JPH0419584A - Instrument and method for magnetic permeability measurement - Google Patents
Instrument and method for magnetic permeability measurementInfo
- Publication number
- JPH0419584A JPH0419584A JP12110190A JP12110190A JPH0419584A JP H0419584 A JPH0419584 A JP H0419584A JP 12110190 A JP12110190 A JP 12110190A JP 12110190 A JP12110190 A JP 12110190A JP H0419584 A JPH0419584 A JP H0419584A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- magnetic field
- detection coil
- magnetic
- amplifier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 51
- 230000035699 permeability Effects 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims description 13
- 238000001514 detection method Methods 0.000 claims abstract description 113
- 230000004907 flux Effects 0.000 claims abstract description 43
- 239000000463 material Substances 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 3
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 9
- 238000007796 conventional method Methods 0.000 description 7
- 238000000691 measurement method Methods 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Measuring Magnetic Variables (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は磁性材料の透磁率の測定装置および測定方法に
関し、特に磁束検出コイルおよび磁界検出コイルを使っ
た高周波の透磁率測定装置および測定方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus and method for measuring the magnetic permeability of magnetic materials, and particularly to a high-frequency magnetic permeability measuring apparatus and measuring method using a magnetic flux detection coil and a magnetic field detection coil. Regarding.
[発明の概要1
この発明は、磁束検出コイルと、磁界検出コイルの2つ
のコイルを使って透磁率の周波数特性を測定するに際し
、上記コイルから検出アンプまでの伝達関数を測定する
ことにより、高周波における測定誤差の低減化を図れる
ようにしたものである。[Summary of the Invention 1 This invention provides a high-frequency This makes it possible to reduce measurement errors in the measurement.
[従来の技術1
始めに磁束検出コイルおよび磁界検出コイルを使った透
磁率測定器の透磁率の測定原理について述べておく。[Prior Art 1] First, the principle of measuring magnetic permeability using a magnetic permeability measuring device using a magnetic flux detection coil and a magnetic field detection coil will be described.
第2図は透磁率を測定する為の原理図で、よ(知られた
測定方法である。磁束検出コイル11は断面積の等しい
2つのコイルIIA、 IIBで構成され、この2つの
コイルIIA、IIBは交流磁界発生用のドライブコイ
ル(図示せず)が発生する外部磁界12によって図示し
ない検圧アンプの入力端において互いに逆相の起電力が
発生するように結線されている。よって測定試料13が
ないときドライブコイルに電流を流しても、検出アンプ
に検出される磁束検出コイル11の信号8カはOである
。そこでこの2つのコイル11A、llBのうち1つだ
けに測定試料13を挿入すると、このときに磁束検出コ
イル11に発生する信号電圧VBは、磁束検出コイルl
l内の磁界をH1、その角周波数をω、測定試料13の
磁束検出コイル面を横切る断面積をSB、試料の透磁率
をμ、とすると、
VB=μ・SB・ω・Hi (1)で与
えられる。ただし、試料13内の磁界と磁束検圧コイル
II内の磁界は等しいと仮定している。Figure 2 is a principle diagram for measuring magnetic permeability, which is a well-known measurement method.The magnetic flux detection coil 11 is composed of two coils IIA and IIB with equal cross-sectional areas. IIB is connected in such a way that electromotive forces having opposite phases are generated at the input end of a voltage detection amplifier (not shown) by an external magnetic field 12 generated by a drive coil (not shown) for generating an alternating magnetic field.Therefore, the measurement sample 13 Even if current is applied to the drive coil when there is no current, the 8 signals of the magnetic flux detection coil 11 detected by the detection amplifier are O. Therefore, the measurement sample 13 is inserted into only one of these two coils 11A and 11B. Then, the signal voltage VB generated in the magnetic flux detection coil 11 at this time is
Assuming that the magnetic field within l is H1, its angular frequency is ω, the cross-sectional area across the magnetic flux detection coil surface of the measurement sample 13 is SB, and the magnetic permeability of the sample is μ, VB=μ・SB・ω・Hi (1) is given by However, it is assumed that the magnetic field within the sample 13 and the magnetic field within the magnetic flux detection coil II are equal.
