JP3770356B2 - Burner for liquid fuel, mounting structure thereof, and combustion method - Google Patents

Burner for liquid fuel, mounting structure thereof, and combustion method Download PDF

Info

Publication number
JP3770356B2
JP3770356B2 JP30715997A JP30715997A JP3770356B2 JP 3770356 B2 JP3770356 B2 JP 3770356B2 JP 30715997 A JP30715997 A JP 30715997A JP 30715997 A JP30715997 A JP 30715997A JP 3770356 B2 JP3770356 B2 JP 3770356B2
Authority
JP
Japan
Prior art keywords
burner
liquid fuel
fuel
combustion
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30715997A
Other languages
Japanese (ja)
Other versions
JPH11141811A (en
Inventor
公夫 飯野
一路 鈴木
義之 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP30715997A priority Critical patent/JP3770356B2/en
Publication of JPH11141811A publication Critical patent/JPH11141811A/en
Application granted granted Critical
Publication of JP3770356B2 publication Critical patent/JP3770356B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Combustion Of Fluid Fuel (AREA)
  • Spray-Type Burners (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、火炎からの輻射伝熱を利用するガラス溶解炉に特に好適な液体燃料用バーナー及びその装着構造並びに燃焼方法に関するものである。
【0002】
【従来の技術】
ガラス溶解炉では、ガラスを均等に加熱溶解するために、重油や灯油等の液体燃料を空気で燃焼する方法を用い、火炎をガラスに接触させることなく、輻射伝熱を主体とした溶解方法を採用している。
【0003】
しかし、支燃ガスとして空気を用いると、空気中の窒素ガスが燃焼に寄与しないため、多量の排ガスが発生するとともに、窒素ガスの温度上昇に使われる熱量損失が避けられない。
【0004】
ところが、支燃ガスとして酸素ガスを使うと、排ガス量の減少と熱効率の向上とが期待されるとともに、有害なNOxの低減も図れる。そのため、酸素燃焼に対する関心が高まり、ガラス溶解炉に実質的に純酸素による酸素バーナーの使用が要望されていた。
【0005】
しかし、酸素燃焼は、空気燃焼に比べて燃焼後のガス量が少なくて高温火炎が得られるため、従来の液体燃料用酸素バーナーは、主として、火炎長の短い高温の火炎を被加熱物に直接当てて加熱するのに適していた。
【0006】
一方、ガラス溶解炉では、上述のように、輻射伝熱を主体としているので、広い温度分布が得られる長い火炎長が望ましい。そのために、本発明者らは、先に、図11に示すような、緩慢燃焼によって長い火炎を形成する液体燃料用酸素バーナーを提案した(特開平6―347008号公報参照)。このバーナーは、非水冷の自冷式であって、メンテナンス性にも優れており、ガラス溶解炉に適している。
【0007】
前記図11に示す液体燃料用酸素バーナー1は、先端部に燃料噴出孔2を有する燃料通路3の外周に支燃ガス通路4を同心状に設けるとともに、前記燃料噴出孔2と偏心した位置に絞り孔5を形成した絞り部材6を連設している。そのため、液体燃料は、絞り孔5を通って空隙部7に拡散した後に燃料噴出孔2から噴出するが、この際、燃料噴出孔2と絞り孔5とが偏心した位置にあるので、燃料噴出孔2からの液体燃料は、比較的小さな噴霧角度で噴出し、飛距離が伸びる。
【0008】
一方、支燃ガスは、支燃ガス通路4の開口端部から霧化状態の液体燃料を包囲するように噴出し、この状態で燃焼させると、火炎長が長く、かつ、輝炎部の割合が大きく火炎が得られる。それは、このバーナー1では、液体燃料と支燃ガスとの混合が緩慢になり、その結果、液体燃料の燃え方が緩慢になるためである。しかし、このような液体燃料用酸素バーナーによって得られる火炎は、推進力が弱いという弱点がある。
【0009】
【発明が解決しようとする課題】
さて、従来の空気燃焼によるガラス溶解炉に、液体燃料用酸素バーナーを導入する形態には、新規に液体燃料用酸素バーナー専用のガラス溶解炉を設置する場合と、部分的に液体燃料用酸素バーナーに置き換える場合とがある。前者の場合は特に問題はないが、後者の部分的にバーナーを置き換える場合には、炉内は、空気燃焼火炎と液体燃料用酸素バーナー火炎とが共存する。この場合、前述のように、液体燃料用酸素バーナー火炎は、推進力が弱いため、空気燃焼火炎にあおられて炉サイドウオールやクラウンの温度が上がり過ぎることが起きる。特に、図12に示すように、ガラス溶解炉8において、液体燃料用酸素バーナー火炎Foが、空気燃焼火炎Faと対向する場合に著しい。
【0010】
そこで本発明は、長い高輝度火炎を維持しつつ、推進力の強い火炎を得ることができ、ガラス溶解炉中の空気燃焼火炎によってあおられない火炎を形成する液体燃料用バーナーを提供するとともに、該液体燃料用バーナーをガラス溶解炉に装着する際の最適な装着構造と、そのときの最適な燃焼方法を提供することを目的としている。
【0011】
【課題を解決するための手段】
上記目的を達成するため、本発明の液体燃料用バーナーは、液体燃料を噴出する燃料供給ノズルの先端円筒状混合室の軸方向の一端中央に挿入するとともに、該混合室の軸方向の他端中央に噴霧燃料噴出口を設けて、前記燃料供給ノズルと該噴霧燃料噴出口を前記混合室の軸方向の中央に一致させ、前記燃料供給ノズルの先端の外周と前記混合室の内周とによって噴霧流体の通路を前記混合室の軸方向に形成した燃料噴出ノズルと、該燃料噴出ノズルの周囲に、該燃料噴出ノズルと同心状に設けた支燃ガスの通路を設けてなる液体燃料用バーナーであって、前記混合室の内径Daと長さLaとの関係が、La/Da=0.75〜1.75の範囲であることを特徴としている。
【0012】
また、本発明の液体燃料用バーナーの装着構造は、上記構成の液体燃料用バーナーを、該液体燃料用バーナーを囲繞するバーナータイルを介してガラス溶解炉の壁面に装着するにあたり、前記バーナータイルの内径Dbと、バーナータイルの先端から後退させて装着した液体燃料用バーナーの先端とバーナータイルの先端との間の距離Lbとの関係を、Lb/Db=1.5〜3.0の範囲としたことを特徴としている。
