NO761556L - - Google Patents
Info
- Publication number
- NO761556L NO761556L NO76761556A NO761556A NO761556L NO 761556 L NO761556 L NO 761556L NO 76761556 A NO76761556 A NO 76761556A NO 761556 A NO761556 A NO 761556A NO 761556 L NO761556 L NO 761556L
- Authority
- NO
- Norway
- Prior art keywords
- mixture
- temperature
- water
- water glass
- brought
- Prior art date
Links
- 235000019353 potassium silicate Nutrition 0.000 claims description 23
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 229910001854 alkali hydroxide Inorganic materials 0.000 claims description 5
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 3
- 229910001021 Ferroalloy Inorganic materials 0.000 claims description 2
- 229910021486 amorphous silicon dioxide Inorganic materials 0.000 claims description 2
- 239000002826 coolant Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 239000010881 fly ash Substances 0.000 claims 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000012535 impurity Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000000243 solution Substances 0.000 description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 235000011118 potassium hydroxide Nutrition 0.000 description 4
- 235000011121 sodium hydroxide Nutrition 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 241001397173 Kali <angiosperm> Species 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 229910021488 crystalline silicon dioxide Inorganic materials 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000156 glass melt Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229940072033 potash Drugs 0.000 description 1
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- RLQWHDODQVOVKU-UHFFFAOYSA-N tetrapotassium;silicate Chemical compound [K+].[K+].[K+].[K+].[O-][Si]([O-])([O-])[O-] RLQWHDODQVOVKU-UHFFFAOYSA-N 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
- C01B33/32—Alkali metal silicates
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Glass Compositions (AREA)
Description
Den foreliggende oppfinnelse angår en fremgangsmåte til fremstilling av vannglass i oppløst form fra silisiumdioksyd i amorf, form og alkalihydroksyd... The present invention relates to a method for producing water glass in dissolved form from silicon dioxide in amorphous form and alkali hydroxide...
Vannglass fremstilles vanligvis ved at krystallinsk silisiumdioksyd, som regel i form av kvartssand/smeltes sammen med alkali-karbonat/-hydroksyd eller -oksyd', hvorved der oppnås en glassmelte som etter avkjøling og knusing oppløses i vann ved autoklavering. Water glass is usually produced by melting crystalline silicon dioxide, usually in the form of quartz sand, with alkali carbonate/hydroxide or oxide, whereby a glass melt is obtained which, after cooling and crushing, dissolves in water by autoclaving.
Skjønt det er mindre brukt, er det imidlertid også kjent å fremstille vannglass ved at amorft silisiumdioksyd oppløses i en vandig, oppløsning av.alkalihydroksyd ved oppvarming under trykk. Although it is less commonly used, it is also known to produce water glass by dissolving amorphous silicon dioxide in an aqueous solution of alkali hydroxide by heating under pressure.
Ved begge de kjente fremgangsmåter kreves der således autoklavering under trykk med tilhørende relativt høye fremstillings-kostnader. ' ' In both of the known methods, autoclaving under pressure is thus required, with associated relatively high production costs. ' '
Hensikten med oppfinnelsen er å angi en fremgangsmåte som tillater fremstilling av en vannglassoppløsning av en for teknisk bruk tilstrekkelig renhet ved en fremgangsmåte som er enklere og billigere enn de kjente fremgangsmåter. The purpose of the invention is to specify a method which allows the production of a water glass solution of a purity sufficient for technical use by a method which is simpler and cheaper than the known methods.
Ifølge oppfinnelsen er dette oppnådd ved at man går frem som According to the invention, this is achieved by proceeding as
angitt i karakteristikken i krav 1.stated in the characteristic in claim 1.