次に磁界検出コイル14は磁束検出コイル11の2つの
コイルのうち試料を挿入しない側のコイル11Bの近傍
に配置してお(。このように配置することにより、測定
試料13を磁束検出コイルIIAに挿入したときの磁界
検出コイル14内の磁界はHiに等しくなる。よって磁
界検出コイル14に発生する信号電圧VHは、磁界検出
コイル14の断面積をSHとすると、
VH=SH・ω・Hi (2)で与
えられる。よってVB、VHを測定することにより、(
1)、 (21式から
μ: (SH/SB)・(VB/VH)
(3)とμを計算で求めることができる。Next, of the two coils of the magnetic flux detection coil 11, the magnetic field detection coil 14 is placed near the coil 11B on the side into which the sample is not inserted. When inserted into the magnetic field detection coil 14, the magnetic field in the magnetic field detection coil 14 becomes equal to Hi.Therefore, the signal voltage VH generated in the magnetic field detection coil 14 is as follows, where SH is the cross-sectional area of the magnetic field detection coil 14.VH=SH・ω・Hi (2). Therefore, by measuring VB and VH, (
1), (μ from formula 21: (SH/SB)・(VB/VH)
(3) and μ can be calculated.
なお実際の測定装置では測定試料を挿入しないときにド
ライブコイルに電流を流すと、磁束検出コイル11を構
成する2つのコイルの断面積を完全に等しく作ることは
困難なため、磁束検出コイルに発生する電圧はOではな
い。測定試料を挿入しないときの磁束検出コイルに発生
する電圧をvao 、 iIi界検圧検出コイル生する
電圧をVHOとすると、透磁率μは
u = (St(/SB) −(VB/VH−VBO/
VHO) (4)と計算される。以上が測定原理で
ある。Note that in an actual measurement device, if a current is applied to the drive coil when no measurement sample is inserted, it is difficult to make the cross-sectional areas of the two coils that make up the magnetic flux detection coil 11 completely equal; The voltage applied is not O. If the voltage generated in the magnetic flux detection coil when no measurement sample is inserted is vao, and the voltage generated by the field pressure detection coil is VHO, then the magnetic permeability μ is u = (St(/SB) - (VB/VH-VBO) /
VHO) (4) is calculated. The above is the measurement principle.
次に従来技術の測定方法について述べる。Next, a conventional measurement method will be described.
従来では(1)式のVBには磁束検出コイルの出力を測
定する検8アンプの出力(VBAと表すこととする)を
用い、また(2)式のVHには磁界検出コイルの出力を
測定する検出アンプの出力(Vl(Aと表すこととする
)を用いて、これらを(3)または(4)式に代入して
透磁率を計算していた。Conventionally, the output of a detector amplifier (denoted as VBA) that measures the output of the magnetic flux detection coil is used for VB in equation (1), and the output of the magnetic field detection coil is used for VH in equation (2). The magnetic permeability was calculated by substituting the output (Vl (denoted as A)) of the detection amplifier into equation (3) or (4).
[発明が解決しようとする課題l
上述した従来方式では低周波数では問題はないが周波数
が高(なるとVBとVBA 、 VHとVHA等は等し
くなくなり、問題となる。なぜならば検出コイルのイン
ダクタンスと検出アンプの入力端の浮遊容量によって、
VBとVBA間、および、VHとVHA間の伝達関数が
周波数特性を持つためである。即ち伝達関数をそれぞれ
GB、 GHとし、試料を挿入しないときの磁束検出コ
イルの出力を測定する検出アンプの出力をVBOA、磁
界検出コイルの出力を測定する検圧アンプの出力をVH
OA、それぞれの伝達関数をGBO,GHQとすると、
VBA =GB・VB (5
)Vl(A = GH−VH(6)
VBOA = GBflVBO(7)
VHOA = GHQ・VHO(8)
という関係があり、真の透磁率μは(4)〜(8)式%
式%)
と計算しなければならない。この伝達関数を無視、すな
わち周波数特性が一定であると仮定してしまうと、透磁
率の計算結果に伝達関係の周波数特性が含まれることに
なる。すなわち高い周波数では伝達関係の周波数特性の
分だけ測定誤差が生ずる。また、(9)式中の伝達関係
GBは試料を挿入したときの磁束検出コイルのインダク
タンスに関係するから、測定試料の透磁率によって変化
する。従って、測定誤差も透磁率によって変化する。[Problem to be solved by the invention l The conventional method described above has no problem at low frequencies, but at high frequencies (VB and VBA, VH and VHA, etc. are no longer equal, and this becomes a problem. This is because the inductance of the detection coil and the detection Due to the stray capacitance at the input end of the amplifier,
This is because the transfer functions between VB and VBA and between VH and VHA have frequency characteristics. That is, the transfer functions are GB and GH, respectively, the output of the detection amplifier that measures the output of the magnetic flux detection coil when no sample is inserted is VBOA, and the output of the voltage detection amplifier that measures the output of the magnetic field detection coil is VH.
