JPS641411B2 - - Google Patents

Info

Publication number
JPS641411B2
JPS641411B2 JP55164823A JP16482380A JPS641411B2 JP S641411 B2 JPS641411 B2 JP S641411B2 JP 55164823 A JP55164823 A JP 55164823A JP 16482380 A JP16482380 A JP 16482380A JP S641411 B2 JPS641411 B2 JP S641411B2
Authority
JP
Japan
Prior art keywords
reaction
raw material
silicic acid
sodium silicate
reactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55164823A
Other languages
Japanese (ja)
Other versions
JPS5788021A (en
Inventor
Masaru Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WAI KEI EFU JUGEN
Original Assignee
WAI KEI EFU JUGEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WAI KEI EFU JUGEN filed Critical WAI KEI EFU JUGEN
Priority to JP55164823A priority Critical patent/JPS5788021A/en
Priority to PCT/JP1981/000323 priority patent/WO1982001702A1/en
Priority to KR1019810004349A priority patent/KR870001289B1/en
Publication of JPS5788021A publication Critical patent/JPS5788021A/en
Publication of JPS641411B2 publication Critical patent/JPS641411B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/005Fusing
    • B01J6/007Fusing in crucibles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/32Alkali metal silicates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】 本発明は珪酸ソーダの新規な製法とその装置に
関するものである。詳しくはアルカリと珪酸との
モル比(珪酸/アルカリ)(以下MRと略す)が
3以上の珪酸ソーダを容易に製造できる方法と装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for producing sodium silicate and an apparatus therefor. Specifically, the present invention relates to a method and apparatus for easily producing sodium silicate having a molar ratio of alkali to silicic acid (silicic acid/alkali) (hereinafter abbreviated as MR) of 3 or more.

従来珪酸ソーダの製造方法としては白土に代表
される溶解しやすい珪酸原料をアルカリ溶液(主
として苛性ソーダ溶液)と共にオートクレーブ内
で加熱反応させる湿式法及び珪砂とアルカリ(主
として炭酸ソーダ)を1300〜1500℃で加熱溶融し
てカレツトをつくり、更にこれを高圧容器内で加
熱溶解する乾式法が知られている。しかしながら
このような従来法には次のような欠点があつた。
すなわち湿式法では製造に要するエネルギーは少
なくて済むものの、珪酸原料に含まれる不純物の
ために着色しまた濾過性も悪くMRが2.5以上の
高モル比の製品は製造することができないという
欠点があつた。もつとも珪酸原料としてホワイト
カーボン、シリカゲル等の高純度可溶性シリカを
使用すれば高モル比製品が製造できないことはな
いが、これらの高純度可溶性シリカは高価で経済
的に引き合わなかつた。また乾式法では高モル比
の製品を製造することはできるが、製造に要する
熱エネルギーは膨大で、熱効率を改善しようにも
莫大な付帯設備を必要とする欠点があつた。言い
換えればエネルギー消費量の少なく、しかも高モ
ル比の珪酸ソーダの工業的製造法は未だ存在して
おらず省エネルギーの叫ばれている今日強く要望
されている。
Conventional methods for producing sodium silicate include a wet method in which easily soluble silicic acid raw materials such as clay are heated and reacted together with an alkaline solution (mainly caustic soda solution) in an autoclave, and a method in which silica sand and alkali (mainly soda carbonate) are reacted at 1300 to 1500°C. A dry method is known in which a cullet is formed by heating and melting, and this is further heated and melted in a high-pressure container. However, such conventional methods have the following drawbacks.
In other words, although the wet method requires less energy for production, it has the disadvantage that it is colored due to impurities contained in the silicic acid raw material, has poor filterability, and cannot produce products with a high molar ratio of MR of 2.5 or more. Ta. Of course, if high purity soluble silica such as white carbon or silica gel is used as the silicic acid raw material, it is possible to produce products with a high molar ratio, but these high purity soluble silicas are expensive and are not economically viable. Furthermore, although it is possible to produce a product with a high molar ratio using the dry process, it requires an enormous amount of thermal energy and has the drawback of requiring a huge amount of incidental equipment to improve thermal efficiency. In other words, an industrial method for producing sodium silicate with low energy consumption and a high molar ratio does not yet exist, and there is a strong demand for it in these days of energy conservation.

