JPS6412328B2 - - Google Patents

Info

Publication number
JPS6412328B2
JPS6412328B2 JP8196181A JP8196181A JPS6412328B2 JP S6412328 B2 JPS6412328 B2 JP S6412328B2 JP 8196181 A JP8196181 A JP 8196181A JP 8196181 A JP8196181 A JP 8196181A JP S6412328 B2 JPS6412328 B2 JP S6412328B2
Authority
JP
Japan
Prior art keywords
signal
difference
phase difference
displacement
difference signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8196181A
Other languages
Japanese (ja)
Other versions
JPS57197418A (en
Inventor
Kazuo Ume
Yasumoto Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP8196181A priority Critical patent/JPS57197418A/en
Publication of JPS57197418A publication Critical patent/JPS57197418A/en
Publication of JPS6412328B2 publication Critical patent/JPS6412328B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/22Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【発明の詳細な説明】 本発明は被測定物の変位を測定する変位測定器
に係り、特にその同期検波手段を改良した変位測
定器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a displacement measuring device for measuring the displacement of an object to be measured, and more particularly to a displacement measuring device with improved synchronous detection means.

一般に、この種の変位測定器は、交流励磁電源
で交流励磁される差動変圧器の可動コアに変位検
出子を取付けて被測定物の変位を測定している
が、この構成では差動接続された差動変圧器の2
次コイルの変位量に比例した出力が可動コアの位
置により180゜位相反転するので、この2次コイル
出力を同期検波すれば可動コアの移動量つまり被
測定物の変位を測定できる。
Generally, this type of displacement measuring device measures the displacement of the object to be measured by attaching a displacement detector to the movable core of a differential transformer that is excited by an AC excitation power source. 2 of differential transformer
Since the output proportional to the displacement of the secondary coil has a phase inversion of 180° depending on the position of the movable core, by synchronously detecting the output of the secondary coil, the displacement of the movable core, that is, the displacement of the object to be measured can be measured.

ところで、従来の変位測定器は種々存ずるが、
その1つとして第1図のような構成のものがあ
る。この変位測定器は、交流励磁電源1と、1次
コイル2a、変位検出子2bを持つ可動コア2c
および差動接続された一組の2次コイル2d,2
eを備えた差動変圧器2と、交流増幅器3と、同
期検波器4とよりなり、2次コイル2d,2eの
両出力の差信号(A+B)は1次コイル2aより
得られた同期信号を用いて同期検波する構成とな
つている。
By the way, there are various conventional displacement measuring instruments, but
One of them is the configuration shown in FIG. This displacement measuring device includes an AC excitation power source 1, a movable core 2c having a primary coil 2a, and a displacement detector 2b.
and a pair of differentially connected secondary coils 2d, 2
The difference signal (A+B) between the outputs of the secondary coils 2d and 2e is the synchronous signal obtained from the primary coil 2a. The configuration uses synchronous detection.

しかし、この変位測定器にあつては、1次コイ
ル2aと各2次コイル2d,2eの電圧波形間に
は位相差θがあり、この位相差θは温度あるいは
ケーブル長により変化する。その原因は1次コイ
ル2aが純粋なインダクタンスでないためであ
る。今、1次コイル2aのインダクタンスをLp、
抵抗値をRpとすれば、位相差θは、 θ=tan-1Rp/ωLp …(1) となる。コイル巻線は通常銅線が用いられている
ので、Rpは大きな温度係数をもつて変化する。
しかも、1次コイル2a、2次コイル2d,2e
とを一体にし、これらと交流励磁電源1、交流増
幅器3等とをケーブルを介して離す場合、ケーブ
ル自体の抵抗および浮遊容量も影響し、位相は更
に大きく変化する。
However, in this displacement measuring device, there is a phase difference θ between the voltage waveforms of the primary coil 2a and each of the secondary coils 2d and 2e, and this phase difference θ changes depending on the temperature or the cable length. The reason for this is that the primary coil 2a is not a pure inductance. Now, the inductance of the primary coil 2a is Lp,
If the resistance value is Rp, the phase difference θ is as follows: θ=tan −1 Rp/ωLp (1). Since copper wire is usually used for the coil winding, Rp changes with a large temperature coefficient.
Moreover, the primary coil 2a, secondary coils 2d, 2e
When these are integrated with the AC excitation power supply 1, AC amplifier 3, etc. via a cable, the resistance and stray capacitance of the cable itself will also have an effect, and the phase will change even more.