Assuming that OA and their respective transfer functions are GBO and GHQ, VBA = GB・VB (5
)Vl(A = GH-VH(6) VBOA = GBflVBO(7) VHOA = GHQ・VHO(8) There is a relationship as follows, and the true magnetic permeability μ is expressed by formulas (4) to (8)%
Formula %) must be calculated. If this transfer function is ignored, that is, if it is assumed that the frequency characteristics are constant, the frequency characteristics related to the transfer will be included in the magnetic permeability calculation result. That is, at high frequencies, measurement errors occur by the amount of frequency characteristics related to transmission. Furthermore, since the transfer relationship GB in equation (9) is related to the inductance of the magnetic flux detection coil when the sample is inserted, it changes depending on the magnetic permeability of the measurement sample. Therefore, the measurement error also changes depending on the magnetic permeability.
従来技術では伝達関係を無視するか、あるいは第3図に
示すように、この測定誤差を減らすために切替えスイッ
チ15と検出アンプ16との間に、検出コイルと直列に
抵抗17を挿入することにより伝達関数をできるだけ一
定にしようとしていた。しかし前述の方法では透磁率の
計算結果に伝達関数の周波数特性が含まれることになり
、後述の方法では抵抗を挿入することにより検出アンプ
における出力信号レベルが低下してしまい、検出アンプ
のノイズに対するS/Nが悪(なる。よって測定精度が
悪くなる。In the prior art, either the transfer relationship is ignored or, as shown in FIG. I was trying to keep the transfer function as constant as possible. However, in the method described above, the frequency characteristics of the transfer function are included in the magnetic permeability calculation result, and in the method described later, the output signal level at the detection amplifier is lowered by inserting a resistor, which reduces the noise of the detection amplifier. The S/N ratio is poor (as a result, the measurement accuracy becomes poor).
本発明の目的は、上記伝達関数の周波数特性に起因する
測定誤差をS/Nを悪化させることな(減小させる事で
ある。An object of the present invention is to reduce measurement errors caused by the frequency characteristics of the transfer function without worsening the S/N ratio.
[課題を解決するための手段1
このような目的を達成するために、本発明測定装置は交
流信号源と、測定試料に交流磁界を印加するための交流
磁界発生用コイルと、該交流磁界発生用コイルによる磁
束および磁界をそれぞれ検出する磁束検出コイルおよび
磁界検出コイルと、前記磁束検出コイルおよび磁界検出
コイルの検出出力を増幅する増幅器と、前記磁束検出コ
イルおよび磁界検出コイルから前記増幅器までの伝達関
数を測定するためのトロイダル状高透磁率材料に捲回さ
れた利得測定コイルと、前記交流信号源からの信号を前
記交流磁界発生用コイルと前記利得測定コイルとに切替
え接続する第1の切り替え器と、前記磁束検出コイルお
よび前記磁界検出コイルを前記増幅器に切替え接続する
第2の切り替え器とを具え、前記第2の切り替え器と前
記増幅器とを結ぶ2本の配線の一方が前記トロイダル状
高透磁率材料の中空部を通って配線されていることを特
徴とする。[Means for Solving the Problems 1] In order to achieve such an object, the measuring device of the present invention includes an alternating current signal source, an alternating current magnetic field generating coil for applying an alternating magnetic field to a measurement sample, and an alternating current magnetic field generating coil for applying an alternating magnetic field to a measurement sample. a magnetic flux detection coil and a magnetic field detection coil that respectively detect the magnetic flux and magnetic field caused by the magnetic flux detection coil and the magnetic field detection coil; an amplifier that amplifies the detection output of the magnetic flux detection coil and the magnetic field detection coil; and a transmission from the magnetic flux detection coil and the magnetic field detection coil to the amplifier. a gain measuring coil wound in a toroidal high permeability material for measuring the function; and a first switch for switching and connecting a signal from the alternating current signal source to the alternating current magnetic field generating coil and the gain measuring coil. a second switch for switchingly connecting the magnetic flux detection coil and the magnetic field detection coil to the amplifier, one of the two wires connecting the second switch and the amplifier to the toroidal shape. It is characterized by being wired through a hollow part of a high magnetic permeability material.