本発明者はかかる要望に応える為鋭意検討の結
果、特殊な反応装置を用いアルカリと珪酸との反
応を反応物がガラス化状態へ移行前に終了すれば
良いことを見出し本発明を完成した。
In order to meet this demand, the inventors of the present invention have made extensive studies and have completed the present invention by discovering that it is sufficient to use a special reaction device to terminate the reaction between an alkali and silicic acid before the reactants transition to a vitrified state.

すなわち本発明の目的は、エネルギー消費量の
少ない高モル比珪酸ソーダの製造法とその装置を
提供することにあり、かかる目的はアルカリ含有
物質で被覆された珪酸原料を加熱して反応させ、
反応物がガラス化状態に移行しないうちに高温域
から分離することを特徴とする方法と、反応容器
内に熱源を設置し、該熱源の周囲に反応板を配設
し、前記反応容器上部に原料入口を設け、下部に
反応物出口を設けることを特徴とする珪酸ソーダ
の製造装置にある。
That is, an object of the present invention is to provide a method for producing high molar ratio sodium silicate with low energy consumption and an apparatus therefor.
A method characterized in that a reactant is separated from a high temperature region before it transitions to a vitrified state, a heat source is installed in a reaction vessel, a reaction plate is arranged around the heat source, and a reaction plate is placed above the reaction vessel. An apparatus for producing sodium silicate is characterized in that a raw material inlet is provided and a reactant outlet is provided at the bottom.

以下に本発明を詳細に説明するに、本発明では
原料として、第3図のようなアルカリ含有物質a
で被覆された珪酸b原料を使用する。ここにアル
カリ含有物質aとしそては、メタ珪酸ソーダ、オ
ルソ珪酸ソーダ、苛性ソーダ、カリ類等を挙げる
ことができ、通常これらのうちメタ珪酸ソーダが
使用される。これらの多くはガラス原料として公
知のもので、例えばメタ珪酸ソーダで被覆された
珪酸原料は、苛性ソーダと珪砂を320〜450℃に加
熱すると珪砂の表面と苛性ソーダが反応し顕粒状
の状態で得られるものである。このような珪酸原
料を使用するのは、次工程で溶融し易く反応が容
易に進行するからである。
The present invention will be explained in detail below. In the present invention, an alkali-containing substance a as shown in FIG. 3 is used as a raw material.
A silicic acid b raw material coated with is used. Examples of the alkali-containing substance a include sodium metasilicate, sodium orthosilicate, caustic soda, potash, etc. Among these, sodium metasilicate is usually used. Many of these are known as glass raw materials. For example, silicic acid raw materials coated with sodium metasilicate are obtained in a granular state when caustic soda and silica sand are heated to 320 to 450°C, and the surface of the silica sand reacts with the caustic soda. It is something. The reason why such a silicic acid raw material is used is that it is easily melted in the next step and the reaction proceeds easily.

次にこの原料を850〜900℃に加熱しアルカリ含
有物質と珪酸を反応させ、反応物がガラス化状態
に移行しないうちに高温域から分離する。ガラス
化状態に移行すると、反応物の特質であるフオー
ム状態がガラス化進行に比例して失われ、溶解に
際し例えばオートクレーブの如き高温高圧の装置
を必要とし、同時にそのための熱源も更に必要と
なる。
Next, this raw material is heated to 850 to 900°C to cause the alkali-containing substance and silicic acid to react, and the reactant is separated from the high temperature range before it changes to a vitrified state. When transitioning to a vitrified state, the form state, which is a characteristic of the reactant, is lost in proportion to the progress of vitrification, requiring a high-temperature, high-pressure device such as an autoclave for melting, and at the same time, a heat source for this purpose is also required.

