲であること
を特徴としている。
In order to achieve the above object, a liquid fuel burner according to the present invention has a fuel supply nozzle for ejecting liquid fuel, the tip of which is inserted into the center of one axial end of a cylindrical mixing chamber. A fuel fluid passage is formed by the outer circumference of the tip of the fuel supply nozzle and the inner circumference of the mixing chamber, and around a fuel ejection nozzle provided with a spray fuel outlet at the center of the other axial end of the mixing chamber. A liquid fuel burner provided with a passage of a supporting gas provided concentrically with the fuel ejection nozzle, wherein the relationship between the inner diameter Da and the length La of the mixing chamber is La / Da = 0.75. -1.75.

【0012】また、本発明の液体燃料用バーナーの装着
構造は、上記構成の液体燃料用バーナーを、該液体燃料
用バーナーを囲繞するバーナータイルを介してガラス溶
解炉の壁面に装着するにあたり、前記バーナータイルの
内径Dbと、バーナータイルの先端から後退させて装着
した液体燃料用バーナーの先端とバーナータイルの先端
との間の距離Lbとの関係を、Lb/Db=1.5〜
3.0の範囲としたことを特徴としている。
The liquid fuel burner mounting structure of the present invention is characterized in that the liquid fuel burner having the above structure is mounted on a wall surface of a glass melting furnace through a burner tile surrounding the liquid fuel burner. The relationship between the inner diameter Db of the burner tile and the distance Lb between the tip of the burner tile and the tip of the burner for liquid fuel which is mounted retreated from the tip of the burner tile is Lb / Db = 1.5 to
It is characterized by being in the range of 3.0.

【0013】また、本発明の液体燃料用バーナーの燃焼
方法は、蒸気装着構造によってガラス溶解炉の壁面に装
着した液体燃料用バーナーを燃焼させるにあたり、前記
噴霧流体及び前記支燃ガスに酸素ガスを用い、燃料供給
ノズルから混合室に噴出する液体燃料の噴出速度を毎秒
5〜20mとし、噴霧流体の質量流量S1と液体燃料の
質量流量S2との質量流量比Rsを、S1/S2=0.
12〜0.24の範囲とし、噴霧流体の通路内の平均流
速V1と液体燃料のノズル内の平均流速V2との流速比
Rvを、V1/V2=12〜30の範囲とし、かつ、前
記質量流量比Rsと前記流速比Rvとの積であるモーメ
ンタム比Mが2〜7.5の範囲となるように設定すると
ともに、前記支燃ガスの流速を毎秒15〜30mとする
ことを特徴としている。
Further, in the method for burning a liquid fuel burner according to the present invention, when burning the liquid fuel burner mounted on the wall of the glass melting furnace by the steam mounting structure, oxygen gas is added to the spray fluid and the supporting gas. The liquid fuel ejected from the fuel supply nozzle into the mixing chamber was jetted at a velocity of 5 to 20 m / s, and the mass flow ratio Rs of the mass flow rate S1 of the spray fluid and the mass flow rate S2 of the liquid fuel was S1 / S2 = 0.
The flow rate ratio Rv between the average flow velocity V1 in the passage of the spray fluid and the average flow velocity V2 in the nozzle of the liquid fuel is set in the range of V1 / V2 = 12 to 30, and the mass The momentum ratio M, which is the product of the flow rate ratio Rs and the flow rate ratio Rv, is set to be in the range of 2 to 7.5, and the flow rate of the supporting gas is 15 to 30 m / sec. .

【0014】[0014]

【発明の実施の形態】図1及び図2は、本発明の液体燃
料用バーナーの一形態例を示すもので、図1は燃料噴出
ノズル部分を示す要部の断面図、図2は、液体燃料用バ
ーナーをバーナータイルを介してガラス溶解炉の壁面に
装着した状態を示す断面図である。
1 and 2 show an embodiment of a liquid fuel burner according to the present invention. FIG. 1 is a sectional view of a main part showing a fuel jet nozzle portion, and FIG. It is sectional drawing which shows the state which mounted the burner for fuels on the wall surface of the glass melting furnace via the burner tile.

【0015】液体燃料用バーナー11は、液体燃料流路
12と、噴霧流体流路13と、支燃ガス流路14とを同
心状に設けた多重管構造を有しており、液体燃料流路1
2及び噴霧流体流路13の先端部に燃料噴出ノズル15
が設けられている。燃料噴出ノズル15は、液体燃料流
路12に連通する燃料供給ノズル16の先端が、該ノズ
ル16より大径の円筒状の混合室17の軸方向の一端中
央に挿入され、該燃料供給ノズル16の先端の外周と混
合室17の内周とによって噴霧流体流路13に連通する
噴霧流体通路18を形成するとともに、前記混合室17
の軸方向の他端中央に噴霧燃料噴出口19を設けた構造
を有している。また、燃料噴出ノズル15の周囲には、
支燃ガス流路14に連通する支燃ガス通路20が同心状
に設けられている。
The liquid fuel burner 11 has a multi-tube structure in which a liquid fuel channel 12, a spray fluid channel 13, and a supporting gas channel 14 are provided concentrically. 1
2 and a fuel jet nozzle 15
Is provided. The fuel ejection nozzle 15 is such that the tip of a fuel supply nozzle 16 communicating with the liquid fuel flow path 12 is inserted into the center of one axial end of a cylindrical mixing chamber 17 having a larger diameter than the nozzle 16. A spray fluid passage 18 communicating with the spray fluid flow path 13 is formed by the outer circumference of the tip of the nozzle and the inner circumference of the mixing chamber 17.
The fuel injection port 19 is provided at the center of the other end in the axial direction. In addition, around the fuel ejection nozzle 15,
A supporting gas passage 20 communicating with the supporting gas passage 14 is provided concentrically.