そこで、従来、上記不具合を解決するため、第
2図のような構成の変位測定器が用いられてい
る。この測定器は、2つの2次コイル2d,2eの
差動接続点より同期信号を取出して差動変圧器2
の差信号(A+B)を同期検波する構成である。
Therefore, in order to solve the above-mentioned problems, a displacement measuring instrument having a configuration as shown in FIG. 2 has been conventionally used. This measuring device extracts a synchronizing signal from the differential connection point of two secondary coils 2d and 2e and connects it to the differential transformer 2.
It is configured to synchronously detect the difference signal (A+B).

かかる構成とすれば、2次コイル2dにケーブ
ルを接続する場合に実装上極めて有利である。し
かし、2次コイル2d,2e間に位相差のないこ
とが前提であるが、実際上、両コイル2d,2e
間には位相差があつてSN比の悪化を招いている。
以下、この点について述べる。即ち、2つの2次
コイル2d,2e間の位相差が180゜である理想状
態であれば、同期信号と差信号(A+B)の位相
差は、0゜又は180゜となつて位相変化による誤差は
生じない。今、2次コイル2dの出力をA、2次
コイル2eの出力をBとすると、第3図から明ら
かなように2次コイル2d,2eの出力A,Bの
振幅が等しく、2次コイル2eの出力Bの位相を
0゜としたときの2次コイル2dの出力Aの180゜か
らの位相ずれをφAとしたとき、同期信号Bに対
する差信号Cの位相差φCは、φC={(180゜−
φA)/2}で表わされ、このときφA=0では
(A+B)の差信号Cは零となり、位相差φCは90゜
となる。
Such a configuration is extremely advantageous in terms of implementation when connecting a cable to the secondary coil 2d. However, although it is assumed that there is no phase difference between the secondary coils 2d and 2e, in reality both coils 2d and 2e
There is a phase difference between them, causing a deterioration of the S/N ratio.
This point will be discussed below. In other words, in an ideal state where the phase difference between the two secondary coils 2d and 2e is 180°, the phase difference between the synchronization signal and the difference signal (A+B) will be 0° or 180°, and there will be an error due to the phase change. does not occur. Now, if the output of the secondary coil 2d is A and the output of the secondary coil 2e is B, as is clear from FIG. 3, the amplitudes of the outputs A and B of the secondary coils 2d and 2e are equal, The phase of output B of
When the phase shift of the output A of the secondary coil 2d from 180° when the angle is 0° is φ A , the phase difference φ C of the difference signal C with respect to the synchronizing signal B is φ C = {(180° −
φ A )/2}, and in this case, when φ A =0, the difference signal C of (A+B) becomes zero, and the phase difference φ C becomes 90°.

しかし、実際上φAが零となることが少なく、
第3図に示すようにφCなる位相差を生ずる。こ
こで、φCは、 φC=tan-1AsinφA/B−AcosφA …(2) である。従つて、2つの2次コイル2d,2eの
位相差が±(180゜−φA(φA≠0))の場合には、同
期信号Bと差信号Cとの間にはφC=±{(180゜−
φA)/2}なる位相差を生じる。このとき、φA
が0゜に近く、A,Bの増減量もそれぞれの絶対値
に対して極く僅かであるので、φCは90゜近辺の値
であり、そのときの差信号Cを不平衡90゜成分と
呼ぶ。また、同期信号Bの振幅がコア位置の変化
により変動し、B<A,B>Aとなつた場合も上
式から同様に位相差に変化をもたらし、同期信号
Bに対して不平衡90゜成分の位相差はB<A,B
>Aのときの対称関係もない。このため、Bなる
同期信号を用いて差信号Cを同期検波してもコア
ー零位置で零とはならず、SN比の悪化した測定
出力となつてしまう。なお、同期信号として出力
Aを用いた場合も同様の問題が生ずる。
However, in practice, φ A is rarely zero;
As shown in FIG. 3, a phase difference of φ C is generated. Here, φ C is φ C =tan −1 Asinφ A /B−A cosφ A (2). Therefore, when the phase difference between the two secondary coils 2d and 2e is ±(180°-φ AA ≠0)), there is a difference between the synchronizing signal B and the difference signal C: φ C =± {(180゜−
A phase difference of φ A )/2} is generated. At this time, φ A
is close to 0°, and the increase and decrease of A and B are extremely small relative to their respective absolute values, so φ C is a value near 90°, and the difference signal C at that time is expressed as an unbalanced 90° component. It is called. Also, if the amplitude of synchronization signal B changes due to a change in the core position and becomes B<A, B>A, the phase difference will similarly change from the above equation, and the imbalance will be 90 degrees with respect to synchronization signal B. The phase difference of the components is B<A,B
> There is no symmetrical relationship when A. Therefore, even if the difference signal C is synchronously detected using the synchronization signal B, the difference signal C will not become zero at the core zero position, resulting in a measurement output with a degraded S/N ratio. Note that a similar problem occurs when output A is used as the synchronization signal.