Denne fremgangsmåte adskiller seg fra de kjente fremgangsmåter dels ved at den kan gjennomføres ved atmosfæretrykk og således ved vesentlig lavere temperatur, dels ved at det utgangsmateriale som er en forutsetning for utførelse av fremgangsmåten ifølge oppfinnelsen, utgjør et produkt som ved rensing (fortrinnsvis i filtre) av avgassene fra ferrolegeringsindustrien og andre industrier som arbeider med silisiumovner, fremkommer i altfor store mengder som hittil ikke har kunnet utnyttes, slik at produktet kan leveres til vesentlig lavere priser enn den sand eller det øvrige mineralprodukt som hittil har vært anvendt. This method differs from the known methods partly in that it can be carried out at atmospheric pressure and thus at a significantly lower temperature, partly in that the starting material which is a prerequisite for carrying out the method according to the invention constitutes a product which upon purification (preferably in filters) of the exhaust gases from the ferroalloy industry and other industries that work with silicon furnaces, appear in far too large quantities that have not been able to be utilized so far, so that the product can be delivered at significantly lower prices than the sand or the other mineral product that has been used up until now.
Fremgangsmåten ifølge oppfinnelsen utgjør således også en delvis løsning på det problem å oppnå en praktisk anvendelse av de store.mengder silisiumstøv som utskilles hvert år. The method according to the invention thus also constitutes a partial solution to the problem of achieving a practical application of the large quantities of silicon dust that are secreted each year.
Silisiumstøv kan f.eks., ha følgende sammensetning i vekt-prosent: Si0294-98 Silicon dust can, for example, have the following composition in weight percent: Si0294-98
SiC 0,2 - 0,7 SiC 0.2 - 0.7
Fe2030,05 - 0,15 . Fe2030.05 - 0.15 .
. Ti02 0,01 - 0,02 . TiO2 0.01 - 0.02
A12030,1-0,3 A12030.1-0.3
MgO 0,2-0,8 MgO 0.2-0.8
CaO 0,1 0,3 CaO 0.1 0.3
Na20 0,3 - 0,5 Na2O 0.3 - 0.5
K20 0,2-0,6 K20 0.2-0.6
Mn 0,003 - 0,01 Mn 0.003 - 0.01
Cu 0,002 0,005 Cu 0.002 0.005
Zn 0,005 - 0,01 Zn 0.005 - 0.01
Ni 0,001 - 0,002 Nine 0.001 - 0.002
S 0,1 - 0,3 S 0.1 - 0.3
C 0,2-1,0 C 0.2-1.0
P 0,03 - 0,06 P 0.03 - 0.06
Av denne nokså karakteristiske sammensetning av silisiumstøv fremgår det at vannglass som er fremstilt etter fremgangsmåten ifølge oppfinnePsen, vil inneholde endel urenheter. Imidlertid kan disse på samme måte som. de urenheter som fremkommer ved konvensjonell fremstilling av vannglass, og som skyldes anvendelse av sand fra strand-bredder, hevet havbunn, grustak og lignende sandavleiringer med mange urenheter, fjernes ved filtrering av den fremstilte vannglassopp-løsning gjennom et trykkfilter, hvis en slik rensning skulle være ønskelig. From this rather characteristic composition of silicon dust, it is clear that water glass produced according to the method according to the inventor will contain some impurities. However, these can in the same way as. the impurities that appear in the conventional production of water glass, and which are due to the use of sand from beaches, raised seabeds, gravel roofs and similar sand deposits with many impurities, are removed by filtering the produced water glass solution through a pressure filter, if such a cleaning were to be be desirable.
Overraskende har det imidlertid vist seg at de urenheter som forekommer i vannglass som er fremstilt ved fremgangsmåten ifølge oppfinnelsen, ved.mange anvendelser for vannglasset, f.eks. når dette anvendes til fremstilling av ild- og syrefaste bindemidler, f.eks. slike som anvendes til fremstilling av ildfaste isolasjonsplater, ildfast mørtel og ildfast mursten, medfører vesentlige fordeler som ikke oppnås ved anvendelse av vannglass som er fremstilt på konvensjonell måte, enten det er renset eller ikke-, idet bindemidler som er dannet med utgangspunkt i urenset vannglass fremstilt i henhold til den foreliggende oppfinnelse, har vist seg å ha større styrke og særlig vesentlig større vannbestandighet enn det tidligere har vært mulig å oppnå, hvilkét må antas å skyldes de urenheter som inneholdes i vannglasset. Surprisingly, however, it has been shown that the impurities that occur in water glasses produced by the method according to the invention, in many applications for the water glass, e.g. when this is used for the production of refractory and acid-resistant binders, e.g. such as are used for the production of refractory insulation boards, refractory mortar and refractory bricks, entail significant advantages that are not achieved by using water glass that is produced in a conventional way, whether it is cleaned or not, as binders that are formed from uncleaned water glass produced in accordance with the present invention, has been shown to have greater strength and, in particular, significantly greater water resistance than was previously possible to achieve, which must be assumed to be due to the impurities contained in the water glass.