本発明測定方法は測定試料に交流磁界を印加するための
交流磁界発生用コイルによる磁束および磁界をそれぞれ
検出する磁束検出コイルおよび磁界検出コイルと前記二
つの検出コイルの検出出力を増幅する増幅器との間の伝
達関数を測定し、前記増幅器の出力から求められる前記
測定試料の透磁率を前記伝達関数によって補正すること
を特徴とする。The measurement method of the present invention includes a magnetic flux detection coil that detects the magnetic flux and magnetic field from an AC magnetic field generating coil for applying an AC magnetic field to a measurement sample, a magnetic field detection coil, and an amplifier that amplifies the detection outputs of the two detection coils. The present invention is characterized in that the magnetic permeability of the measurement sample determined from the output of the amplifier is corrected by the transfer function.
[作 用j
本発明によれば、測定回路中に利得測定用のコイルを挿
入するという簡単な構成により、簡単な操作で伝達関数
を測定でき、それによって透磁率の値を補正することに
よって測定誤差を低下することができる。[Function j] According to the present invention, the transfer function can be measured with a simple operation by using a simple configuration in which a gain measurement coil is inserted into the measurement circuit, and the measurement can be performed by correcting the magnetic permeability value. Error can be reduced.
[実施例1
以下に本発明の実施例について図面を参照して説明する
。[Example 1] Examples of the present invention will be described below with reference to the drawings.
本発明による透磁率測定装置の信号検出部を示す回路図
である第1図を参照すると、本発明の実施例は、交流磁
界発生用コイル1と、磁束検出コイル2と、磁界検出コ
イル3と、検出コイル切り替えスイッチ4と、検出アン
プ5と、トロイダル状フェライト6と、フェライト6に
複数回巻いた利得測定用コイル7と、信号電源切り替え
スイッチ8からなる。入力端子9には、図示しない交流
信号源が接続されている。なお第1図では便宜上、磁束
検出コイル2と、磁界検出コイル3は実際と異なる配置
を示しである。Referring to FIG. 1, which is a circuit diagram showing the signal detection section of the magnetic permeability measuring device according to the present invention, the embodiment of the present invention has an AC magnetic field generation coil 1, a magnetic flux detection coil 2, a magnetic field detection coil 3, , a detection coil changeover switch 4, a detection amplifier 5, a toroidal ferrite 6, a gain measurement coil 7 wound around the ferrite 6 a plurality of times, and a signal power changeover switch 8. An AC signal source (not shown) is connected to the input terminal 9. In addition, in FIG. 1, for convenience, the magnetic flux detection coil 2 and the magnetic field detection coil 3 are shown in a different arrangement from the actual arrangement.
次に本発明による測定手順を第1図を参照して説明する
。Next, the measurement procedure according to the present invention will be explained with reference to FIG.
まず(9)式の中の伝達関数の比GB/GH、およびG
BO/GHQの測定法を説明する。First, the ratio GB/GH of the transfer function in equation (9), and G
The method for measuring BO/GHQ will be explained.
測定試料を磁束検出コイル2に挿入し、信号源切り替え
スイッチ8を利得測定用コイル7側に倒し、検出コイル
切り替えスイッチ4を磁界検出コイル3側に倒し、入力
端子9に信号を流して、検出アンプ5の出力端子10の
出力を測定し、これを■旧とする。次に検出コイル切り
替えスイッチ4を磁束検出コイル2側に倒し、その他は
■旧を測定した時と同じにして8カ端子10の出力を測
定し、これをVBl とする。VBI/VH1を伝達関
数の比GB/GHとする。また、測定試料を磁束検出コ
イル2に挿入しないで同様の測定を行い、検出アンプ5
を磁束検出コイル2に接続した時および磁界検圧コイル
3に接続した時の出力端子10の出力の比をGBO/G
HQとする。Insert the measurement sample into the magnetic flux detection coil 2, turn the signal source changeover switch 8 to the gain measurement coil 7 side, turn the detection coil changeover switch 4 to the magnetic field detection coil 3 side, send a signal to the input terminal 9, and perform detection. The output of the output terminal 10 of the amplifier 5 is measured, and this is defined as ①old. Next, turn the detection coil changeover switch 4 to the magnetic flux detection coil 2 side, do the other things the same as when measuring the old case, measure the output of the 8 terminals 10, and set this as VBl. Let VBI/VH1 be the ratio GB/GH of the transfer function. In addition, similar measurements were made without inserting the measurement sample into the magnetic flux detection coil 2, and the detection amplifier 5
The ratio of the output of the output terminal 10 when connected to the magnetic flux detection coil 2 and when connected to the magnetic field detection coil 3 is GBO/G
HQ.