【0016】このように形成した液体燃料用バーナー1
1において、液体燃料流路12に重油や灯油等の液体燃
料を、噴霧流体流路13に適宜なガス、例えば空気や酸
素ガスを、さらに、支燃ガス流路14に支燃性を有する
ガス、例えば空気や酸素ガスを、それぞれ所定量供給す
ると、燃料供給ノズル16から混合室17に供給された
液体燃料は、噴霧流体通路18からの噴霧流体と混合し
て適当な径の液滴となり、噴霧燃料噴出口19から噴出
して支燃ガス通路20から噴出した支燃ガスと混合する
ことにより燃焼火炎を生成する。
The burner for liquid fuel 1 thus formed
1, a liquid fuel such as heavy oil or kerosene is supplied to the liquid fuel passage 12, an appropriate gas such as air or oxygen gas is supplied to the spray fluid passage 13, and a gas having a combustion supporting property is provided to the combustion supporting gas passage 14. For example, when a predetermined amount of air or oxygen gas is supplied, respectively, the liquid fuel supplied from the fuel supply nozzle 16 to the mixing chamber 17 is mixed with the spray fluid from the spray fluid passage 18 to form droplets having an appropriate diameter. Combustion flame is generated by mixing with the supporting gas ejected from the fuel spray outlet 19 and ejected from the supporting gas passage 20.

【0017】上述のようにして燃焼火炎を得るに際し
て、円筒状の混合室17の内径Daと長さLaとの関係
が重要な要因となり、両者の関係がLa/Da=0.7
5〜1.75の範囲に入るように設定することにより、
良好な火炎が得られる。この範囲を超えて長さLaが内
径Daに対して短くなると、火炎が吹き飛んで安定した
燃焼が得られず、逆に長さLaが長くなると、急速な燃
焼により火炎の輝度が弱くなり、ノズルへの熱負荷も大
きくなる。
In obtaining a combustion flame as described above, the relationship between the inner diameter Da and the length La of the cylindrical mixing chamber 17 is an important factor, and the relationship between the two is La / Da = 0.7.
By setting to fall within the range of 5 to 1.75,
Good flame is obtained. If the length La is shorter than the inner diameter Da beyond this range, the flame will blow off and stable combustion will not be obtained. Conversely, if the length La is long, the brightness of the flame will be reduced due to rapid combustion, The heat load on the system also increases.

【0018】また、図2に示すように、液体燃料用バー
ナー11を円筒状に形成されたバーナータイル21を介
してガラス溶解炉22の壁面に装着する際には、液体燃
料用バーナー11の先端の位置が重要な要因となる。す
なわち、バーナータイル21の内径Dbと、バーナータ
イル21の先端から後退させて装着した液体燃料用バー
ナー11の先端とバーナータイル21の先端との間の距
離Lbとの関係が、Lb/Db=1.5〜3.0の範囲
になるように設定することが好ましい。この範囲にする
ことにより、バーナータイル21から炉内に噴出する火
炎の噴出角度を10〜15度とすることができ、軸方向
への慣性力も十分なものとなる。この範囲を超えて距離
Lbが内径Dbに対して短くなると、炉内からの熱輻射
によってバーナー先端が過熱状態となり、逆に距離Lb
が長くなると、バーナータイル21の内周面にバーナー
火炎が激しく衝突するため、バーナータイル21の熱損
傷や火炎の乱れが発生する。
As shown in FIG. 2, when the liquid fuel burner 11 is mounted on the wall surface of the glass melting furnace 22 via a burner tile 21 formed in a cylindrical shape, the tip of the liquid fuel burner 11 is Position is an important factor. That is, the relationship between the inner diameter Db of the burner tile 21 and the distance Lb between the tip of the liquid fuel burner 11 mounted retreated from the tip of the burner tile 21 and the tip of the burner tile 21 is Lb / Db = 1. It is preferable to set so as to fall within a range of 0.5 to 3.0. By setting it in this range, the jetting angle of the flame jetting from the burner tile 21 into the furnace can be set to 10 to 15 degrees, and the inertial force in the axial direction becomes sufficient. When the distance Lb becomes shorter than the inner diameter Db beyond this range, the tip of the burner becomes overheated due to heat radiation from the furnace, and conversely, the distance Lb
When the length is longer, the burner flame collides violently with the inner peripheral surface of the burner tile 21, so that the burner tile 21 is thermally damaged and the flame is disturbed.

【0019】液体燃料用バーナー11において、支燃ガ
スとしては、熱効率及びNOxの抑制のために工業的に
純酸素を使用することが好ましい。また、噴霧流体は、
液体燃料を適当な径の液滴とすればよいから、スチーム
や空気でも可能であるが、スチームを用いると、火炎温
度が低下するだけでなく、好適な輝度を得るために意図
的に生成させるススの発生が抑制されて好ましくない
し、空気は、熱効率及びNOxの抑制の観点から好まし
くない。このため、噴霧流体としても酸素を使用するこ
とが好ましい。
In the burner 11 for liquid fuel, it is preferable to use pure oxygen industrially as a combustion supporting gas for the purpose of thermal efficiency and suppression of NOx. Also, the spray fluid is
Since the liquid fuel may be formed into liquid droplets having an appropriate diameter, steam or air is also possible.However, when steam is used, not only the flame temperature is lowered, but also it is intentionally generated to obtain a suitable brightness. It is not preferable because the generation of soot is suppressed, and air is not preferable from the viewpoint of thermal efficiency and suppression of NOx. Therefore, it is preferable to use oxygen as the spray fluid.