反応は例えば図面のような装置で行うことがで
きる。第1図はこの装置の第1実施例であつて1
は鉄板式または赤レンガ式の反応容器で、上部は
原料入口13として開放されており、下部中心に
は漏斗状の反応物出口2が設けられている。反応
容器1内部中央付近には、電気ヒーター、ガスバ
ーナー等の熱源3が設置されており、その周囲に
は多段状に反応板4が配設され、熱源3上方には
円錐板5が設けてあり、該円錐板5には温度計1
4が差し込まれている。当然のことながら反応板
4及び円錐板5は耐火材料で作られている。勿論
金属板で製作しても良い。6は反応物出口2下方
に設置されている溶解槽で、内部には撹拌機7が
備えられている。
The reaction can be carried out, for example, in an apparatus as shown in the drawing. FIG. 1 shows a first embodiment of this device.
is an iron plate type or red brick type reaction vessel, the upper part of which is open as a raw material inlet 13, and a funnel-shaped reactant outlet 2 provided at the center of the lower part. A heat source 3 such as an electric heater or a gas burner is installed near the center inside the reaction vessel 1, reaction plates 4 are arranged in multiple stages around the heat source 3, and a conical plate 5 is provided above the heat source 3. There is a thermometer 1 on the conical plate 5.
4 is inserted. Naturally, the reaction plate 4 and the conical plate 5 are made of refractory material. Of course, it may be made of a metal plate. 6 is a dissolution tank installed below the reactant outlet 2, and a stirrer 7 is provided inside.

さてこのような装置に熱源3を作動させて装置
内を850℃以上に加熱することによつて装入され
ているアルカリ含有物質で被覆された珪酸原料8
が連続的に反応を起す。反応すると反応物9は微
小な気泡を多数含んだ白色のフオーム状粘性流体
となり、自重により反応板4より自然に矢印のよ
うに落下し反応物出口2より反応容器1外へ出
る。反応板4より落下したあとは、次の珪酸原料
8が反応して同様に粘性流体となり、この反応物
も自重により落下し高温域から分離される。つま
り反応すると粘性流体となりガラス化状態に移行
するまでもなく直ちに系外に取出される。反応容
器から出た反応物9は水又は珪酸ソーダの満たさ
れた溶解槽6に入り、ここで気泡を放出しつつ30
秒前後で粉化する。落下するフオーム状反応物9
は反応の際加熱された熱量(約850〜900℃)を有
しているので、撹拌によつて自然に完全に溶液化
した珪酸ソーダが得られる。
Now, the silicic acid raw material 8 coated with an alkali-containing substance, which is charged into such a device by activating the heat source 3 and heating the inside of the device to 850° C. or higher, is charged.
causes a continuous reaction. Upon reaction, the reactant 9 becomes a white foam-like viscous fluid containing many minute bubbles, which naturally falls from the reaction plate 4 in the direction of the arrow due to its own weight and exits the reaction container 1 through the reactant outlet 2. After falling from the reaction plate 4, the next silicic acid raw material 8 reacts and similarly becomes a viscous fluid, and this reactant also falls due to its own weight and is separated from the high temperature region. In other words, upon reaction, it becomes a viscous fluid and is immediately taken out of the system without transitioning to a vitrified state. The reactant 9 released from the reaction vessel enters the dissolution tank 6 filled with water or sodium silicate, where it is heated for 30 minutes while releasing air bubbles.
It turns into powder in about seconds. Falling foam reactant 9
Since it has a heated amount of heat (approximately 850 to 900°C) during the reaction, sodium silicate which is completely dissolved naturally can be obtained by stirring.