【0013】
また、本発明の液体燃料用バーナーの燃焼方法は、蒸気装着構造によってガラス溶解炉の壁面に装着した液体燃料用バーナーを燃焼させるにあたり、前記噴霧流体及び前記支燃ガスに酸素ガスを用い、燃料供給ノズルから混合室に噴出する液体燃料の噴出速度を毎秒5〜20mとし、噴霧流体の質量流量S1と液体燃料の質量流量S2との質量流量比Rsを、S1/S2=0.12〜0.24の範囲とし、噴霧流体の通路内の平均流速V1と液体燃料のノズル内の平均流速V2との流速比Rvを、V1/V2=12〜30の範囲とし、かつ、前記質量流量比Rsと前記流速比Rvとの積であるモーメンタム比Mが2〜7.5の範囲となるように設定するとともに、前記支燃ガスの流速を毎秒15〜30mとすることを特徴としている。
【0014】
【発明の実施の形態】
図1及び図2は、本発明の液体燃料用バーナーの一形態例を示すもので、図1は燃料噴出ノズル部分を示す要部の断面図、図2は、液体燃料用バーナーをバーナータイルを介してガラス溶解炉の壁面に装着した状態を示す断面図である。
【0015】
液体燃料用バーナー11は、液体燃料流路12と、噴霧流体流路13と、支燃ガス流路14とを同心状に設けた多重管構造を有しており、液体燃料流路12及び噴霧流体流路13の先端部に燃料噴出ノズル15が設けられている。燃料噴出ノズル15は、液体燃料流路12に連通する燃料供給ノズル16の先端、該ノズル16より大径の円筒状の混合室17の軸方向の一端中央に挿入するとともに、該混合室17の軸方向の他端中央に噴霧燃料噴出口19を設けることにより、燃料供給ノズル16と噴霧燃料噴出口19を混合室17の軸方向の中央に一致させ、該燃料供給ノズル16の先端の外周と混合室17の内周とによって噴霧流体流路13に連通する噴霧流体通路18を前記混合室の軸方向に形成た構造を有している。また、燃料噴出ノズル15の周囲には、支燃ガス流路14に連通する支燃ガス通路20が同心状に設けられている。
【0016】
このように形成した液体燃料用バーナー11において、液体燃料流路12に重油や灯油等の液体燃料を、噴霧流体流路13に適宜なガス、例えば空気や酸素ガスを、さらに、支燃ガス流路14に支燃性を有するガス、例えば空気や酸素ガスを、それぞれ所定量供給すると、燃料供給ノズル16から混合室17に供給された液体燃料は、噴霧流体通路18からの噴霧流体と混合して適当な径の液滴となり、噴霧燃料噴出口19から噴出して支燃ガス通路20から噴出した支燃ガスと混合することにより燃焼火炎を生成する。
【0017】
上述のようにして燃焼火炎を得るに際して、円筒状の混合室17の内径Daと長さLaとの関係が重要な要因となり、両者の関係がLa/Da=0.75〜1.75の範囲に入るように設定することにより、良好な火炎が得られる。この範囲を超えて長さLaが内径Daに対して短くなると、火炎が吹き飛んで安定した燃焼が得られず、逆に長さLaが長くなると、急速な燃焼により火炎の輝度が弱くなり、ノズルへの熱負荷も大きくなる。
【0018】
また、図2に示すように、液体燃料用バーナー11を円筒状に形成されたバーナータイル21を介してガラス溶解炉22の壁面に装着する際には、液体燃料用バーナー11の先端の位置が重要な要因となる。すなわち、バーナータイル21の内径Dbと、バーナータイル21の先端から後退させて装着した液体燃料用バーナー11の先端とバーナータイル21の先端との間の距離Lbとの関係が、Lb/Db=1.5〜3.0の範囲になるように設定することが好ましい。この範囲にすることにより、バーナータイル21から炉内に噴出する火炎の噴出角度を10〜15度とすることができ、軸方向への慣性力も十分なものとなる。この範囲を超えて距離Lbが内径Dbに対して短くなると、炉内からの熱輻射によってバーナー先端が過熱状態となり、逆に距離Lbが長くなると、バーナータイル21の内周面にバーナー火炎が激しく衝突するため、バーナータイル21の熱損傷や火炎の乱れが発生する。
【0019】
液体燃料用バーナー11において、支燃ガスとしては、熱効率及びNOxの抑制のために工業的に純酸素を使用することが好ましい。また、噴霧流体は、液体燃料を適当な径の液滴とすればよいから、スチームや空気でも可能であるが、スチームを用いると、火炎温度が低下するだけでなく、好適な輝度を得るために意図的に生成させるススの発生が抑制されて好ましくないし、空気は、熱効率及びNOxの抑制の観点から好ましくない。このため、噴霧流体としても酸素を使用することが好ましい。
【0020】
そして、前記構造の液体燃料用バーナー11においては、燃料供給ノズル16からの液体燃料の噴出速度を毎秒5〜20m/sとし、噴霧流体の質量流量S1と液体燃料の質量流量S2との質量流量比Rsを、S1/S2=0.12〜0.24の範囲とし、噴霧流体通路18における噴霧流体の平均流速V1と燃料供給ノズル16における液体燃料の平均流速V2との流速比Rvを、V1/V2=12〜30の範囲とし、かつ、前記質量流量比Rsと前記流速比Rvとの積であるモーメンタム比Mが、Rs×Rv=2〜7.5の範囲となるように設定するとともに、前記支燃ガスの流速を毎秒15〜30mとすることが好ましい。
【0021】
このような条件で燃焼させることにより、ガラス溶解炉中における火炎の慣性力が十分となり空気火炎にあおられず、輝度の長い好ましい状態の火炎が得られる。特に、燃焼用支燃ガスである酸素ガスを毎秒15〜30mの流速で流すことにより、液滴状に噴霧された液体燃料の周囲を同心円環状に包んで、周囲から徐々に燃焼して火炎を形成する。酸素ガスの流速が、毎秒15mに満たないと火炎の推進力が弱く、十分に燃焼せずに火炎の下流で未燃分が残る。また、毎秒30mを超えると燃焼速度が増進し、ノズルへの熱負担が大きくなり、好ましい結果が得られない。
【0022】
【実施例】
図3に示すように、試験炉31として、内径1000mm×内長4000mmの円筒状の炉体31aの一端に、内径150mmのバーナータイル21を介して外径145mmの液体燃料用バーナー11を設置するとともに、他端には、内径600mmの排気口32を設け、炉内壁の温度を8箇所(a〜h)で測定できるように熱電対を設けたものを製作した。バーナー11へは燃料としてC重油を毎時200リットルの流量で供給し、燃焼支燃ガス及び噴霧流体として酸素ガスをトータルで400Nm/h供給した。なお、C重油は、粘度を下げるために110℃(粘度15cP)に予熱して供給した。
【0023】
実験例1
バーナータイルへのバーナーのセットは、図2におけるLbを300mm(Lb/Db=2.0)とし、円筒状の混合室の形状について検討した。すなわち、図1における混合室の内径Daを6.5mmに固定し、長さLaを変えてLa/Daの値が0.5〜2.0の7種のバーナーを作成した。そして、噴霧流体通路からの噴霧用酸素ガスの流量を23.4Nm/hとし、燃焼はさせずに噴霧特性を調べた。なお、このときの、質量流量比Rsは0.18、流速比Rvは26.5、モーメンタム比Mは4.8、支燃ガスである燃焼用酸素の流速は25m/sとなる。各バーナーにおいて、バーナータイルからの噴出流を写真撮影し、噴出角度を測定した結果を表1に示す。また、バーナー先端から500mmの位置で燃料液滴のザウター平均粒径と流速とを測定器(米国Aerometrics社製2D―PA/RSAシステム)で測定した結果を図4に示す。
【0024】
【表1】