次に(9)式のVBA/VHAおよびVBOA/VHO
Aの測定法について説明する。Next, VBA/VHA and VBOA/VHO in equation (9)
The method for measuring A will be explained.
測定試料を磁束検出コイル2に挿入し、信号源切り替え
スイッチ8を交流磁界発生用コイル1側に倒し、検出コ
イル切り替えスイッチ4を磁界検出コイル3側に倒し、
入力端子9に信号を流して、出力端子lOの出力を測定
し、これをVHとする。次に検出コイル切り替えスイッ
チ4を磁束検出コイル2に倒し、その他はVHを測定し
た時と同じにして出力端子10の出力を測定し、これを
VBとする。VB/VHをVBA/VHAとする。また
、測定試料を磁束検出コイル2に挿入しないで同様の測
定を行い、検出アンプ5を磁束検出コイル2に接続した
時および磁界検出コイル3に接続した時の出力端子10
の出力の比をVBOA/VHOAとする。Insert the measurement sample into the magnetic flux detection coil 2, turn the signal source changeover switch 8 to the AC magnetic field generation coil 1 side, turn the detection coil changeover switch 4 to the magnetic field detection coil 3 side,
A signal is applied to the input terminal 9, the output of the output terminal 1O is measured, and this is set as VH. Next, set the detection coil changeover switch 4 to the magnetic flux detection coil 2, and otherwise do the same as when measuring VH, measure the output of the output terminal 10, and set this as VB. Let VB/VH be VBA/VHA. In addition, the same measurement was performed without inserting the measurement sample into the magnetic flux detection coil 2, and the output terminal 10 when the detection amplifier 5 was connected to the magnetic flux detection coil 2 and when it was connected to the magnetic field detection coil 3.
Let the ratio of the output of VBOA/VHOA be VBOA/VHOA.
このようにして得られたGB/GH,GBO/GHD、
VBA/VHAおよびVBOA/VHOAを(9)式
に代入シテ透磁率を求める。GB/GH, GBO/GHD obtained in this way,
Substitute VBA/VHA and VBOA/VHOA into equation (9) to find the magnetic permeability.
次に、VHIとVBIを測定する事により伝達関数の比
が測定できる理由について第4図に示した等価回路を用
いて説明する。Next, the reason why the ratio of transfer functions can be measured by measuring VHI and VBI will be explained using the equivalent circuit shown in FIG.
利得検出コイル7の巻数をnとすると、利得検出コイル
7とトロイダル状フェライト6の中空部を通した配線と
は、n対1のトランスを形成する。トランスが理想的で
あれば、利得検出コイル7に入力信号eiを流すとコア
内を通っている配線にei/nなる起電力が生じ、その
インピーダンス21は、利得検出コイル7から信号発生
器側をみたインピーダンスをZsとすると、Zt=Zs
/n2である。そこで、21が検出コイルのインピーダ
ンス(ZC)や検出アンプのインピーダンス(ZA)に
比べ、十分小さ(なる(zt<<zc 、かつZt<<
ZA)ようにnを設計すれば、内部インピーダンスがほ
ぼOの電圧源が配線内に発生するとみなしてよい。実際
にできるトランスは理想的ではなく、配線に発生する起
電力もkeiとなる。ここでkはコイル7の巻数nの他
、巻き方やトロイダル状材料6の透磁率等、コイル自身
の特性によって決まるもので、これらの特性に起因する
周波数特性を有するようになる。When the number of turns of the gain detection coil 7 is n, the gain detection coil 7 and the wiring passing through the hollow part of the toroidal ferrite 6 form an n:1 transformer. If the transformer is ideal, when the input signal ei is passed through the gain detection coil 7, an electromotive force ei/n will be generated in the wiring passing through the core, and the impedance 21 will be connected from the gain detection coil 7 to the signal generator side. If the impedance seen is Zs, then Zt=Zs
/n2. Therefore, 21 is sufficiently small compared to the impedance of the detection coil (ZC) and the impedance of the detection amplifier (ZA).