【0020】そして、前記構造の液体燃料用バーナー1
1においては、燃料供給ノズル16からの液体燃料の噴
出速度を毎秒5〜20m/sとし、噴霧流体の質量流量
S1と液体燃料の質量流量S2との質量流量比Rsを、
S1/S2=0.12〜0.24の範囲とし、噴霧流体
通路18における噴霧流体の平均流速V1と燃料供給ノ
ズル16における液体燃料の平均流速V2との流速比R
vを、V1/V2=12〜30の範囲とし、かつ、前記
質量流量比Rsと前記流速比Rvとの積であるモーメン
タム比Mが、Rs×Rv=2〜7.5の範囲となるよう
に設定するとともに、前記支燃ガスの流速を毎秒15〜
30mとすることが好ましい。
The burner 1 for liquid fuel having the above structure
In 1, the ejection speed of the liquid fuel from the fuel supply nozzle 16 is 5 to 20 m / s per second, and the mass flow ratio Rs between the mass flow rate S1 of the spray fluid and the mass flow rate S2 of the liquid fuel is:
S1 / S2 = 0.12 to 0.24, and the flow velocity ratio R between the average flow velocity V1 of the spray fluid in the spray fluid passage 18 and the average flow velocity V2 of the liquid fuel in the fuel supply nozzle 16
Let v be in the range of V1 / V2 = 12 to 30, and the momentum ratio M, which is the product of the mass flow rate ratio Rs and the flow rate ratio Rv, be in the range of Rs × Rv = 2 to 7.5. And the flow rate of the supporting gas is 15 to
It is preferably 30 m.

【0021】このような条件で燃焼させることにより、
ガラス溶解炉中における火炎の慣性力が十分となり空気
火炎にあおられず、輝度の長い好ましい状態の火炎が得
られる。特に、燃焼用支燃ガスである酸素ガスを毎秒1
5〜30mの流速で流すことにより、液滴状に噴霧され
た液体燃料の周囲を同心円環状に包んで、周囲から徐々
に燃焼して火炎を形成する。酸素ガスの流速が、毎秒1
5mに満たないと火炎の推進力が弱く、十分に燃焼せず
に火炎の下流で未燃分が残る。また、毎秒30mを超え
ると燃焼速度が増進し、ノズルへの熱負担が大きくな
り、好ましい結果が得られない。
By burning under such conditions,
The inertia of the flame in the glass melting furnace is sufficient, and the flame is not affected by the air flame, and a flame having a long brightness and a favorable state can be obtained. In particular, oxygen gas, which is a combustion supporting gas, is supplied at a rate of 1
By flowing the liquid fuel at a flow rate of 5 to 30 m, the periphery of the liquid fuel sprayed in the form of droplets is wrapped concentrically and gradually burns from the periphery to form a flame. The flow rate of oxygen gas is 1 per second
If it is less than 5 m, the propulsive power of the flame is weak, and the unburned portion remains downstream of the flame without sufficiently burning. On the other hand, if the speed exceeds 30 m / s, the combustion speed increases, the heat load on the nozzle increases, and a favorable result cannot be obtained.

【0022】[0022]

【実施例】図3に示すように、試験炉31として、内径
1000mm×内長4000mmの円筒状の炉体31a
の一端に、内径150mmのバーナータイル21を介し
て外径145mmの液体燃料用バーナー11を設置する
とともに、他端には、内径600mmの排気口32を設
け、炉内壁の温度を8箇所(a〜h)で測定できるよう
に熱電対を設けたものを製作した。バーナー11へは燃
料としてC重油を毎時200リットルの流量で供給し、
燃焼支燃ガス及び噴霧流体として酸素ガスをトータルで
400Nm/h供給した。なお、C重油は、粘度を下
げるために110℃(粘度15cP)に予熱して供給し
た。
As shown in FIG. 3, as a test furnace 31, a cylindrical furnace body 31a having an inner diameter of 1000 mm and an inner length of 4000 mm was used.
At one end, a burner for liquid fuel 11 having an outer diameter of 145 mm is installed via a burner tile 21 having an inner diameter of 150 mm, and at the other end, an exhaust port 32 having an inner diameter of 600 mm is provided. A device provided with a thermocouple so as to be able to measure in (h) to (h) was manufactured. Fuel C is supplied to the burner 11 at a flow rate of 200 liters / hour as fuel.
Oxygen gas was supplied in total of 400 Nm 3 / h as a combustion supporting gas and a spray fluid. The C heavy oil was supplied after being preheated to 110 ° C. (viscosity 15 cP) in order to lower the viscosity.

【0023】実験例1 バーナータイルへのバーナーのセットは、図2における
Lbを300mm(Lb/Db=2.0)とし、円筒状
の混合室の形状について検討した。すなわち、図1にお
ける混合室の内径Daを6.5mmに固定し、長さLa
を変えてLa/Daの値が0.5〜2.0の7種のバー
ナーを作成した。そして、噴霧流体通路からの噴霧用酸
素ガスの流量を23.4Nm/hとし、燃焼はさせず
に噴霧特性を調べた。なお、このときの、質量流量比R
sは0.18、流速比Rvは26.5、モーメンタム比
Mは4.8、支燃ガスである燃焼用酸素の流速は25m
/sとなる。各バーナーにおいて、バーナータイルから
の噴出流を写真撮影し、噴出角度を測定した結果を表1
に示す。また、バーナー先端から500mmの位置で燃
料液滴のザウター平均粒径と流速とを測定器(米国Ae
rometrics社製2D―PA/RSAシステム)
で測定した結果を図4に示す。
EXPERIMENTAL EXAMPLE 1 In setting a burner on a burner tile, Lb in FIG. 2 was set to 300 mm (Lb / Db = 2.0), and the shape of a cylindrical mixing chamber was examined. That is, the inner diameter Da of the mixing chamber in FIG.
Was changed to produce seven types of burners having a La / Da value of 0.5 to 2.0. Then, the flow rate of the oxygen gas for spray from the spray fluid passage was set to 23.4 Nm 3 / h, and the spray characteristics were examined without burning. At this time, the mass flow ratio R
s is 0.18, flow velocity ratio Rv is 26.5, momentum ratio M is 4.8, and the flow velocity of combustion oxygen, which is a supporting gas, is 25 m.
/ S. In each burner, a photograph of the jet flow from the burner tile was taken and the result of measuring the jet angle was shown in Table 1.
Shown in A Sauter average particle diameter and a flow velocity of a fuel droplet were measured at a position 500 mm from the tip of the burner (Ae, USA).
2D-PA / RSA system manufactured by metrics)
FIG. 4 shows the results of the measurement.