Figure 0003770356
【0025】
表1から、La/Daの値が小さいと噴出角度も小さく、La/Daの値が大きくなるとともに噴出角度も大きくなることがわかる。また、図4から、La/Daの値が小さいと液滴は大きく、その速度は小さい。La/Daの値が増加するとともに液滴の径が小さくなり、その速度は大きくなることがわかる。
【0026】
実験例2
実験例1の結果を受けて、La/Daの値が、0.5,1.0,2.0の3種類を選び、実際のガラス溶解炉内での空気火炎との混焼時を想定し、図3に示すように、排気口32からブロワー33で400Nm/hの空気を送気して火炎がどのように影響されるかを調べた。炉内壁の温度測定の結果を図5に示す。
【0027】
図5から、La/Da=1.0のときは、良好な温度分布が得られるが、La/Da=0.5のときはブロワーによる送気によって火炎があおられるために火炎が乱れ、炉内壁の温度が1600℃を超える点もあり、温度分布が悪く、燃焼が不完全で未燃分の多いことが観察された。La/Da=2.0のときは、燃焼が急速で火炎輝度の低下も観察され、火炎が短く、遠方まで壁内面の温度が伝わらない。さらに、実験例1の各バーナーでも同様の実験を行った結果、La/Daの値が0.75〜1.75の範囲ならば良好な火炎が得られることがわかった。
【0028】
実験例1,2の結果から、La/Daの値が0.5では、噴出角度が5度と小さすぎて火炎が十分に分散せず、燃焼不良を起こすものと考えられる。また、La/Daの値が2.0のときは、噴出角度が17.5度と大きくなり、燃焼が速く、火炎の輝度の低下と、火炎長の短いことが観察され、ノズル等への熱負荷も大きく不適当である。したがって、噴出角度としては、10〜15度の範囲が好ましい。
【0029】
実験例3
La/Daの値を1.0に固定し、バーナータイルへのバーナーのセット条件(Lb/Db)を種々変えて同様の試験を行った。その結果、Lb/Dbの値が1.5〜3.0の範囲にあれば良好な火炎が得られたが、Lb/Dbの値が1.5未満ではバーナー先端が過熱状態となり、3.0を超えるとバーナータイルの熱損傷や火炎の乱れが発生した。
【0030】
実験例4
次に、混合室内への液体燃料の噴出速度の影響について調べた。La/Daの値は1.0とし、燃料供給ノズルの径を変えて燃料噴出速度が、毎秒5,10,15,20mとなる4種のノズルを作成し、これに噴霧用酸素を27Nm/sで供給し、実験例2と同様の試験を行った。この範囲では、特に火炎の状態等に差はなく、良好な結果が得られた。なお、このときの質量流量比Rsは0.21、燃焼用酸素の流速は25.0m/sであった。
【0031】
実験例5
質量流量比Rsの影響について調べるため、混合室の径Daを、5.0,6.0,6.8,7.5,8.2mmに変えた5種類のノズルを作成した。これらのノズルを用いて質量流量比Rsが、それぞれ、0.06,0.12,0.18,0.24,0.3となるように、噴霧用酸素ガス量を調整した。このとき、流速比Rvは26.5であった。また、燃焼用酸素の流速は25m/sの一定とした。実験例1,2と同様に、噴出角度,噴霧特性(液滴及び速度),炉壁面温度をそれぞれ測定した。その結果を、表2及び図6,図7に示す。さらに、燃料噴出ノズルの先端テーパー部に熱伝対を取り付けて温度を測定した。その結果を図8に示す。
【0032】
【表2】
Figure 0003770356
【0033】
この結果から、質量流量比Rsが0.06のときは、液滴の微細化が不十分で流速も遅く、不安定な火炎となり、あおられ易く、あおられた火炎が炉壁に接触して炉壁の温度を局部的に上昇させている。一方、質量流量比Rsが0.3のときは、液滴の流速は速く火炎の推進力はあるものの、液滴が小さいため急速に燃焼する(図8でノズルの温度が異常に高い)ため長い火炎が得られず、炉壁の温度が距離とともに急速に低下している。
【0034】
実験例6
次に、流速比Rvの影響を調べた。混合室におけるLa/Daの値を1として、それぞれ、10.9,9.6,7.5,6.8,6.0mmに変えた5種類のノズルを作成した。これらのノズルを用いて、流速比Rvが、9.3,12.5,23.2,30.9,44.2となるように噴霧用酸素の流速を調整した。このとき、質量流量比Rsは0.21となり、モーメンタム比Mは、それぞれ、1.9,2.6,4.9,6.5,9.3となる。また、燃料流速は10m/s、燃焼用酸素流速は25m/sとした。実験例1と同様に、噴出角度と噴霧特性(液滴と速度)とを測定した。その結果を表3及び図9に示す。また、実験例2と同様に壁面温度を測定した結果を図10に示す。
【0035】
【表3】
Figure 0003770356
【0036】
この結果から、流速比Rvが9.3のときは、噴出角度は11.2度であるものの、火炎が激しくあおられ、天井に接触して熱損傷が発生した。また、流速比Rvが44.2のときは、液滴径が小さいため、火炎が短く、遠くまで加熱されなかった。
【0037】
実験例7
次に、燃焼用酸素の流速について調べた。Da及びLaがそれぞれ7.1mm(La/Da=1.0)のバーナーを用い、支燃ガス通路にリング状のスリーブを挿入して断面積を調整し、燃焼用酸素の流速を8.7,15,25,30,45m/sに変え、その影響を調べた。なお、このときの、質量流量比Rsは0.21、流速比Rvは26.5、燃料流速は10m/sである。燃焼用酸素流速が8.7m/sのときは、火炎の推進力が小さく、対向ガスにあおられ、火炎後流では未燃分が発生し、燃焼不良であった。一方、燃焼用酸素流速が45m/sのときは、燃焼が促進されすぎてバーナーの熱負荷が大きく、実用には適さなかった。燃焼用酸素流速が15,25,30m/sのときは、良好な火炎が得られた。
【0038】
実施例及び比較例
以上の実験例の結果を受けて、図12に示す実際のガラス溶解炉にバーナーを取付け、下記A〜Eの5種類の条件で運転して観察した。なお、空気火炎Faは、図12において、炉両側の噴出口(9a,9b)から交互に吹き出すため、酸素火炎と平行になったり対向したりを繰り返す。また、バーナータイルの内径Dは150mmであり、Lb/Db=2.0とした。結果を表4に示す。
【0039】
【表4】
Figure 0003770356
【0040】
条件Aでは燃焼不良が発生し、火炎が激しくあおられ、炉内天井とバーナー設置壁での局部的な温度上昇があり実用には適さない。これは、質量流量比Rsが0.06と小さいためである。条件B,C,Dは、火炎の長さや輝度、安定性も良好で、ガラスへの熱伝達も効果的であり、実用性が高いことが確認された。条件Eは、燃焼が急速に行なわれ、燃焼音が大きく、短火炎で輝度も低くガラスへの熱伝達も悪かった。なお、この場合、バーナータイルの炉内側に溶損が認められた。これは、燃焼用酸素が45m/sと速いためである。
【0041】
【発明の効果】
以上説明したように、本発明によれば、火炎の長さや輝度、安定性が良好で、特に、ガラス溶解炉への適用に最適な液体燃料用バーナーが得られる。
【図面の簡単な説明】
【図1】 燃料噴出ノズル部分の一形態例を示す要部の断面図である。
【図2】 液体燃料用バーナーをバーナータイルを介してガラス溶解炉の壁面に装着した状態を示す断面図である。
【図3】 実施例で製作した試験炉の断面図である。
【図4】 実験例1における粒径と流速との関係を示す図である。
【図5】 実験例2における各測定位置及びLa/Daの値と炉壁温度との関係を示す図である。
【図6】 実験例5における粒径と流速との関係を示す図である。
【図7】 実験例5における各測定位置及びLa/Daの値と炉壁温度との関係を示す図である。
【図8】 質量流量比とノズル温度との関係を示す図である。
【図9】 実験例6における粒径と流速との関係を示す図である。
【図10】 実験例6における各測定位置及びLa/Daの値と炉壁温度との関係を示す図である。
【図11】 従来の液体燃料用酸素バーナーの一例を示す断面図である。
【図12】 ガラス溶解炉の一例を示す断面平面図である。
【符号の説明】
11…液体燃料用バーナー、12…液体燃料流路、13…噴霧流体流路、14…支燃ガス流路、15…燃料噴出ノズル、16…燃料供給ノズル、17…混合室、18…噴霧流体通路、19…噴霧燃料噴出口、20…支燃ガス通路、21…バーナータイル、22…ガラス溶解炉、31…試験炉、32…排気口[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid fuel burner particularly suitable for a glass melting furnace utilizing radiant heat transfer from a flame, a mounting structure thereof, and a combustion method.
[0002]
[Prior art]
In a glass melting furnace, a method of burning liquid fuel such as heavy oil or kerosene with air is used in order to heat and melt the glass evenly, and a melting method mainly based on radiant heat transfer without bringing the flame into contact with the glass. Adopted.
[0003]
However, if air is used as the combustion support gas, the nitrogen gas in the air does not contribute to combustion, so a large amount of exhaust gas is generated, and a heat loss used to increase the temperature of the nitrogen gas is unavoidable.
[0004]
However, when oxygen gas is used as the combustion support gas, it is expected that the amount of exhaust gas is reduced and the thermal efficiency is improved, and harmful NOx can be reduced. Therefore, interest in oxyfuel combustion has increased, and there has been a demand for the use of an oxygen burner that is substantially pure oxygen in a glass melting furnace.
[0005]
However, since oxyfuel combustion produces a high-temperature flame with a small amount of gas after combustion compared to air combustion, conventional oxygen burners for liquid fuels mainly apply a high-temperature flame with a short flame length directly to the object to be heated. It was suitable for applying and heating.
[0006]
On the other hand, since the glass melting furnace is mainly composed of radiant heat transfer as described above, a long flame length capable of obtaining a wide temperature distribution is desirable. For this purpose, the present inventors have previously proposed an oxygen burner for liquid fuel that forms a long flame by slow combustion, as shown in FIG. 11 (see JP-A-6-347008). This burner is a non-water-cooled self-cooling type, has excellent maintainability, and is suitable for a glass melting furnace.
[0007]
The liquid fuel oxygen burner 1 shown in FIG. 11 is provided with a supporting gas passage 4 concentrically on the outer periphery of a fuel passage 3 having a fuel injection hole 2 at the tip, and at a position eccentric to the fuel injection hole 2. A diaphragm member 6 in which a diaphragm hole 5 is formed is continuously provided. Therefore, the liquid fuel passes through the throttle hole 5 and diffuses into the gap 7 and then ejects from the fuel ejection hole 2. At this time, the fuel ejection hole 2 and the throttle hole 5 are in an eccentric position. The liquid fuel from the hole 2 is ejected at a relatively small spray angle, and the flight distance is extended.
[0008]
On the other hand, the combustion-supporting gas is ejected from the opening end of the combustion-supporting gas passage 4 so as to surround the atomized liquid fuel, and when burned in this state, the flame length is long and the ratio of the bright flame portion Gives a large flame. This is because in the burner 1, the mixing of the liquid fuel and the combustion supporting gas becomes slow, and as a result, the way of burning the liquid fuel becomes slow. However, the flame obtained by such an oxygen burner for liquid fuel has a weak point that propulsive force is weak.
[0009]
[Problems to be solved by the invention]