本発明は上記欠点を除去するためになされたも
ので、その目的とするところは、差動変圧器の2
次コイル両出力の和信号を同期信号として用いる
ことにより、同期信号と差信号の位相差を90゜に
近づけて不平衡90゜成分の位相差によるSN比の劣
化を改善し安定した測定出力を得る変位測定器を
提供するものである。
The present invention has been made to eliminate the above-mentioned drawbacks, and its purpose is to
By using the sum signal of both outputs of the secondary coil as the synchronization signal, the phase difference between the synchronization signal and the difference signal approaches 90°, improving the deterioration of the S/N ratio due to the phase difference of the unbalanced 90° component, and providing stable measurement output. The present invention provides a displacement measuring device that can be used to measure displacement.

以下、本発明の一実施例について第4図を参照
して説明する。同図において特に第2図と異なる
点について述べると、差動変圧器2の2次コイル
2d,2e出力端に演算回路11を接続し、この
演算回路11で2次コイル両出力の差信号と和信
号を求めること。また、差信号は交流増幅器3で
増幅するが、この増幅出力の同期検波手段は演算
回路11で求めた和信号を用いて行うことにあ
る。なお、和信号は図示していないが増幅器によ
り同期検波器駆動源として必要な振幅に増幅又は
減衰させてもよいことは勿論である。
An embodiment of the present invention will be described below with reference to FIG. In particular, the points that are different from FIG. To find the sum signal. Further, the difference signal is amplified by the AC amplifier 3, and the synchronous detection means for this amplified output is performed using the sum signal obtained by the arithmetic circuit 11. Although the sum signal is not shown, it goes without saying that the sum signal may be amplified or attenuated by an amplifier to an amplitude required as a synchronous detector driving source.

次に、以上のように構成された変位測定器の作
用を説明する。交流励磁電源1より差動変圧器2
の1次コイル2aに交流励磁信号を与えると、差
動接続された2次コイル2d,2e側から出力
A,Bが得られる。この両出力A,Bをそのまま
演算回路11へ入力し、ここで(A+B)および
(A−B)の演算を行つて差信号Cおよび和信号
Dを求める。
Next, the operation of the displacement measuring device configured as described above will be explained. Differential transformer 2 from AC excitation power supply 1
When an AC excitation signal is applied to the primary coil 2a, outputs A and B are obtained from the differentially connected secondary coils 2d and 2e. Both outputs A and B are input as they are to the arithmetic circuit 11, where (A+B) and (A-B) are computed to obtain a difference signal C and a sum signal D.