Fortrinnsvis kan der ifølge oppfinnelsen gås frem som angittPreferably, according to the invention, you can proceed as indicated
i krav 2, hvorved det sikres at den kjemiske omsetning blir størst mulig. in claim 2, whereby it is ensured that the chemical turnover is as large as possible.
Videre kan det ifølge oppfinnelsen være fordelaktig å gå frem som angitt i krav 2,.idet det har vist seg at oppvarming til høyere temperatur vanligvis er uten betydning for oppnåelse av maksimal kjemisk omsetning, slik at der ved anvendelse av den nevnte maksi-mumstemperatur oppnås minst mulig varmeforbruk med størst mulig utbytte. Furthermore, according to the invention, it may be advantageous to proceed as stated in claim 2, as it has been shown that heating to a higher temperature is usually of no importance for achieving maximum chemical conversion, so that by using the aforementioned maximum temperature, the least possible heat consumption with the greatest possible yield.
.Videre kan fremgangsmåten ifølge oppfinnelsen gjennomføresFurthermore, the method according to the invention can be carried out
som angitt i krav 4, idet oppvarmingshastigheter innenfor de angitte grenser iallfall under laboratorieforhold har vist seg å medføre det minste, varmeforbruk i forbindelse med oppnåelse av maksimalt utbytte. as stated in claim 4, since heating rates within the stated limits, at least under laboratory conditions, have been shown to result in the smallest heat consumption in connection with achieving maximum yield.
Eksempel 1Example 1
Fremstilling av kaliVannglassProduction of kali Water glasses
I en kjele som kan lukkes med et løst lokk, ble der ved værelsetemperatur blandet 35,5 kg vann, 7,4 5 kg skjellformet kaustisk kali med et innhold på 89% KOH og 13,20 kg silisiumstøv med den foran nevnte sammensetning. Blandingen ble deretter oppvarmet jevnt under omrøring i løpet av 30 minutter til 90°C, hvoretter den ble helt over i et annet kar til avkjøling uten anvendelse av avkjølings-midler. In a boiler that can be closed with a loose lid, 35.5 kg of water, 7.45 kg of shell-shaped caustic potash with a content of 89% KOH and 13.20 kg of silicon dust with the above-mentioned composition were mixed at room temperature. The mixture was then heated uniformly with stirring during 30 minutes to 90°C, after which it was poured into another vessel for cooling without the use of cooling agents.
Der ble oppnådd en kalivannglassoppløsning på 35°-36°Bé og med et molforhold mellom Si02og K20 på 3,58. Den oppnådde blanding var direkte anvendelig til slike tekniske formål hvor man hittil har anvendt kalivannglass, i mange tilfelle endog med fordel uten rensing. A potassium water glass solution of 35°-36°Bé and with a molar ratio between SiO 2 and K 2 O of 3.58 was obtained. The obtained mixture was directly usable for such technical purposes where potash water glass has been used up to now, in many cases even with advantage without purification.