Now, in the conventional form of introducing an oxygen burner for liquid fuel into a glass melting furnace by air combustion, there is a case where a glass melting furnace dedicated to an oxygen burner for liquid fuel is newly installed, and an oxygen burner for liquid fuel partially. May be replaced. In the former case, there is no particular problem, but when the latter is partially replaced, the air combustion flame and the liquid fuel oxygen burner flame coexist in the furnace. In this case, as described above, the oxygen burner flame for liquid fuel has a weak propulsive force, so that the temperature of the furnace side wall and the crown is excessively increased due to the air combustion flame. In particular, as shown in FIG. 12, in the glass melting furnace 8, it is remarkable when the oxygen burner flame Fo for liquid fuel opposes the air combustion flame Fa.
[0010]
Therefore, the present invention provides a liquid fuel burner that can obtain a flame with a strong driving force while maintaining a long high-intensity flame and forms a flame that is not covered by the air combustion flame in the glass melting furnace, An object is to provide an optimal mounting structure for mounting the liquid fuel burner to a glass melting furnace and an optimal combustion method at that time.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the burner for liquid fuel of the present invention inserts the tip of the fuel supply nozzle for ejecting liquid fuel into the center of one end in the axial direction of the cylindrical mixing chamber , and the other axial direction of the mixing chamber. An atomized fuel outlet is provided in the center of the end, the fuel supply nozzle and the atomized fuel outlet are aligned with the axial center of the mixing chamber, and the outer periphery of the tip of the fuel supply nozzle and the inner periphery of the mixing chamber liquid fuel and fuel injection nozzle passage formed in the axial direction of the mixing chamber of the spray fluid, around the fuel jet nozzles, formed by providing a passage for combustion-supporting gas is provided to the fuel jetting nozzle and concentrically by The burner is characterized in that the relationship between the inner diameter Da and the length La of the mixing chamber is in a range of La / Da = 0.75 to 1.75.
[0012]
Further, the mounting structure of the liquid fuel burner according to the present invention is such that when the liquid fuel burner having the above configuration is mounted on the wall surface of the glass melting furnace via the burner tile surrounding the liquid fuel burner, The relationship between the inner diameter Db and the distance Lb between the tip of the burner tile and the tip of the burner tile mounted with being retracted from the tip of the burner tile is a range of Lb / Db = 1.5 to 3.0 It is characterized by that.
[0013]
Further, according to the combustion method of the liquid fuel burner of the present invention, when burning the liquid fuel burner mounted on the wall surface of the glass melting furnace by the steam mounting structure, oxygen gas is used as the spray fluid and the combustion support gas, The ejection speed of the liquid fuel ejected from the supply nozzle to the mixing chamber is 5 to 20 m per second, and the mass flow rate ratio Rs between the mass flow rate S1 of the spray fluid and the mass flow rate S2 of the liquid fuel is S1 / S2 = 0.12-0. The flow rate ratio Rv between the average flow velocity V1 in the passage of the spray fluid and the average flow velocity V2 in the nozzle of the liquid fuel is in the range of V1 / V2 = 12 to 30 and the mass flow ratio Rs The momentum ratio M, which is the product of the flow rate ratio Rv, is set to be in the range of 2 to 7.5, and the flow rate of the combustion supporting gas is set to 15 to 30 m per second.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 show an embodiment of a liquid fuel burner according to the present invention. FIG. 1 is a cross-sectional view of a main part showing a fuel injection nozzle portion, and FIG. 2 shows a liquid fuel burner with a burner tile. It is sectional drawing which shows the state with which it attached to the wall surface of the glass melting furnace via.
[0015]
The liquid fuel burner 11 has a multi-tube structure in which a liquid fuel passage 12, a spray fluid passage 13, and a combustion gas passage 14 are provided concentrically. A fuel ejection nozzle 15 is provided at the tip of the fluid flow path 13. The fuel injection nozzle 15 inserts the tip of a fuel supply nozzle 16 communicating with the liquid fuel flow path 12 into the center of one axial end of a cylindrical mixing chamber 17 having a larger diameter than the nozzle 16 , and the mixing chamber 17. By providing the spray fuel jet port 19 at the center of the other end in the axial direction, the fuel supply nozzle 16 and the spray fuel jet port 19 are made to coincide with the center of the mixing chamber 17 in the axial direction. And the inner periphery of the mixing chamber 17 have a structure in which a spray fluid passage 18 communicating with the spray fluid passage 13 is formed in the axial direction of the mixing chamber . Further, around the fuel injection nozzle 15, a combustion supporting gas passage 20 that communicates with the combustion supporting gas passage 14 is provided concentrically.
[0016]
In the liquid fuel burner 11 thus formed, liquid fuel such as heavy oil or kerosene is supplied to the liquid fuel flow path 12, an appropriate gas, for example, air or oxygen gas, is added to the spray fluid flow path 13, and a combustion gas flow When a predetermined amount of a gas having a combustion-supporting property, such as air or oxygen gas, is supplied to the passage 14, the liquid fuel supplied from the fuel supply nozzle 16 to the mixing chamber 17 is mixed with the spray fluid from the spray fluid passage 18. In this way, the liquid droplets have an appropriate diameter and are mixed with the combustion support gas ejected from the spray fuel ejection port 19 and ejected from the combustion support gas passage 20 to generate a combustion flame.
[0017]
When obtaining a combustion flame as described above, the relationship between the inner diameter Da and the length La of the cylindrical mixing chamber 17 is an important factor, and the relationship between the two ranges from La / Da = 0.75 to 1.75. A good flame is obtained by setting to enter. If the length La is shorter than the inner diameter Da beyond this range, the flame is blown off and stable combustion cannot be obtained. Conversely, if the length La is increased, the brightness of the flame becomes weak due to rapid combustion, and the nozzle The heat load on will also increase.
[0018]
As shown in FIG. 2, when the liquid fuel burner 11 is mounted on the wall surface of the glass melting furnace 22 via the cylindrical burner tile 21, the position of the tip of the liquid fuel burner 11 is determined. It becomes an important factor. In other words, the relationship between the inner diameter Db of the burner tile 21 and the distance Lb between the tip of the burner 11 for liquid fuel mounted backward from the tip of the burner tile 21 and the tip of the burner tile 21 is Lb / Db = 1. It is preferable to set it in the range of .5 to 3.0. By setting it within this range, the jet angle of the flame jetted from the burner tile 21 into the furnace can be set to 10 to 15 degrees, and the inertial force in the axial direction is sufficient. When the distance Lb is shorter than the inner diameter Db beyond this range, the tip of the burner is overheated by heat radiation from the furnace, and conversely, when the distance Lb is longer, the burner flame is intense on the inner peripheral surface of the burner tile 21. Due to the collision, thermal damage of the burner tile 21 and disturbance of the flame occur.