なお第2図は製造装置の第2実施例を示し、本
実施例では反応板4を独立して設けず、反応容器
の壁材10にテーパー面11を形成し、このテー
パー面11を反応板と兼用している。なお14は
蓋12より容器内部に差し込まれている温度計で
ある。珪酸原料は壁材10と蓋12の間の原料入
口13より投入され、テーパー面11に沿つて落
下していく間に熱源3よりの熱で反応し、反応物
出口2より出る際にはちようどフオーム状粘性流
体となる。
Note that FIG. 2 shows a second embodiment of the manufacturing apparatus. In this embodiment, the reaction plate 4 is not provided independently, but a tapered surface 11 is formed on the wall material 10 of the reaction container, and this tapered surface 11 is connected to the reaction plate. It is also used as Note that 14 is a thermometer inserted into the container through the lid 12. The silicic acid raw material is introduced from the raw material inlet 13 between the wall material 10 and the lid 12, reacts with the heat from the heat source 3 while falling along the tapered surface 11, and cracks when exiting from the reactant outlet 2. It becomes a foam-like viscous fluid.

なお本発明で得られるフオーム状粘性流体は冷
却して固化すると見掛比重約1.9前後を示す従来
存在しなかつた新規な物質で、その化学構造は定
かでなく今後の研究を待たなくてはならない。
The foam-like viscous fluid obtained by the present invention is a new substance that has never existed before and exhibits an apparent specific gravity of approximately 1.9 when cooled and solidified, and its chemical structure is unclear and must await future research. .

また本発明では既述の装置のように反応物出口
2と溶解槽6とは必ずしも直結していなくても良
い。従つて場合によつては工程を分けて溶解して
も良い。ただ直結しておくと反応物自身9の保有
する熱を溶解槽6にて活用することができるので
好ましい。
Furthermore, in the present invention, the reactant outlet 2 and the dissolution tank 6 do not necessarily have to be directly connected as in the previously described apparatus. Therefore, depending on the case, melting may be carried out in separate steps. However, it is preferable to connect them directly because the heat possessed by the reactant itself can be utilized in the melting tank 6.

以上のように本発明は珪酸原料を反応させ、ガ
ラス化状態に移行せぬうちに反応物自身の自重に
より高温域から分離することを特徴とする珪酸ソ
ーダの製造法とその装置に関する。そのため次の
ような効果を奏する。
As described above, the present invention relates to a method and an apparatus for producing sodium silicate, which is characterized by reacting silicic acid raw materials and separating the reactants from a high temperature range by their own weight before the reactants shift to a vitrified state. Therefore, the following effects are achieved.

(1) フオーム状反応物は極めて易溶性であるた
め、従来製造困難とされていたMR4以上の珪
酸ソーダも自由に製造することができる。その
理由は定かでなく今後の研究を待たなくてはな
らない。また本発明による超高モル比の珪酸ソ
ーダは特殊な用途に使用できると共に新しい用
途の創造も可能となつた。従来周知の用途にお
いても、例えばシリカゲルを製造する場合製造
コストに大きな比率を占めるアルカリ及び酸の
使用量を減らすことができるので、シリカゲル
の製造コストを著しく低下させることができ
る。
(1) Since the foamed reactant is extremely easily soluble, it is now possible to freely produce sodium silicate with an MR4 or higher, which was previously considered difficult to produce. The reason for this is not clear and will have to wait for future research. Furthermore, the ultra-high molar ratio sodium silicate according to the present invention can be used for special purposes, and it has also become possible to create new uses. Even in conventionally well-known applications, for example, when producing silica gel, the amount of alkali and acid used, which account for a large proportion of the production cost, can be reduced, so the production cost of silica gel can be significantly reduced.