Eksempel 2Example 2
Fremstilling av natronVannglassProduction of baking soda Water glasses
35,5 kg vann, 6,9 kg skjellformet kaustisk soda med et innhold på 97% NaOH og 17,6 kg silisiumstøv med den foran angitte sammensetning ble under omrøring blandet i en kjele lukket'med et løst lokk. På denne måte ble der i kjelen innledet en eksoterm reaksjon som medførte at blandingen under stadig omrøring, men med bare liten varmetilførsel utenfra i løpet av ca. \ time antok en temperatur som lå på 85°c, og som deretter var konstant. Blandingen ble så helt over i en annen kjele hvor den ble avkjølt uten ytre kjøling. Den væske som forelå i kjølebeholderen etter avkjølingen, utgjorde en vandig oppløsning av natronvannglass med en konsentrasjon svarende til 40°Bé og med et molforhold mellom SiC^og Na20 på 3,36. Denne natronvannglassoppløsning har vist seg.velegnet til alle de samme anvendelser som natronvannglass som er fremstilt på konvensjonell måte. Også i dette tilfelle var rensing vanligvis ikke nødvendig og burde i mange tilfeller endog unnlates. 35.5 kg of water, 6.9 kg of shell-shaped caustic soda with a content of 97% NaOH and 17.6 kg of silicon dust with the above-mentioned composition were mixed with stirring in a kettle closed with a loose lid. In this way, an exothermic reaction was initiated in the boiler which meant that the mixture, under constant stirring, but with only a small supply of heat from the outside, within approx. \ hour assumed a temperature of 85°c, which was then constant. The mixture was then poured into another boiler where it was cooled without external cooling. The liquid which was present in the cooling container after cooling constituted an aqueous solution of soda ash with a concentration corresponding to 40°Bé and with a molar ratio between SiC^ and Na2O of 3.36. This soda water glass solution has proven suitable for all the same applications as conventionally prepared soda water glass. In this case too, cleaning was usually not necessary and in many cases should even be omitted.
Eksempel 3Example 3
frents tilling av dobbelt vannglassfrent's tilling of double water glasses
En vandig oppløsning av dobbeltvannglass ble fremstilt ved at 35,5 kg vann, 3,7 kg skjellformet kaustisk kali med et innhold på 89% KOH, 3,5 kg skjellformet kaustisk soda. med et innhold på 97% . NaOH og 15,5 kg silisiumstøv med den foran nevnte sammensetning under.omrøring.ble blandet i en kjele som bare var lukket med et løst lokk. Der oppsto i kjelen en eksoterm reaksjon som imidlertid krevde en ytterligere varmetilførsel utenfra for å oppnå at blandingen i løpet av,ca. h time antok en temperatur på 85°C. Da denne temperatur. var oppnådd, ble blandingen helt over i en annen kjele hvor den ble avkjølt til værelsetemperatur ved frivillig avkjøling uten ytre kjøling. Der var dannet en vandig' oppløsning av dobbeltvannglass med en styrke svarende til 38°Bé. Denne blanding har vist seg vel-egnet til slike tekniske formål hvor man tidligere har anvendt dobbeltvannglass fremstilt på konvensjonell måte. I de fleste tilfeller kunne dobbeltvannglasset anvendes uten at det var nødvendig å fjerne de foreliggende urenheter. Som regel var det til og med uønsket å fjerne urenhetene. An aqueous solution of double water glass was prepared by mixing 35.5 kg of water, 3.7 kg of shell-shaped caustic potash with a content of 89% KOH, 3.5 kg of shell-shaped caustic soda. with a content of 97%. NaOH and 15.5 kg of silicon dust with the aforementioned composition were mixed under stirring in a kettle which was only closed with a loose lid. There, an exothermic reaction occurred in the boiler which, however, required an additional heat supply from outside to achieve that the mixture during, approx. h hour assumed a temperature of 85°C. Then this temperature. had been achieved, the mixture was poured into another boiler where it was cooled to room temperature by voluntary cooling without external cooling. An aqueous solution of double water glass with a strength corresponding to 38°Bé had formed there. This mixture has proven to be well-suited for such technical purposes where double water glasses produced in a conventional manner have previously been used. In most cases, the double water glass could be used without it being necessary to remove the impurities present. As a rule, it was even undesirable to remove the impurities.