[0019]
In the liquid fuel burner 11, it is preferable to use pure oxygen industrially as a combustion support gas in order to suppress thermal efficiency and NOx. The atomizing fluid may be steam or air as long as the liquid fuel is liquid droplets of an appropriate diameter, but using steam not only lowers the flame temperature but also obtains suitable brightness. The generation of soot that is intentionally generated is not preferable, and air is not preferable from the viewpoint of thermal efficiency and NOx suppression. For this reason, it is preferable to use oxygen as the atomizing fluid.
[0020]
In the liquid fuel burner 11 having the above-described structure, the ejection speed of the liquid fuel from the fuel supply nozzle 16 is 5 to 20 m / s per second, and the mass flow rate between the mass flow rate S1 of the spray fluid and the mass flow rate S2 of the liquid fuel. The ratio Rs is in the range of S1 / S2 = 0.12 to 0.24, and the flow rate ratio Rv between the average flow velocity V1 of the spray fluid in the spray fluid passage 18 and the average flow velocity V2 of the liquid fuel in the fuel supply nozzle 16 is V1. The momentum ratio M, which is the product of the mass flow rate ratio Rs and the flow rate ratio Rv, is set to be in the range of Rs × Rv = 2 to 7.5. The flow rate of the combustion supporting gas is preferably 15 to 30 m / sec.
[0021]
By burning under such conditions, the inertial force of the flame in the glass melting furnace becomes sufficient, and the flame is not affected by the air flame, and a flame having a favorable brightness and a long state can be obtained. In particular, by flowing oxygen gas, which is a combustion support gas, at a flow rate of 15 to 30 m per second, the liquid fuel sprayed in the form of droplets is wrapped around a concentric ring and gradually burned from the surroundings to create a flame. Form. If the flow rate of oxygen gas is less than 15 m / s, the propulsive force of the flame is weak and unburned components remain in the downstream of the flame without sufficient combustion. On the other hand, if it exceeds 30 m / s, the combustion speed is increased, the heat burden on the nozzle is increased, and a preferable result cannot be obtained.
[0022]
【Example】
As shown in FIG. 3, as a test furnace 31, a liquid fuel burner 11 having an outer diameter of 145 mm is installed at one end of a cylindrical furnace body 31a having an inner diameter of 1000 mm × inner length of 4000 mm via a burner tile 21 having an inner diameter of 150 mm. In addition, an exhaust port 32 having an inner diameter of 600 mm was provided at the other end, and a thermocouple was provided so that the temperature of the inner wall of the furnace could be measured at 8 locations (a to h). To the burner 11, C heavy oil was supplied as a fuel at a flow rate of 200 liters per hour, and oxygen gas as a combustion support gas and a spray fluid was supplied in total of 400 Nm 3 / h. C heavy oil was supplied by preheating to 110 ° C. (viscosity 15 cP) in order to lower the viscosity.
[0023]
Experimental example 1
Regarding the setting of the burner on the burner tile, Lb in FIG. 2 was 300 mm (Lb / Db = 2.0), and the shape of the cylindrical mixing chamber was examined. That is, the inner diameter Da of the mixing chamber in FIG. 1 was fixed to 6.5 mm, and the length La was changed to create seven types of burners having La / Da values of 0.5 to 2.0. Then, the flow rate of the atomizing oxygen gas from the atomizing fluid passage was set to 23.4 Nm 3 / h, and the atomizing characteristics were examined without burning. At this time, the mass flow rate ratio Rs is 0.18, the flow rate ratio Rv is 26.5, the momentum ratio M is 4.8, and the flow rate of combustion oxygen which is a combustion support gas is 25 m / s. Table 1 shows the results of photographing the jet flow from the burner tile and measuring the jet angle in each burner. Further, FIG. 4 shows the results of measuring the Sauter average particle diameter and the flow velocity of the fuel droplets with a measuring instrument (2D-PA / RSA system manufactured by Aerometrics, USA) at a position 500 mm from the tip of the burner.
[0024]
[Table 1]
Figure 0003770356
[0025]
It can be seen from Table 1 that when the La / Da value is small, the ejection angle is small, and the La / Da value is large and the ejection angle is large. Also, from FIG. 4, when the value of La / Da is small, the droplet is large and its speed is small. It can be seen that as the value of La / Da increases, the droplet diameter decreases and the velocity increases.
[0026]
Experimental example 2
In response to the result of Experimental Example 1, three values of La / Da of 0.5, 1.0, and 2.0 are selected, and a mixed firing with an air flame in an actual glass melting furnace is assumed. As shown in FIG. 3, 400 Nm 3 / h of air was sent from the exhaust port 32 through the blower 33 to examine how the flame was affected. The result of the temperature measurement of the furnace inner wall is shown in FIG.
[0027]
From FIG. 5, when La / Da = 1.0, a good temperature distribution can be obtained. However, when La / Da = 0.5, the flame is disturbed by the air blown by the blower, and the furnace is disturbed. It was observed that the temperature of the inner wall exceeded 1600 ° C, the temperature distribution was poor, the combustion was incomplete, and there was a lot of unburned content. When La / Da = 2.0, combustion is rapid and a drop in flame brightness is observed, the flame is short, and the temperature of the wall inner surface is not transmitted far away. Furthermore, as a result of conducting the same experiment with each burner of Experimental Example 1, it was found that a good flame can be obtained if the value of La / Da is in the range of 0.75 to 1.75.
[0028]
From the results of Experimental Examples 1 and 2, it is considered that when the value of La / Da is 0.5, the ejection angle is too small as 5 degrees, the flame is not sufficiently dispersed, and combustion failure occurs. Further, when the value of La / Da is 2.0, it is observed that the ejection angle is as large as 17.5 degrees, the combustion is fast, the brightness of the flame is lowered, and the flame length is short. The heat load is also large and inappropriate. Accordingly, the ejection angle is preferably in the range of 10 to 15 degrees.
[0029]
Experimental example 3
The same test was conducted with the La / Da value fixed at 1.0 and various burner tile setting conditions (Lb / Db). As a result, a good flame was obtained if the value of Lb / Db was in the range of 1.5 to 3.0, but if the value of Lb / Db was less than 1.5, the tip of the burner became overheated. When it exceeded 0, the burner tile was damaged by heat and the flame was disturbed.
[0030]
Experimental Example 4
Next, the influence of the jet speed of the liquid fuel into the mixing chamber was investigated. The value of La / Da is set to 1.0, and the diameter of the fuel supply nozzle is changed to create four types of nozzles with fuel ejection speeds of 5, 10, 15, and 20 m / s. The spraying oxygen is 27 Nm 3. The same test as in Experimental Example 2 was performed. Within this range, there was no difference in the state of the flame, etc., and good results were obtained. At this time, the mass flow rate ratio Rs was 0.21, and the flow rate of combustion oxygen was 25.0 m / s.