【0024】[0024]

【表1】 [Table 1]

【0025】表1から、La/Daの値が小さいと噴出
角度も小さく、La/Daの値が大きくなるとともに噴
出角度も大きくなることがわかる。また、図4から、L
a/Daの値が小さいと液滴は大きく、その速度は小さ
い。La/Daの値が増加するとともに液滴の径が小さ
くなり、その速度は大きくなることがわかる。
From Table 1, it can be seen that when the value of La / Da is small, the ejection angle is small, and the value of La / Da is large and the ejection angle is large. Also, from FIG.
When the value of a / Da is small, the droplet is large and its speed is small. It can be seen that as the value of La / Da increases, the diameter of the droplet decreases, and the speed increases.

【0026】実験例2 実験例1の結果を受けて、La/Daの値が、0.5,
1.0,2.0の3種類を選び、実際のガラス溶解炉内
での空気火炎との混焼時を想定し、図3に示すように、
排気口32からブロワー33で400Nm/hの空気
を送気して火炎がどのように影響されるかを調べた。炉
内壁の温度測定の結果を図5に示す。
Experimental Example 2 Based on the results of Experimental Example 1, the value of La / Da was 0.5,
As shown in FIG. 3, three types of 1.0 and 2.0 were selected, and assuming a co-firing with an air flame in an actual glass melting furnace,
400 Nm 3 / h of air was sent from the exhaust port 32 by the blower 33 to examine how the flame was affected. FIG. 5 shows the result of the temperature measurement of the furnace inner wall.

【0027】図5から、La/Da=1.0のときは、
良好な温度分布が得られるが、La/Da=0.5のと
きはブロワーによる送気によって火炎があおられるため
に火炎が乱れ、炉内壁の温度が1600℃を超える点も
あり、温度分布が悪く、燃焼が不完全で未燃分の多いこ
とが観察された。La/Da=2.0のときは、燃焼が
急速で火炎輝度の低下も観察され、火炎が短く、遠方ま
で壁内面の温度が伝わらない。さらに、実験例1の各バ
ーナーでも同様の実験を行った結果、La/Daの値が
0.75〜1.75の範囲ならば良好な火炎が得られる
ことがわかった。
From FIG. 5, when La / Da = 1.0,
A good temperature distribution can be obtained. However, when La / Da = 0.5, the flame is disturbed because the air is blown by the blower and the flame is disturbed, and the temperature of the furnace inner wall sometimes exceeds 1600 ° C. Poor, incomplete combustion and high unburned content were observed. When La / Da = 2.0, combustion is rapid and flame luminance is also reduced, the flame is short, and the temperature of the inner surface of the wall does not reach far. Further, the same experiment was performed with each burner of Experimental Example 1. As a result, it was found that a good flame could be obtained if the value of La / Da was in the range of 0.75 to 1.75.

【0028】実験例1,2の結果から、La/Daの値
が0.5では、噴出角度が5度と小さすぎて火炎が十分
に分散せず、燃焼不良を起こすものと考えられる。ま
た、La/Daの値が2.0のときは、噴出角度が1
7.5度と大きくなり、燃焼が速く、火炎の輝度の低下
と、火炎長の短いことが観察され、ノズル等への熱負荷
も大きく不適当である。したがって、噴出角度として
は、10〜15度の範囲が好ましい。
From the results of Experimental Examples 1 and 2, it is considered that when the value of La / Da is 0.5, the ejection angle is too small as 5 degrees, the flame is not sufficiently dispersed, and poor combustion occurs. When the value of La / Da is 2.0, the ejection angle is 1
It was observed that the temperature increased to 7.5 degrees, the combustion was fast, the brightness of the flame decreased, and the flame length was short, and the heat load on the nozzles and the like was large and inappropriate. Therefore, the ejection angle is preferably in the range of 10 to 15 degrees.

【0029】実験例3 La/Daの値を1.0に固定し、バーナータイルへの
バーナーのセット条件(Lb/Db)を種々変えて同様
の試験を行った。その結果、Lb/Dbの値が1.5〜
3.0の範囲にあれば良好な火炎が得られたが、Lb/
Dbの値が1.5未満ではバーナー先端が過熱状態とな
り、3.0を超えるとバーナータイルの熱損傷や火炎の
乱れが発生した。
EXPERIMENTAL EXAMPLE 3 The same test was carried out with the value of La / Da fixed at 1.0 and the conditions (Lb / Db) for setting the burner on the burner tile were variously changed. As a result, the value of Lb / Db becomes 1.5 to
When it was in the range of 3.0, a good flame was obtained, but Lb /
If the value of Db is less than 1.5, the burner tip is overheated, and if it exceeds 3.0, heat damage to the burner tile and disturbance of the flame occur.