しかして、差信号Cおよび和信号Dに関し、第
5図を参照して説明する。先ず、差信号Cは第3
図と同様にベクトル的にはAとBの合成となるの
で、位相差φCを有する信号となる。一方、和信
号Dはベクトル的にはBと−Aを合成した信号と
なり、このときの位相差φDは、 φD=tan-1AsinφA/B+AcosφA …(3) となる。そこで、和信号Dを同期信号、差信号C
を測定出力とすると、DとCの位相差φC+φDは、
B=Aのとき、 φC=180゜−φA/2 …(4) φD=φA/2 …(5) 従つて、 φC+φD=180゜−φA/2+φA/2 =90゜ …(6) で表わされる。一方、B>Aのときは、位相差
φC+φDは90゜ではないが、従来の第2図のものに
比較してより90゜に近づき、またB<Aのときは
差信号Cが縦軸(Y軸)より左側に寄つていくの
で、差信号Cの位相差は180゜−(φC+φD)で表わ
され、B>Aと同様に90゜に近づくことになる。
即ち、B>A,B<AのときφCより(φC+φD
の方がより90゜に近づき、φAが変化しても同期信
号Dに対する差信号Cの位相差(φC+φD)はφA
に対して相互比例関係にあるので、不平衡90゜成
分の位相差によるS/Nの影響を改善することが
できる。従つて、交流増幅器3で増幅した差信号
Cを和信号Dで同期検波すれば、コア零位置で差
信号は零となり、SN比を大幅に改善した高精度
の測定が可能となる。
The difference signal C and the sum signal D will now be explained with reference to FIG. First, the difference signal C is the third
As shown in the figure, since the vector is a combination of A and B, the signal has a phase difference φ C. On the other hand, the sum signal D is vector-wise a signal that is a combination of B and -A, and the phase difference φ D at this time is φ D =tan −1 Asinφ A /B+A cosφ A (3). Therefore, the sum signal D is used as a synchronization signal, and the difference signal C
When is the measured output, the phase difference between D and C φ CD is
When B=A, φ C = 180° − φ A /2 …(4) φ D = φ A /2 …(5) Therefore, φ C + φ D = 180° − φ A /2 + φ A /2 = 90° ...(6) On the other hand, when B>A, the phase difference φ CD is not 90°, but it is closer to 90° compared to the conventional one in FIG. 2, and when B<A, the difference signal C is Since it moves to the left side of the vertical axis (Y axis), the phase difference of the difference signal C is expressed as 180° - (φ CD ), which approaches 90° as in B>A.
That is, when B>A and B<A, from φ CCD )
is closer to 90°, and even if φ A changes, the phase difference (φ CD ) of difference signal C with respect to synchronizing signal D is φ A
Since there is a mutually proportional relationship with respect to the 90° component, it is possible to improve the influence of the S/N ratio due to the phase difference of the unbalanced 90° component. Therefore, if the difference signal C amplified by the AC amplifier 3 is synchronously detected with the sum signal D, the difference signal becomes zero at the core zero position, making it possible to perform highly accurate measurement with a significantly improved S/N ratio.

次に、第6図は本発明の他の実施例を示す図で
ある。この変位測定器は演算手段として差動変圧
器2とは別個に1次側2巻線、2次側1巻線の変
圧器12を用い、同変圧器12の1次側2巻線1
2a,12bの共通接続部から和信号を取出して
同期信号とし、また変圧器12の2次側巻線12
cより差信号を取出す構成である。つまり、この
測定器は、コイル2d,2e,12a,12bよ
りなる交流ブリツジ回路を使用して和信号を得る
構成である。
Next, FIG. 6 is a diagram showing another embodiment of the present invention. This displacement measuring device uses a transformer 12 with two primary windings and one secondary winding separately from the differential transformer 2 as a calculation means.
The sum signal is taken out from the common connection of 2a and 12b as a synchronizing signal, and the secondary winding 12 of the transformer 12 is
The configuration is such that a difference signal is extracted from c. That is, this measuring instrument is configured to obtain a sum signal using an AC bridge circuit consisting of coils 2d, 2e, 12a, and 12b.

なお、本発明はその要旨を逸脱しない範囲で
種々変形して実施できる。
Note that the present invention can be implemented with various modifications without departing from the gist thereof.