[0031]
Experimental Example 5
In order to investigate the influence of the mass flow ratio Rs, five types of nozzles were prepared in which the diameter Da of the mixing chamber was changed to 5.0, 6.0, 6.8, 7.5, and 8.2 mm. Using these nozzles, the amount of atomizing oxygen gas was adjusted so that the mass flow ratio Rs would be 0.06, 0.12, 0.18, 0.24, and 0.3, respectively. At this time, the flow rate ratio Rv was 26.5. The flow rate of combustion oxygen was fixed at 25 m / s. As in Experimental Examples 1 and 2, the ejection angle, spray characteristics (droplets and velocity), and furnace wall temperature were measured. The results are shown in Table 2 and FIGS. Furthermore, a thermocouple was attached to the tip tapered portion of the fuel injection nozzle, and the temperature was measured. The result is shown in FIG.
[0032]
[Table 2]
Figure 0003770356
[0033]
From this result, when the mass flow ratio Rs is 0.06, the droplets are not sufficiently miniaturized and the flow velocity is slow, and the flame becomes unstable and easily blown. The temperature of the furnace wall is increased locally. On the other hand, when the mass flow rate ratio Rs is 0.3, the droplet flow velocity is high and there is a propulsive force of the flame, but the droplet is small and burns rapidly (the nozzle temperature is abnormally high in FIG. 8). A long flame cannot be obtained, and the temperature of the furnace wall decreases rapidly with distance.
[0034]
Experimental Example 6
Next, the influence of the flow rate ratio Rv was examined. Five types of nozzles were prepared by changing the La / Da value in the mixing chamber to 1, and changing them to 10.9, 9.6, 7.5, 6.8, and 6.0 mm, respectively. Using these nozzles, the flow rate of the atomizing oxygen was adjusted so that the flow rate ratio Rv would be 9.3, 12.5, 23.2, 30.9, 44.2. At this time, the mass flow ratio Rs is 0.21, and the momentum ratio M is 1.9, 2.6, 4.9, 6.5, and 9.3, respectively. The fuel flow rate was 10 m / s and the combustion oxygen flow rate was 25 m / s. In the same manner as in Experimental Example 1, the ejection angle and the spray characteristics (droplet and velocity) were measured. The results are shown in Table 3 and FIG. Moreover, the result of having measured wall surface temperature similarly to Experimental example 2 is shown in FIG.
[0035]
[Table 3]
Figure 0003770356
[0036]
From this result, when the flow rate ratio Rv was 9.3, the ejection angle was 11.2 degrees, but the flame was heavily violated and contacted the ceiling, causing thermal damage. When the flow rate ratio Rv was 44.2, the droplet diameter was small, so the flame was short and it was not heated far.
[0037]
Experimental Example 7
Next, the flow rate of combustion oxygen was examined. A burner having Da and La of 7.1 mm (La / Da = 1.0) is used, a ring-shaped sleeve is inserted into the combustion gas passage to adjust the cross-sectional area, and the flow rate of combustion oxygen is 8.7. , 15, 25, 30, 45 m / s, and the effect was examined. At this time, the mass flow rate ratio Rs is 0.21, the flow rate ratio Rv is 26.5, and the fuel flow rate is 10 m / s. When the combustion oxygen flow rate was 8.7 m / s, the propulsive force of the flame was small, and it was covered with the counter gas, and unburned matter was generated in the downstream of the flame, resulting in poor combustion. On the other hand, when the combustion oxygen flow rate was 45 m / s, combustion was promoted too much and the heat load of the burner was large, which was not suitable for practical use. When the combustion oxygen flow rate was 15, 25, 30 m / s, a good flame was obtained.
[0038]
In accordance with the results of the experimental example and the comparative example or more, a burner was attached to the actual glass melting furnace shown in FIG. 12, and the operation was observed under the following five conditions A to E. In addition, in FIG. 12, since the air flame Fa is alternately blown out from the jet outlets (9a, 9b) on both sides of the furnace, the air flame Fa repeats being parallel to or facing the oxygen flame. The inner diameter D of the burner tile was 150 mm, and Lb / Db = 2.0. The results are shown in Table 4.
[0039]
[Table 4]
Figure 0003770356
[0040]
Under condition A, poor combustion occurs, the flame is violently heated, and there is a local temperature rise at the furnace ceiling and burner installation wall, which is not suitable for practical use. This is because the mass flow ratio Rs is as small as 0.06. Conditions B, C, and D were confirmed to have good flame length, brightness, stability, effective heat transfer to glass, and high practicality. Under condition E, the combustion was carried out rapidly, the combustion sound was loud, the flame was short, the brightness was low, and the heat transfer to the glass was poor. In this case, melting damage was observed inside the furnace of the burner tile. This is because combustion oxygen is as fast as 45 m / s.
[0041]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a liquid fuel burner that is excellent in flame length, brightness, and stability, and that is particularly suitable for application to a glass melting furnace.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part showing an embodiment of a fuel injection nozzle portion.
FIG. 2 is a cross-sectional view showing a state in which a liquid fuel burner is mounted on a wall surface of a glass melting furnace via a burner tile.
FIG. 3 is a cross-sectional view of a test furnace manufactured in an example.
4 is a graph showing the relationship between particle size and flow velocity in Experimental Example 1. FIG.
5 is a diagram showing the relationship between each measurement position and La / Da value and furnace wall temperature in Experimental Example 2. FIG.
6 is a graph showing the relationship between particle size and flow velocity in Experimental Example 5. FIG.
7 is a graph showing the relationship between each measurement position and La / Da value and furnace wall temperature in Experimental Example 5. FIG.
FIG. 8 is a diagram illustrating a relationship between a mass flow rate ratio and a nozzle temperature.
FIG. 9 is a graph showing the relationship between particle size and flow velocity in Experimental Example 6.
10 is a diagram showing the relationship between each measurement position and La / Da value and furnace wall temperature in Experimental Example 6. FIG.
FIG. 11 is a cross-sectional view showing an example of a conventional oxygen burner for liquid fuel.
FIG. 12 is a cross-sectional plan view showing an example of a glass melting furnace.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Liquid fuel burner, 12 ... Liquid fuel flow path, 13 ... Spray fluid flow path, 14 ... Combustion gas flow path, 15 ... Fuel injection nozzle, 16 ... Fuel supply nozzle, 17 ... Mixing chamber, 18 ... Spray fluid Passage 19: Sprayed fuel jet, 20 ... Combustion gas passage, 21 ... Burner tile, 22 ... Glass melting furnace, 31 ... Test furnace, 32 ... Exhaust port