【0030】実験例4 次に、混合室内への液体燃料の噴出速度の影響について
調べた。La/Daの値は1.0とし、燃料供給ノズル
の径を変えて燃料噴出速度が、毎秒5,10,15,2
0mとなる4種のノズルを作成し、これに噴霧用酸素を
27Nm/sで供給し、実験例2と同様の試験を行っ
た。この範囲では、特に火炎の状態等に差はなく、良好
な結果が得られた。なお、このときの質量流量比Rsは
0.21、燃焼用酸素の流速は25.0m/sであっ
た。
Experimental Example 4 Next, the effect of the ejection speed of the liquid fuel into the mixing chamber was examined. The value of La / Da is set to 1.0, and the fuel ejection speed is changed to 5, 10, 15, 2 per second by changing the diameter of the fuel supply nozzle.
Four types of nozzles of 0 m were prepared, and oxygen for spraying was supplied at 27 Nm 3 / s, and the same test as in Experimental Example 2 was performed. In this range, there was no particular difference in the state of the flame and the like, and good results were obtained. At this time, the mass flow ratio Rs was 0.21, and the flow rate of the combustion oxygen was 25.0 m / s.

【0031】実験例5 質量流量比Rsの影響について調べるため、混合室の径
Daを、5.0,6.0,6.8,7.5,8.2mm
に変えた5種類のノズルを作成した。これらのノズルを
用いて質量流量比Rsが、それぞれ、0.06,0.1
2,0.18,0.24,0.3となるように、噴霧用
酸素ガス量を調整した。このとき、流速比Rvは26.
5であった。また、燃焼用酸素の流速は25m/sの一
定とした。実験例1,2と同様に、噴出角度,噴霧特性
(液滴及び速度),炉壁面温度をそれぞれ測定した。そ
の結果を、表2及び図6,図7に示す。さらに、燃料噴
出ノズルの先端テーパー部に熱伝対を取り付けて温度を
測定した。その結果を図8に示す。
Experimental Example 5 In order to investigate the effect of the mass flow ratio Rs, the diameter Da of the mixing chamber was adjusted to 5.0, 6.0, 6.8, 7.5, 8.2 mm.
5 types of nozzles were prepared. Using these nozzles, the mass flow ratio Rs was 0.06, 0.1, respectively.
The amount of oxygen gas for spraying was adjusted to be 2,0.18,0.24,0.3. At this time, the flow velocity ratio Rv is 26.
It was 5. The flow rate of combustion oxygen was fixed at 25 m / s. In the same manner as in Experimental Examples 1 and 2, the ejection angle, spray characteristics (droplets and speed), and furnace wall temperature were measured. The results are shown in Table 2 and FIGS. Further, a thermocouple was attached to the tapered end of the fuel ejection nozzle to measure the temperature. FIG. 8 shows the result.

【0032】[0032]

【表2】 [Table 2]

【0033】この結果から、質量流量比Rsが0.06
のときは、液滴の微細化が不十分で流速も遅く、不安定
な火炎となり、あおられ易く、あおられた火炎が炉壁に
接触して炉壁の温度を局部的に上昇させている。一方、
質量流量比Rsが0.3のときは、液滴の流速は速く火
炎の推進力はあるものの、液滴が小さいため急速に燃焼
する(図8でノズルの温度が異常に高い)ため長い火炎
が得られず、炉壁の温度が距離とともに急速に低下して
いる。
From these results, it was found that the mass flow ratio Rs was 0.06
In the case of, the droplets are insufficiently refined, the flow velocity is slow, and the flame becomes unstable, and it is easy to be agitated.The agitated flame contacts the furnace wall and raises the temperature of the furnace wall locally. . on the other hand,
When the mass flow ratio Rs is 0.3, the flow velocity of the droplet is high and the thrust of the flame is high, but the droplet is small and burns rapidly (the temperature of the nozzle is abnormally high in FIG. 8), so that the long flame And the temperature of the furnace wall decreases rapidly with distance.

【0034】実験例6 次に、流速比Rvの影響を調べた。混合室におけるLa
/Daの値を1として、それぞれ、10.9,9.6,
7.5,6.8,6.0mmに変えた5種類のノズルを
作成した。これらのノズルを用いて、流速比Rvが、
9.3,12.5,23.2,30.9,44.2とな
るように噴霧用酸素の流速を調整した。このとき、質量
流量比Rsは0.21となり、モーメンタム比Mは、そ
れぞれ、1.9,2.6,4.9,6.5,9.3とな
る。また、燃料流速は10m/s、燃焼用酸素流速は2
5m/sとした。実験例1と同様に、噴出角度と噴霧特
性(液滴と速度)とを測定した。その結果を表3及び図
9に示す。また、実験例2と同様に壁面温度を測定した
結果を図10に示す。
Experimental Example 6 Next, the influence of the flow velocity ratio Rv was examined. La in the mixing chamber
Assuming that the value of / Da is 1, 10.9, 9.6,
Five types of nozzles having the sizes of 7.5, 6.8, and 6.0 mm were prepared. Using these nozzles, the flow velocity ratio Rv is
The flow rate of the oxygen for spraying was adjusted to 9.3, 12.5, 23.2, 30.9, and 44.2. At this time, the mass flow ratio Rs is 0.21, and the momentum ratio M is 1.9, 2.6, 4.9, 6.5, 9.3, respectively. The fuel flow rate was 10 m / s, and the combustion oxygen flow rate was 2 m / s.
5 m / s. As in Experimental Example 1, the ejection angle and the spray characteristics (droplets and speed) were measured. The results are shown in Table 3 and FIG. FIG. 10 shows the result of measuring the wall surface temperature in the same manner as in Experimental Example 2.