If n is designed as shown in ZA), it can be assumed that a voltage source with an internal impedance of approximately O is generated within the wiring. The transformer that can actually be created is not ideal, and the electromotive force generated in the wiring is also a key factor. Here, k is determined by the characteristics of the coil itself, such as the winding method and the magnetic permeability of the toroidal material 6, in addition to the number of turns n of the coil 7, and has frequency characteristics caused by these characteristics.
しかし、nを前述のように設計すればインピーダンスは
ほぼ0とみなせ、kは検出コイルや検出アンプのインピ
ーダンスには無関係の係数とみなせる。測定精度の点か
ら、巻数nは10以上が望ましい。However, if n is designed as described above, the impedance can be regarded as approximately 0, and k can be regarded as a coefficient unrelated to the impedance of the detection coil or detection amplifier. From the viewpoint of measurement accuracy, the number of turns n is preferably 10 or more.
検出アンプにおける電圧eoは
eo=zA/(zC+zA)・k・ei(10)である
。一方、検出コイルから検出アンプまでの伝達関数Gは
G =ZA/(ZC+ZA) (1
1)であるから、磁束検出コイルのインピーダンスをZ
B、磁界検出コイルのインピーダンスをZHとすると、
GB=ZA/(ZB+ZA)
(12)GH=ZA/(ZH+ZA)
(13)である。また上述の測定手順
によれば(10)式により
VBCZA/(ZB+ZA) ・k−ei
(14)VHCZA/ (ZH+ZA) ・k
−ei (15)となる関係が成立する
。(12)〜(15)よりVBI/VH1=GB/G)
l (16)となり、■旧とVB
Iを測定することにより伝達関数の比が測定できる。The voltage eo at the detection amplifier is eo=zA/(zC+zA)·k·ei (10). On the other hand, the transfer function G from the detection coil to the detection amplifier is G = ZA/(ZC+ZA) (1
1), the impedance of the magnetic flux detection coil is Z
B. If the impedance of the magnetic field detection coil is ZH, then GB=ZA/(ZB+ZA)
(12) GH=ZA/(ZH+ZA)
(13). According to the above measurement procedure, VBCZA/(ZB+ZA) ・k−ei
(14) VHCZA/ (ZH+ZA) ・k
-ei (15) holds true. From (12) to (15), VBI/VH1=GB/G)
l (16), ■Old and VB
By measuring I, the ratio of the transfer functions can be measured.
本発明による透磁率測定結果を従来法による結果と比較
して説明する。The magnetic permeability measurement results according to the present invention will be explained in comparison with the results according to the conventional method.
第5図は厚さ0.2μmの薄膜の透磁率を伝達関数を考
慮せずに計算するという従来技術の手法で測定したもの
である。横軸は周波数で500kHzから120MHz
まで対数目盛りで表示している。縦軸は透磁率で10か
ら5000まで対数目盛りで表示している。実線は透磁
率の有効分と無効分、点線は絶対値を表わしている。FIG. 5 shows a measurement of the magnetic permeability of a thin film with a thickness of 0.2 μm using a conventional technique in which the magnetic permeability is calculated without considering the transfer function. The horizontal axis is the frequency from 500kHz to 120MHz
It is displayed on a logarithmic scale. The vertical axis represents magnetic permeability, which is expressed on a logarithmic scale from 10 to 5000. The solid line represents the effective and reactive components of magnetic permeability, and the dotted line represents the absolute value.
第6図は第5図の従来法による測定に用いた薄膜と同じ
ものを本発明による手法で測定したものである。FIG. 6 shows the same thin film used in the measurement using the conventional method shown in FIG. 5, but measured using the method according to the present invention.