(2) 本発明で得られるアルカリと珪酸の反応物
は、温水中で簡単に自壊し溶解すると共に、原
料中に含有しているアルミナ、マグネシウム、
鉄類等の不純物を容易に濾別することができ
る。このため極めて純度の高い珪酸ソーダを製
造することができる。従来無水珪酸ソーダ硝子
の溶解には高圧容器及びボイラーを必要として
いたが、本発明ではこれらを必要とせず簡単に
溶解することができる。
(2) The reaction product of alkali and silicic acid obtained in the present invention easily self-destructs and dissolves in hot water, and the alumina and magnesium contained in the raw materials,
Impurities such as iron can be easily filtered out. Therefore, extremely pure sodium silicate can be produced. Conventionally, melting anhydrous sodium silicate glass required a high-pressure container and a boiler, but the present invention does not require these and can be easily melted.

(3) 従来の乾式法、程反応に高温を要せず、所要
熱エネルギーが少なくて済む。特に本発明装置
では、容器中央に熱源を設置しその周囲に原料
を充填するようにしたので熱が逃げ難く、熱効
率が高い。放熱による熱損失はほとんど零に等
しい。
(3) Conventional dry method does not require high temperatures for the reaction and requires less thermal energy. In particular, in the apparatus of the present invention, the heat source is installed in the center of the container and the raw material is filled around it, so that heat is difficult to escape and the heat efficiency is high. Heat loss due to heat radiation is almost equal to zero.

(4) アルカリ含有物質で被覆された珪酸原料は顆
粒状であるため、反応容器内に充填された原料
は次々と移動し自然に反応が進行する。また反
応板上の原料は30〜35゜の接触角を有し熱を受
ける面は広く、この面で反応が短時間で行わ
れ、能率的である。
(4) Since the silicic acid raw material coated with the alkali-containing substance is in the form of granules, the raw materials filled in the reaction vessel move one after another and the reaction progresses naturally. In addition, the raw materials on the reaction plate have a contact angle of 30 to 35 degrees, and the surface that receives heat is wide, and the reaction is carried out in a short time on this surface, making it efficient.

次に本発明を実施例により更に詳細に説明する
が、本発明はその要旨を超えない限り以下の実施
例により限定されるものではない。
Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例 1 第2図に示す第2実施例の装置を用い、熱源3
として電気ヒーターを使用した。まず電気ヒータ
ー3に通電し、温度計14が1100℃に達した時点
で苛性ソーダ1重量部と珪砂2.5重量部とから製
造したメタ珪酸ソーダで被覆された珪酸原料8を
入口13より、反応状況に合わせて徐々に投入し
たところ、投入後約5分でテーパー面11の上か
ら1/3位の位置で徐々に反応が開始され、フオ
ーム状粘性流体9となり、その後約2分で出口2
に達し反応容器1より流出し、900℃の温度のま
まで溶解槽6内の水15に投入され、水中で気泡
を放出しつつ約30秒間で粉化した。粉化したもの
をビーカーで煮沸すると約1時間後完全に溶液化
したMRが1:3.1の珪酸ソーダが得られた。
Example 1 Using the apparatus of the second example shown in FIG.
An electric heater was used. First, the electric heater 3 is energized, and when the thermometer 14 reaches 1100°C, the silicic acid raw material 8 coated with sodium metasilicate produced from 1 part by weight of caustic soda and 2.5 parts by weight of silica sand is introduced into the reaction state from the inlet 13. When the mixture was gradually added, the reaction gradually started at about 1/3 of the top of the tapered surface 11 about 5 minutes after the addition, forming a foam-like viscous fluid 9, and then about 2 minutes later, the reaction started at the outlet 2.
The mixture reached this temperature and flowed out of the reaction vessel 1, and was put into the water 15 in the dissolution tank 6 while maintaining the temperature of 900°C, and was pulverized in about 30 seconds while releasing air bubbles in the water. When the powdered product was boiled in a beaker, sodium silicate with an MR of 1:3.1 was obtained which was completely dissolved after about 1 hour.