【0035】[0035]

【表3】 [Table 3]

【0036】この結果から、流速比Rvが9.3のとき
は、噴出角度は11.2度であるものの、火炎が激しく
あおられ、天井に接触して熱損傷が発生した。また、流
速比Rvが44.2のときは、液滴径が小さいため、火
炎が短く、遠くまで加熱されなかった。
From these results, when the flow velocity ratio Rv was 9.3, although the jetting angle was 11.2 degrees, the flame was violently heated and contacted the ceiling, causing thermal damage. When the flow velocity ratio Rv was 44.2, the flame was short and was not heated to a long distance because the droplet diameter was small.

【0037】実験例7 次に、燃焼用酸素の流速について調べた。Da及びLa
がそれぞれ7.1mm(La/Da=1.0)のバーナ
ーを用い、支燃ガス通路にリング状のスリーブを挿入し
て断面積を調整し、燃焼用酸素の流速を8.7,15,
25,30,45m/sに変え、その影響を調べた。な
お、このときの、質量流量比Rsは0.21、流速比R
vは26.5、燃料流速は10m/sである。燃焼用酸
素流速が8.7m/sのときは、火炎の推進力が小さ
く、対向ガスにあおられ、火炎後流では未燃分が発生
し、燃焼不良であった。一方、燃焼用酸素流速が45m
/sのときは、燃焼が促進されすぎてバーナーの熱負荷
が大きく、実用には適さなかった。燃焼用酸素流速が1
5,25,30m/sのときは、良好な火炎が得られ
た。
Experimental Example 7 Next, the flow rate of combustion oxygen was examined. Da and La
Used a burner of 7.1 mm (La / Da = 1.0) and inserted a ring-shaped sleeve into the combustion support gas passage to adjust the cross-sectional area, and adjusted the flow rate of combustion oxygen to 8.7, 15,
It was changed to 25, 30, and 45 m / s, and the effect was examined. At this time, the mass flow ratio Rs is 0.21, the flow velocity ratio R
v is 26.5 and the fuel flow rate is 10 m / s. When the flow rate of oxygen for combustion was 8.7 m / s, the propulsion of the flame was small, and it was flooded by the opposite gas. On the other hand, the combustion oxygen flow rate is 45 m
In the case of / s, combustion was promoted too much and the heat load of the burner was large, which was not suitable for practical use. The oxygen flow rate for combustion is 1
At 5, 25, 30 m / s, a good flame was obtained.

【0038】実施例及び比較例 以上の実験例の結果を受けて、図12に示す実際のガラ
ス溶解炉にバーナーを取付け、下記A〜Eの5種類の条
件で運転して観察した。なお、空気火炎Faは、図12
において、炉両側の噴出口(9a,9b)から交互に吹
き出すため、酸素火炎と平行になったり対向したりを繰
り返す。また、バーナータイルの内径Dは150mmで
あり、Lb/Db=2.0とした。結果を表4に示す。
Examples and Comparative Examples Based on the results of the above experimental examples, a burner was attached to an actual glass melting furnace shown in FIG. 12 and operation was observed under the following five conditions A to E to observe the results. The air flame Fa is shown in FIG.
In the above, since the gas is blown out alternately from the jet ports (9a, 9b) on both sides of the furnace, the gas becomes parallel to or opposed to the oxygen flame. The inner diameter D of the burner tile was 150 mm, and Lb / Db = 2.0. Table 4 shows the results.

【0039】[0039]

【表4】 [Table 4]

【0040】条件Aでは燃焼不良が発生し、火炎が激し
くあおられ、炉内天井とバーナー設置壁での局部的な温
度上昇があり実用には適さない。これは、質量流量比R
sが0.06と小さいためである。条件B,C,Dは、
火炎の長さや輝度、安定性も良好で、ガラスへの熱伝達
も効果的であり、実用性が高いことが確認された。条件
Eは、燃焼が急速に行なわれ、燃焼音が大きく、短火炎
で輝度も低くガラスへの熱伝達も悪かった。なお、この
場合、バーナータイルの炉内側に溶損が認められた。こ
れは、燃焼用酸素が45m/sと速いためである。
Under the condition A, poor combustion occurs, the flame is violently heated, and there is a local temperature rise on the furnace ceiling and the burner installation wall, which is not suitable for practical use. This is the mass flow ratio R
This is because s is as small as 0.06. Conditions B, C, and D are
It was confirmed that the flame length, brightness, and stability were good, heat transfer to the glass was effective, and the practicability was high. In condition E, combustion was performed rapidly, the combustion noise was loud, short flame, low brightness, and poor heat transfer to the glass. In this case, erosion was observed inside the furnace of the burner tile. This is because the combustion oxygen is as fast as 45 m / s.

【0041】[0041]

【発明の効果】以上説明したように、本発明によれば、
火炎の長さや輝度、安定性が良好で、特に、ガラス溶解
炉への適用に最適な液体燃料用バーナーが得られる。
As described above, according to the present invention,
A flame burner for liquid fuel which has good flame length, brightness and stability, and is particularly suitable for application to a glass melting furnace can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 燃料噴出ノズル部分の一形態例を示す要部の
断面図である。
FIG. 1 is a cross-sectional view of a main part showing one embodiment of a fuel ejection nozzle portion.

【図2】 液体燃料用バーナーをバーナータイルを介し
てガラス溶解炉の壁面に装着した状態を示す断面図であ
る。
FIG. 2 is a cross-sectional view showing a state in which a liquid fuel burner is mounted on a wall surface of a glass melting furnace via a burner tile.

【図3】 実施例で製作した試験炉の断面図である。FIG. 3 is a sectional view of a test furnace manufactured in an example.