Claims (3)

液体燃料を噴出する燃料供給ノズルの先端円筒状混合室の軸方向の一端中央に挿入するとともに、該混合室の軸方向の他端中央に噴霧燃料噴出口を設けて、前記燃料供給ノズルと該噴霧燃料噴出口を前記混合室の軸方向の中央に一致させ、前記燃料供給ノズルの先端の外周と前記混合室の内周とによって噴霧流体の通路を前記混合室の軸方向に形成した燃料噴出ノズルと、該燃料噴出ノズルの周囲に、該燃料噴出ノズルと同心状に設けた支燃ガスの通路を設けてなる液体燃料用バーナーであって、前記混合室の内径Daと長さLaとの関係が、La/Da=0.75〜1.75の範囲であることを特徴とする液体燃料用バーナー。 It is inserted the tip of the fuel supply nozzle for injecting liquid fuel into one center in the axial direction of the cylindrical mixing chamber, and spray fuel injection holes provided at the other end center in the axial direction of the mixing chamber, and the fuel supply nozzle The fuel in which the sprayed fuel outlet is aligned with the axial center of the mixing chamber, and the spray fluid passage is formed in the axial direction of the mixing chamber by the outer periphery of the tip of the fuel supply nozzle and the inner periphery of the mixing chamber and ejection nozzles, around the fuel jet nozzle, fuel jetting nozzle and a liquid fuel burner comprising providing a passage for combustion-supporting gas is provided coaxially, said mixing chamber having an inner diameter Da and a length La Is a range of La / Da = 0.75 to 1.75. 請求項1記載の液体燃料用バーナーを、該液体燃料用バーナーを囲繞するバーナータイルを介してガラス溶解炉の壁面に装着するにあたり、前記バーナータイルの内径Dbと、バーナータイルの先端から後退させて装着した液体燃料用バーナーの先端とバーナータイルの先端との間の距離Lbとの関係を、Lb/Db=1.5〜3.0の範囲としたことを特徴とする液体燃料用バーナーの装着構造。In mounting the liquid fuel burner according to claim 1 on the wall surface of the glass melting furnace via the burner tile surrounding the liquid fuel burner, the burner tile is retracted from the inner diameter Db and the tip of the burner tile. Mounting of the liquid fuel burner, wherein the relationship between the tip of the mounted liquid fuel burner and the distance Lb between the tip of the burner tile is in the range of Lb / Db = 1.5 to 3.0 Construction. 請求項2記載の装着構造によってガラス溶解炉の壁面に装着した液体燃料用バーナーを燃焼させるにあたり、前記噴霧流体及び前記支燃ガスに酸素ガスを用い、燃料供給ノズルから混合室に噴出する液体燃料の噴出速度を毎秒5〜20mとし、噴霧流体の質量流量S1と液体燃料の質量流量S2との質量流量比Rsを、S1/S2=0.12〜0.24の範囲とし、噴霧流体の通路内の平均流速V1と液体燃料のノズル内の平均流速V2との流速比Rvを、V1/V2=12〜30の範囲とし、かつ、前記質量流量比Rsと前記流速比Rvとの積であるモーメンタム比Mが2〜7.5の範囲となるように設定するとともに、前記支燃ガスの流速を毎秒15〜30mとすることを特徴とする液体燃料バーナーの燃焼方法。3. A liquid fuel ejected from a fuel supply nozzle to a mixing chamber using an oxygen gas as the spray fluid and the combustion support gas when burning the liquid fuel burner mounted on the wall of the glass melting furnace by the mounting structure according to claim 2. The spray velocity is 5 to 20 m per second, the mass flow rate ratio Rs of the mass flow rate S1 of the spray fluid and the mass flow rate S2 of the liquid fuel is in the range of S1 / S2 = 0.12 to 0.24, and the spray fluid passage The flow rate ratio Rv between the average flow velocity V1 in the nozzle and the average flow velocity V2 in the liquid fuel nozzle is in the range of V1 / V2 = 12 to 30, and is the product of the mass flow ratio Rs and the flow ratio Rv. A combustion method for a liquid fuel burner, wherein the momentum ratio M is set to be in a range of 2 to 7.5, and the flow rate of the combustion supporting gas is set to 15 to 30 m / sec.
JP30715997A 1997-11-10 1997-11-10 Burner for liquid fuel, mounting structure thereof, and combustion method Expired - Lifetime JP3770356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30715997A JP3770356B2 (en) 1997-11-10 1997-11-10 Burner for liquid fuel, mounting structure thereof, and combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30715997A JP3770356B2 (en) 1997-11-10 1997-11-10 Burner for liquid fuel, mounting structure thereof, and combustion method