実施例 2 第1図に示す第1実施例の装置を用い、熱源3
として燈油をバーナーで燃焼させた。苛性ソーダ
1重量部と珪砂2.5重量部とから製造したメタ珪
酸ソーダで被覆された珪酸原料8を容器上部の原
料入口13より投入したところ、熱源3付近の温
度が約900℃になると反応板4の上で珪酸原料8
の反応が開始され、約1100℃に達すると急速な反
応が起こり、フオーム状粘性流体9の落下が激し
くなり、約1200℃に達するとさらに粘性流体9の
落下量は多くなるがそれ以上は温度上昇しなかつ
た。粘性流体9が落下し投入される溶解槽6の水
15の水温は上昇し沸点を保持し、粘性流体9は
水中でまず粉体となり順次溶解しMRが1:3.0
の珪酸ソーダが得られた。
Example 2 Using the apparatus of the first example shown in FIG.
As a result, kerosene was burned in a burner. When the silicic acid raw material 8 coated with sodium metasilicate produced from 1 part by weight of caustic soda and 2.5 parts by weight of silica sand was introduced from the raw material inlet 13 at the top of the container, when the temperature near the heat source 3 reached approximately 900°C, the reaction plate 4 Above, silicic acid raw material 8
When the temperature reaches about 1100℃, a rapid reaction occurs, and the falling of the foam-like viscous fluid 9 becomes intense.When the temperature reaches about 1200℃, the amount of the viscous fluid 9 falling further increases, but the temperature increases beyond that point. It didn't rise. The temperature of the water 15 in the dissolution tank 6 into which the viscous fluid 9 is dropped rises and maintains its boiling point, and the viscous fluid 9 first becomes powder in the water and is sequentially dissolved, with an MR of 1:3.0.
of sodium silicate was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の第1実施例に原料を充填
した状態を示す断面図、第2図は同第2実施例に
原料を充填した状態を示す断面図、第3図は本発
明で使用する原料を示す断面図である。 1…反応容器、2…反応物出口、3…熱源、4
…反応板、6…溶解槽、13…原料入口。
FIG. 1 is a cross-sectional view showing the first embodiment of the apparatus of the present invention filled with raw materials, FIG. 2 is a cross-sectional view showing the second embodiment of the same filled with raw materials, and FIG. 3 is a cross-sectional view showing the second embodiment of the apparatus filled with raw materials. FIG. 3 is a cross-sectional view showing the raw materials used. 1... Reaction container, 2... Reactant outlet, 3... Heat source, 4
... Reaction plate, 6... Dissolution tank, 13... Raw material inlet.

Claims (1)

【特許請求の範囲】 1 アルカリ含有物質で被覆された珪酸原料を加
熱して反応させ、フオーム状反応物がガラス化状
態に移行しないうちに高温域から分離することを
特徴とする珪酸ソーダの製造法。 2 反応容器内に熱源を設置し、該熱源の周囲に
反応板を配設し、前記反応容器上部に原料入口を
設け、下部にフオーム状反応物出口を設けること
を特徴とする珪酸ソーダの製造装置。
[Claims] 1. Production of sodium silicate, characterized by heating and reacting a silicic acid raw material coated with an alkali-containing substance, and separating the foamed reactant from the high temperature range before it changes to a vitrified state. Law. 2. Production of sodium silicate, characterized in that a heat source is installed in a reaction vessel, a reaction plate is arranged around the heat source, a raw material inlet is provided in the upper part of the reaction vessel, and a foam-shaped reactant outlet is provided in the lower part. Device.
JP55164823A 1980-11-21 1980-11-21 Method and apparatus for manufacturing sodium silicate Granted JPS5788021A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP55164823A JPS5788021A (en) 1980-11-21 1980-11-21 Method and apparatus for manufacturing sodium silicate
PCT/JP1981/000323 WO1982001702A1 (en) 1980-11-21 1981-11-09 Process for producing sodium silicate and apparatus therefor
KR1019810004349A KR870001289B1 (en) 1980-11-21 1981-11-10 Apparatus and method for preparing sodium silicate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55164823A JPS5788021A (en) 1980-11-21 1980-11-21 Method and apparatus for manufacturing sodium silicate