Claims (4)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK197675A DK136708C (en) | 1975-05-06 | 1975-05-06 | PROCEDURE FOR MANUFACTURE OF WATER GLASS IN DISSOLUTED FORM |
Publications (1)
Publication Number | Publication Date |
---|---|
NO761556L true NO761556L (en) | 1976-11-09 |
Family
ID=8109225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO76761556A NO761556L (en) | 1975-05-06 | 1976-05-05 |
Country Status (3)
Country | Link |
---|---|
DE (1) | DE2619604A1 (en) |
DK (1) | DK136708C (en) |
NO (1) | NO761556L (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2826432C2 (en) * | 1978-06-16 | 1980-10-16 | Henkel Kgaa, 4000 Duesseldorf | Process for the production of water glass |
AU3255797A (en) * | 1996-05-28 | 1998-01-05 | Consolidated Metallurgical Industries Limited | Alkali metal silicate solution manufacturing process |
CN104512896B (en) * | 2013-09-30 | 2016-10-05 | 中国科学院过程工程研究所 | A kind of method utilizing aluminous fly-ash to prepare white carbon and white carbon |
CN105621428A (en) * | 2016-01-29 | 2016-06-01 | 卓达新材料科技集团有限公司 | Method for preparing sodium silicate by using common pulverized fuel ash from pulverized coal furnace |
CN105540602A (en) * | 2016-01-29 | 2016-05-04 | 卓达新材料科技集团有限公司 | Method for preparing water glass by using ordinary pulverized-coal-furnace fly ash |
CN109336123A (en) * | 2018-11-22 | 2019-02-15 | 山西大学 | A method of using coal ash for manufacturing for soluble glass of high modulus |
BR102020016451B1 (en) | 2020-08-12 | 2021-11-03 | Pq Silicas Brazil Ltda | STABLE SODIUM AND IRON SILICATE SOLUTION PROCESS TO PREPARE SUCH SOLUTION AND ITS USES |
-
1975
- 1975-05-06 DK DK197675A patent/DK136708C/en active
-
1976
- 1976-05-04 DE DE19762619604 patent/DE2619604A1/en not_active Withdrawn
- 1976-05-05 NO NO76761556A patent/NO761556L/no unknown
Also Published As
Publication number | Publication date |
---|---|
DK136708B (en) | 1977-11-14 |
DE2619604A1 (en) | 1976-11-18 |
DK136708C (en) | 1978-05-08 |
DK197675A (en) | 1976-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110127708B (en) | Method for purifying high-purity quartz sand with purity of SiO2 being more than or equal to 99.99 percent | |
US7335342B2 (en) | Process for the preparation of sodium silicate from Kimberlite tailing | |
CN106517738B (en) | Method for melting and clarifying soda-lime glass | |
CN101993087A (en) | Method for preparing water glass by using fly ash | |
NO761556L (en) | ||
JPH04503048A (en) | Hydrothermal production method of potassium silicate solution having a high molar ratio of SiO↓2:K↓2O | |
US20110038777A1 (en) | Production method of water glass | |
CN106829984B (en) | A kind of wet process technique of waterglass | |
CN110713193A (en) | Method for recycling zirconium resource from waste silicon slag discharged in zirconium oxychloride production | |
GB455594A (en) | Improvements relating to the manufacture of multi-cellular glass | |
US4478796A (en) | Production of magnesium oxide from magnesium silicates by basic extraction of silica | |
US3489578A (en) | Soda-lime material for use in glass manufacture | |
NO791671L (en) | PROCEDURE FOR MAKING WATER GLASS | |
US2100944A (en) | Process of making alkali subsilicates | |
GB2078701A (en) | Hydrothermal Direct Synthesis of Alkali Metal Silicates | |
CN104743779B (en) | Suitable for the preparation method of the low deformation rate crucible quartz raw material of monocrystalline production | |
EP2773593B1 (en) | Process for melting and refining silica-based glass | |
Sullivan et al. | Selenium ruby glass | |
CN108046281A (en) | A kind of production method of the metasilicate pentahydrate sodium of good product quality | |
JPH0455309A (en) | Production of granular sodium metasilicate hydrate crystal | |
CN110844925A (en) | Process for preparing magnesium sulfate and white carbon black by using forsterite tailings | |
CN1021570C (en) | Preparing process for non-hydrate sodium metasilicate | |
US2066366A (en) | Process for making silica stone material | |
US1522698A (en) | Process of making sodium aluminate and other products | |
JPS641411B2 (en) |