以上詳記したように本発明によれば、差動変圧
器の2つのコイル出力の和信号を同期信号として
用いれば、同期検波器駆動源が得られるととも
に、2つの2次コイルの振幅が同じで、2つの2
次コイル間の位相差が異なるとき差信号として発
生する不平衡90゜成分の同期信号に対する位相差
は90゜となるため、和信号を用いて差信号を同期
検波すれば差信号は零となる。また、2つの2次
コイルの振幅が異なり、かつ、2つの2次コイル
間の位相差が異なる場合においても差信号と同期
信号との位相差がより90゜に近いので実質的に零
に近づく。従つて、2次コイルをケーブルで接続
する場合等コイル間位相差の発生によるSN比は
大幅に改善でき、測定出力を高精度かつ安定に取
出し得る変位測定器を提供できる。
As detailed above, according to the present invention, if the sum signal of the two coil outputs of the differential transformer is used as a synchronization signal, a synchronous detector drive source can be obtained, and the amplitudes of the two secondary coils are the same. So, two 2
When the phase difference between the secondary coils is different, the phase difference of the unbalanced 90° component generated as a difference signal with respect to the synchronous signal is 90°, so if the difference signal is synchronously detected using the sum signal, the difference signal becomes zero. . Furthermore, even when the amplitudes of the two secondary coils are different and the phase difference between the two secondary coils is different, the phase difference between the difference signal and the synchronization signal is closer to 90°, so it virtually approaches zero. . Therefore, when connecting the secondary coils with a cable, the SN ratio due to the phase difference between the coils can be significantly improved, and it is possible to provide a displacement measuring instrument that can obtain measurement outputs with high precision and stability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ従来の変位測定
器の構成図、第3図は第2図に示す測定器の同期
検波を説明するベクトル図、第4図は本発明に係
わる変位測定器の一実施例を示す構成図、第5図
は第4図に示す測定器の同期検波を説明するベク
トル図、第6図は本発明の他の例を示す構成図で
ある。 1……交流励磁電源、2……差動変圧器、2b
……変位検出子、2c……可動コア、2d,2e
……2次コイル、3……交流増幅器、4……同期
検波器、11……演算回路。
1 and 2 are respectively block diagrams of conventional displacement measuring instruments, FIG. 3 is a vector diagram explaining synchronous detection of the measuring instrument shown in FIG. 2, and FIG. 4 is a diagram of a displacement measuring instrument according to the present invention. FIG. 5 is a vector diagram illustrating synchronous detection of the measuring instrument shown in FIG. 4, and FIG. 6 is a configuration diagram showing another example of the present invention. 1...AC excitation power supply, 2...Differential transformer, 2b
...Displacement detector, 2c...Movable core, 2d, 2e
... Secondary coil, 3 ... AC amplifier, 4 ... Synchronous detector, 11 ... Arithmetic circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 交流励磁される差動変圧器の可動コアに変位
検出子を設け被測定物の変位を測定する変位測定
器において、前記差動変圧器の差動接続される2
次コイルの両出力を用いて差信号および和信号を
得る回路と、この回路によつて得られた和信号を
同期信号として用いて前記差信号を同期検波する
同期検波器とを備えてなることを特徴とする変位
測定器。
1. In a displacement measuring device that measures the displacement of an object to be measured by providing a displacement detector in the movable core of a differential transformer that is excited by alternating current, the differentially connected 2 of the differential transformer is
A circuit that obtains a difference signal and a sum signal using both outputs of a secondary coil, and a synchronous detector that uses the sum signal obtained by this circuit as a synchronous signal to synchronously detect the difference signal. A displacement measuring instrument featuring:
JP8196181A 1981-05-29 1981-05-29 Displacement measuring device Granted JPS57197418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8196181A JPS57197418A (en) 1981-05-29 1981-05-29 Displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8196181A JPS57197418A (en) 1981-05-29 1981-05-29 Displacement measuring device

Publications (2)

Publication Number Publication Date
JPS57197418A JPS57197418A (en) 1982-12-03
JPS6412328B2 true JPS6412328B2 (en) 1989-02-28

Family

ID=13761094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8196181A Granted JPS57197418A (en) 1981-05-29 1981-05-29 Displacement measuring device

Country Status (1)

Country Link
JP (1) JPS57197418A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193909A (en) * 1984-10-15 1986-05-12 Sankusu Kk Synchronous rectifire circuit for differential transformer

Also Published As

Publication number Publication date
JPS57197418A (en) 1982-12-03

Similar Documents

Publication Publication Date Title
US3772587A (en) Position measuring transformer
JP3445362B2 (en) AC current sensor
US7132825B2 (en) Detection device
JPH03218475A (en) Method and device for measuring current
JPS61162726A (en) Stress detector
JPS6412328B2 (en)
JP2729903B2 (en) Displacement measuring device
US2443661A (en) Gauge system for measuring small variations in dimensions
US2482477A (en) Electrical torque measuring device
JPH07234102A (en) Displacement measuring apparatus
JPH0124266B2 (en)
JP5877262B1 (en) Calibrator for electromagnetic flowmeter
US2679628A (en) Apparatus for measuring mechanical quantities
US2109325A (en) System for measuring a component of an alternating current or an alternating voltage
Michalski et al. Universal magnetic circuit for resolvers with different speed ratios [instrumentation notes]
JPH0419584A (en) Instrument and method for magnetic permeability measurement
JPS6324268B2 (en)
SU1049749A1 (en) Strain-measuring digital device
SU1737350A2 (en) Acceleration measuring device
SU864200A1 (en) Ferroprobe
SU579534A1 (en) Differential displacement transducer
JPS631254Y2 (en)
SU1525627A1 (en) Device for testing windings of short-circuited rotors
JPH0147723B2 (en)
SU834542A1 (en) Multiturn contactless potentiometer