Publications (2)

Publication Number Publication Date
JPS5788021A JPS5788021A (en) 1982-06-01
JPS641411B2 true JPS641411B2 (en) 1989-01-11

Family

ID=15800588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55164823A Granted JPS5788021A (en) 1980-11-21 1980-11-21 Method and apparatus for manufacturing sodium silicate

Country Status (3)

Country Link
JP (1) JPS5788021A (en)
KR (1) KR870001289B1 (en)
WO (1) WO1982001702A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11475689B2 (en) 2020-01-06 2022-10-18 X Development Llc Fish biomass, shape, size, or health determination
US11615638B2 (en) 2020-11-10 2023-03-28 X Development Llc Image processing-based weight estimation for aquaculture
US11645354B2 (en) 2021-09-23 2023-05-09 Xi'an University Of Technology Determination method for preferred habitat of fish and terminal device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101633584B (en) * 2009-08-07 2013-05-29 山东科技大学 A method for producing nitrogen phosphorus potassium compound fertilizer with water-insoluble potassium-containing rock
CN104003412B (en) * 2014-06-18 2016-02-17 中国矿业大学(北京) A kind of method utilizing serpentine to carry magnesium white residue to prepare the solid carbon material of lithium silicate high temperature

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928647B1 (en) * 1970-04-02 1974-07-29

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11475689B2 (en) 2020-01-06 2022-10-18 X Development Llc Fish biomass, shape, size, or health determination
US11615638B2 (en) 2020-11-10 2023-03-28 X Development Llc Image processing-based weight estimation for aquaculture
US11645354B2 (en) 2021-09-23 2023-05-09 Xi'an University Of Technology Determination method for preferred habitat of fish and terminal device

Also Published As

Publication number Publication date
WO1982001702A1 (en) 1982-05-27
KR870001289B1 (en) 1987-07-11
KR830007431A (en) 1983-10-21
JPS5788021A (en) 1982-06-01

Similar Documents

Publication Publication Date Title
JPS6031779B2 (en) Expandable bead manufacturing material
JP6259445B2 (en) Pellet and glass manufacturing method
US5785940A (en) Silicate reactor with submerged burners
JPS641411B2 (en)
US2239880A (en) Manufacture of silicates
US2950570A (en) Method and apparatus for producing alkaline silicates
CN106829984A (en) A kind of wet process technique of waterglass
JP2005514308A (en) Method for producing glass and compositions for glass
US2243027A (en) Manufacture of anhydrous silicates in pumiceous form
US2217808A (en) Method of converting furnace slag into glasslike composition
JP7062702B2 (en) How to make glass from a mixture containing calcium oxide, and a glass furnace
US3378340A (en) Process for the preparation of potassium phosphate
US4801563A (en) Thermal insulating expanded silicate-hydrate product and method of forming
US3508866A (en) Preparation of alkali metal silicates
WO2021079875A1 (en) Method for producing mixed feedstock, method for producing molten glass, method for producing glass article, apparatus for producing molten glass, and apparatus for producing glass article
AU550283B2 (en) Directed flow, thin layer glass fusion
US2100944A (en) Process of making alkali subsilicates
NO761556L (en)
JPS5918113A (en) Manufacture of transparent alkali metal silicate solution
JPS6230633A (en) Production of glass
US3414375A (en) Two-stage process for the preparation of potassium metaphosphate
RU2188155C1 (en) Liquid glass manufacture process
RU2085489C1 (en) Method of liquid glass production
CN1978320A (en) Direct production method of powdery sodium or potassium silicate
US2942945A (en) Process of making alkali subsilicates