【図4】 実験例1における粒径と流速との関係を示す
図である。
FIG. 4 is a diagram showing a relationship between a particle size and a flow rate in Experimental Example 1.

【図5】 実験例2における各測定位置及びLa/Da
の値と炉壁温度との関係を示す図である。
FIG. 5 shows measurement positions and La / Da in Experimental Example 2.
FIG. 4 is a diagram showing a relationship between the value of the temperature and the furnace wall temperature.

【図6】 実験例5における粒径と流速との関係を示す
図である。
FIG. 6 is a diagram showing the relationship between the particle size and the flow rate in Experimental Example 5.

【図7】 実験例5における各測定位置及びLa/Da
の値と炉壁温度との関係を示す図である。
FIG. 7 shows measurement positions and La / Da in Experimental Example 5.
FIG. 4 is a diagram showing a relationship between the value of the temperature and the furnace wall temperature.

【図8】 質量流量比とノズル温度との関係を示す図で
ある。
FIG. 8 is a diagram showing a relationship between a mass flow ratio and a nozzle temperature.

【図9】 実験例6における粒径と流速との関係を示す
図である。
FIG. 9 is a diagram showing the relationship between the particle size and the flow rate in Experimental Example 6.

【図10】 実験例6における各測定位置及びLa/D
aの値と炉壁温度との関係を示す図である。
FIG. 10 shows measurement positions and La / D in Experimental Example 6.
It is a figure which shows the relationship between the value of a and furnace wall temperature.

【図11】 従来の液体燃料用酸素バーナーの一例を示
す断面図である。
FIG. 11 is a sectional view showing an example of a conventional liquid fuel oxygen burner.

【図12】 ガラス溶解炉の一例を示す断面平面図であ
る。
FIG. 12 is a sectional plan view showing an example of a glass melting furnace.

【符号の説明】[Explanation of symbols]

11…液体燃料用バーナー、12…液体燃料流路、13
…噴霧流体流路、14…支燃ガス流路、15…燃料噴出
ノズル、16…燃料供給ノズル、17…混合室、18…
噴霧流体通路、19…噴霧燃料噴出口、20…支燃ガス
通路、21…バーナータイル、22…ガラス溶解炉、3
1…試験炉、32…排気口
11 ... burner for liquid fuel, 12 ... liquid fuel passage, 13
… Spray fluid flow path, 14… support gas path, 15… fuel ejection nozzle, 16… fuel supply nozzle, 17… mixing chamber, 18…
Atomizing fluid passage, 19: atomized fuel jet, 20: supporting gas passage, 21: burner tile, 22: glass melting furnace, 3
1 ... test furnace, 32 ... exhaust port

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 液体燃料を噴出する燃料供給ノズルの先
端が、円筒状混合室の軸方向の一端中央に挿入され、該
燃料供給ノズルの先端の外周と前記混合室の内周とによ
って噴霧流体の通路を形成し、前記混合室の軸方向の他
端中央に噴霧燃料噴出口を設けた燃料噴出ノズルの周囲
に、該燃料噴出ノズルと同心状に設けた支燃ガスの通路
を設けてなる液体燃料用バーナーであって、前記混合室
の内径Daと長さLaとの関係が、La/Da=0.7
5〜1.75の範囲であることを特徴とする液体燃料用
バーナー。
1. A tip of a fuel supply nozzle for ejecting liquid fuel is inserted into the center of one end in the axial direction of a cylindrical mixing chamber, and a spray fluid is formed by an outer circumference of the tip of the fuel supply nozzle and an inner circumference of the mixing chamber. Around the fuel ejection nozzle provided with a spray fuel ejection port at the center of the other end of the mixing chamber in the axial direction, and a support gas passage provided concentrically with the fuel ejection nozzle. A burner for a liquid fuel, wherein the relationship between the inner diameter Da and the length La of the mixing chamber is La / Da = 0.7.
A burner for a liquid fuel, which is in the range of 5 to 1.75.
【請求項2】 請求項1記載の液体燃料用バーナーを、
該液体燃料用バーナーを囲繞するバーナータイルを介し
てガラス溶解炉の壁面に装着するにあたり、前記バーナ
ータイルの内径Dbと、バーナータイルの先端から後退
させて装着した液体燃料用バーナーの先端とバーナータ
イルの先端との間の距離Lbとの関係を、Lb/Db=
1.5〜3.0の範囲としたことを特徴とする液体燃料
用バーナーの装着構造。
2. The liquid fuel burner according to claim 1,
When mounting the burner tile on the wall surface of the glass melting furnace through a burner tile surrounding the burner for liquid fuel, the inner diameter Db of the burner tile, the tip of the burner for liquid fuel mounted by being retracted from the tip of the burner tile, and the burner tile Lb / Db = Lb / Db =
A mounting structure for a burner for a liquid fuel, characterized in that the range is 1.5 to 3.0.
【請求項3】 請求項2記載の装着構造によってガラス
溶解炉の壁面に装着した液体燃料用バーナーを燃焼させ
るにあたり、前記噴霧流体及び前記支燃ガスに酸素ガス
を用い、燃料供給ノズルから混合室に噴出する液体燃料
の噴出速度を毎秒5〜20mとし、噴霧流体の質量流量
S1と液体燃料の質量流量S2との質量流量比Rsを、
S1/S2=0.12〜0.24の範囲とし、噴霧流体
の通路内の平均流速V1と液体燃料のノズル内の平均流
速V2との流速比Rvを、V1/V2=12〜30の範
囲とし、かつ、前記質量流量比Rsと前記流速比Rvと
の積であるモーメンタム比Mが2〜7.5の範囲となる
ように設定するとともに、前記支燃ガスの流速を毎秒1
5〜30mとすることを特徴とする液体燃料バーナーの
燃焼方法。
3. When burning the liquid fuel burner mounted on the wall of the glass melting furnace by the mounting structure according to claim 2, an oxygen gas is used as the spray fluid and the supporting gas, and a mixing chamber is provided from a fuel supply nozzle. And the mass flow ratio Rs between the mass flow rate S1 of the spray fluid and the mass flow rate S2 of the liquid fuel is set to 5 to 20 m per second.
S1 / S2 = 0.12 to 0.24, and the flow velocity ratio Rv between the average flow velocity V1 in the passage of the spray fluid and the average flow velocity V2 in the nozzle of the liquid fuel is V1 / V2 = 12 to 30. And the momentum ratio M, which is the product of the mass flow ratio Rs and the flow velocity ratio Rv, is set to be in the range of 2 to 7.5, and the flow rate of the supporting gas is set to 1 / sec.
A method for burning a liquid fuel burner, comprising 5 to 30 m.
JP30715997A 1997-11-10 1997-11-10 Burner for liquid fuel, mounting structure thereof, and combustion method Expired - Lifetime JP3770356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30715997A JP3770356B2 (en) 1997-11-10 1997-11-10 Burner for liquid fuel, mounting structure thereof, and combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30715997A JP3770356B2 (en) 1997-11-10 1997-11-10 Burner for liquid fuel, mounting structure thereof, and combustion method