Publications (2)

Publication Number Publication Date
JPH11141811A JPH11141811A (en) 1999-05-28
JP3770356B2 true JP3770356B2 (en) 2006-04-26

Family

ID=17965747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30715997A Expired - Lifetime JP3770356B2 (en) 1997-11-10 1997-11-10 Burner for liquid fuel, mounting structure thereof, and combustion method

Country Status (1)

Country Link
JP (1) JP3770356B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4693968B2 (en) * 2000-09-11 2011-06-01 大陽日酸株式会社 Furnace operation method
US7500849B2 (en) * 2004-01-16 2009-03-10 Air Products And Chemicals, Inc. Emulsion atomizer nozzle, and burner, and method for oxy-fuel burner applications
JP2006162095A (en) * 2004-12-02 2006-06-22 Idemitsu Eng Co Ltd Burner and fuel combustion equipment having this burner
US8747101B2 (en) 2005-01-21 2014-06-10 Sulzer Metco (Us) Inc. High velocity oxygen fuel (HVOF) liquid fuel gun and burner design
JP4697090B2 (en) * 2006-08-11 2011-06-08 Jx日鉱日石エネルギー株式会社 Two-fluid spray burner
FR2986605B1 (en) * 2012-02-08 2018-11-16 Saint-Gobain Isover IMMERSE BURNER WITH MULTIPLE INJECTORS

Also Published As

Publication number Publication date
JPH11141811A (en) 1999-05-28

Similar Documents

Publication Publication Date Title
JP4260948B2 (en) Burners and combustion methods and methods for their use
JP2657157B2 (en) Spray nozzle
US4222243A (en) Fuel burners for gas turbine engines
JP3662023B2 (en) Fuel nozzle introduced from tangential direction
JPH0777316A (en) Fuel lance for liquid and/or gas fuel and its operation
JPH04136603A (en) Burner and combustion equipment
JP4908854B2 (en) Liquid fuel HVOF spray gun and burner design
JPH0861091A (en) Assembly of fuel injector and igniter and operating method of gas turbine engine with combustion chamber
JP3770356B2 (en) Burner for liquid fuel, mounting structure thereof, and combustion method
JP2001263608A (en) Burner for oxygen-enriched liquid fuel
JP2981959B2 (en) Burner for liquid fuel
JPS5847903A (en) Method and burner for evaporating and burning liquid fuel
JP2561382B2 (en) Low NOx burner
JP2797783B2 (en) Liquid fuel combustion device
JP4420492B2 (en) Liquid fuel burner and operation method thereof
JP3021870B2 (en) Liquid fuel combustion device
JPS62155425A (en) Oil burner
JP4190667B2 (en) Liquid fuel burner
JP2794327B2 (en) Fluid ejection nozzle
RU2210027C2 (en) Method of burning liquid hydrocarbon fuels
JP2982437B2 (en) Liquid fuel combustion device
KR100193294B1 (en) Liquid Fuel Burners
JP2946146B2 (en) Liquid fuel-oxygen burner
JP3144116B2 (en) Liquid fuel combustion device
JPH0587723B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040809

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term