Publications (2)

Publication Number Publication Date
JPH11141811A true JPH11141811A (en) 1999-05-28
JP3770356B2 JP3770356B2 (en) 2006-04-26

Family

ID=17965747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30715997A Expired - Lifetime JP3770356B2 (en) 1997-11-10 1997-11-10 Burner for liquid fuel, mounting structure thereof, and combustion method

Country Status (1)

Country Link
JP (1) JP3770356B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081865A (en) * 2000-09-11 2002-03-22 Nippon Sanso Corp Operating method for furnace
JP2006162095A (en) * 2004-12-02 2006-06-22 Idemitsu Eng Co Ltd Burner and fuel combustion equipment having this burner
JP2006200876A (en) * 2005-01-18 2006-08-03 Air Products & Chemicals Inc Emulsion atomizer nozzle, burner and method for oxy-fuel burner application
WO2008018430A1 (en) * 2006-08-11 2008-02-14 Mitsubishi Heavy Industries, Ltd. Two-fluid spray burner
US8747101B2 (en) 2005-01-21 2014-06-10 Sulzer Metco (Us) Inc. High velocity oxygen fuel (HVOF) liquid fuel gun and burner design
JP2015513510A (en) * 2012-02-08 2015-05-14 サン−ゴバン イゾベ Submerged burner with multiple injectors

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081865A (en) * 2000-09-11 2002-03-22 Nippon Sanso Corp Operating method for furnace
JP4693968B2 (en) * 2000-09-11 2011-06-01 大陽日酸株式会社 Furnace operation method
US7500849B2 (en) 2004-01-16 2009-03-10 Air Products And Chemicals, Inc. Emulsion atomizer nozzle, and burner, and method for oxy-fuel burner applications
JP2006162095A (en) * 2004-12-02 2006-06-22 Idemitsu Eng Co Ltd Burner and fuel combustion equipment having this burner
JP2006200876A (en) * 2005-01-18 2006-08-03 Air Products & Chemicals Inc Emulsion atomizer nozzle, burner and method for oxy-fuel burner application
JP2009030971A (en) * 2005-01-18 2009-02-12 Air Products & Chemicals Inc Emulsion atomizer nozzle, burner, and method for oxygen-containing fuel burner application
US8747101B2 (en) 2005-01-21 2014-06-10 Sulzer Metco (Us) Inc. High velocity oxygen fuel (HVOF) liquid fuel gun and burner design
WO2008018430A1 (en) * 2006-08-11 2008-02-14 Mitsubishi Heavy Industries, Ltd. Two-fluid spray burner
JP2015513510A (en) * 2012-02-08 2015-05-14 サン−ゴバン イゾベ Submerged burner with multiple injectors

Also Published As

Publication number Publication date
JP3770356B2 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
JP4260948B2 (en) Burners and combustion methods and methods for their use
JPH09509733A (en) Fuel nozzle introduced from the tangential direction
JPH0777316A (en) Fuel lance for liquid and/or gas fuel and its operation
JPH085018A (en) Liquid fuel atomizer having small angle of atomization for combustion
JPH04136603A (en) Burner and combustion equipment
JP2010261714A (en) Liquid fuel type hvof thermal spray gun and burner design
JPH11141811A (en) Burner for liquid fuel, and its mounting structure, and combustion method
JP2001263608A (en) Burner for oxygen-enriched liquid fuel
JP2981959B2 (en) Burner for liquid fuel
JP2764370B2 (en) Gas burner for non-oxidizing furnace
JP2797783B2 (en) Liquid fuel combustion device
JP4420492B2 (en) Liquid fuel burner and operation method thereof
JP2561382B2 (en) Low NOx burner
JP4190667B2 (en) Liquid fuel burner
JP3107713B2 (en) Burner for oil water heater
JPS62155425A (en) Oil burner
CN114453154A (en) Spray particle protection method and supersonic speed spray gun
KR100193294B1 (en) Liquid Fuel Burners
RU2210027C2 (en) Method of burning liquid hydrocarbon fuels
JP2002048308A (en) Liquid fuel burner
JP3144116B2 (en) Liquid fuel combustion device
JP3136809B2 (en) Liquid fuel combustion device
JPH0587723B2 (en)
JP2001124310A (en) Low nox combustion method and partial premixed gas low nox burner
JPH03168502A (en) Collision burner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040809

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term