第5図と第6図を比較すると、約50MHzまでは殆ど
差はないが、それ以上の周波数では第5図では透磁率の
絶対値が増加していくのに対し、第6図では減少してい
くのが分かる。第5図に示した従来法では、伝達関数を
考慮しないためにこのような測定結果になったと考えら
れる。これに対し、本発明手法による測定では従来技術
のような結果にはならず、従来技術よりも測定誤差の少
ない結果が得られているということができる。Comparing Figures 5 and 6, there is almost no difference up to about 50 MHz, but at frequencies above that, the absolute value of magnetic permeability increases in Figure 5, while it decreases in Figure 6. I can see it going. It is thought that the conventional method shown in FIG. 5 produced such a measurement result because the transfer function was not considered. On the other hand, the measurement according to the method of the present invention does not give the same results as the conventional technique, and it can be said that a result with less measurement error than the conventional technique is obtained.
[発明の効果1
以上説明したように、本発明においては、伝達関数を考
慮して透磁率を測定するので、従来技術に比べ、正しく
透磁率を評価することができる。[Advantageous Effects of the Invention 1] As explained above, in the present invention, since magnetic permeability is measured in consideration of a transfer function, magnetic permeability can be evaluated more accurately than in the prior art.
第1図は本発明による透磁率測定装置の実施例の構成を
示す図。
第2図は透磁率の測定原理を示した図、第3図は従来技
術による透磁率測定器の構成例を示す図、
第4図は測定器の等価回路の一部を示す図、第5図は従
来技術による透磁率の測定結果例を示す図、
第6図は本発明による透磁率測定結果例を示す図である
。
1・・・交流磁界発生用コイル、
2・・・磁束検出コイル、
3・・・磁界検出コイル、
4・・・検出コイル切り替えスイッチ、5・・・検出ア
ンプ、
6・・・トロイダル状高透磁率材料、
7・・・利得測定コイル、
8・・・信号源切り替えスイッチ、
9・・・入力端子、
10・・・出力端子、
11・・・磁束検出コイル、
12・・・外部磁界、
13・・・測定試料、
14・・・磁界検出コイル、
15・・・切り替えスイッチ、
16・・・検出アンプ、
エフ・・・抵抗。
透磁率0夛関原役番示す目
第2図FIG. 1 is a diagram showing the configuration of an embodiment of a magnetic permeability measuring device according to the present invention. Fig. 2 is a diagram showing the principle of measuring magnetic permeability, Fig. 3 is a diagram showing an example of the configuration of a magnetic permeability measuring device according to the prior art, Fig. 4 is a diagram showing a part of the equivalent circuit of the measuring device, and Fig. 5 is a diagram showing a part of the equivalent circuit of the measuring device. FIG. 6 is a diagram showing an example of magnetic permeability measurement results according to the prior art, and FIG. 6 is a diagram showing an example of magnetic permeability measurement results according to the present invention. DESCRIPTION OF SYMBOLS 1... AC magnetic field generation coil, 2... Magnetic flux detection coil, 3... Magnetic field detection coil, 4... Detection coil changeover switch, 5... Detection amplifier, 6... Toroidal high transparency Magnetic material, 7... Gain measurement coil, 8... Signal source changeover switch, 9... Input terminal, 10... Output terminal, 11... Magnetic flux detection coil, 12... External magnetic field, 13 ... Measurement sample, 14... Magnetic field detection coil, 15... Changeover switch, 16... Detection amplifier, F... Resistor. Figure 2 shows the magnetic permeability of 0.
Claims (1)
の交流磁界発生用コイルと、該交流磁界発生用コイルに
よる磁束および磁界をそれぞれ検出する磁束検出コイル
および磁界検出コイルと、前記磁束検出コイルおよび磁
界検出コイルの検出出力を増幅する増幅器と、前記磁束
検出コイルおよび磁界検出コイルから前記増幅器までの
伝達関数を測定するためのトロイダル状高透磁率材料に
捲回された利得測定コイルと、前記交流信号源からの信
号を前記交流磁界発生用コイルと前記利得測定コイルと
に切替え接続する第1の切り替え器と、前記磁束検出コ
イルおよび前記磁界検出コイルを前記増幅器に切替え接
続する第2の切り替え器とを具え、前記第2の切り替え
器と前記増幅器とを結ぶ2本の配線の一方が前記トロイ
ダル状高透磁率材料の中空部を通って配線されているこ
とを特徴とする透磁率測定装置。 2)前記利得検出コイルの巻数をn、前記交流信号発生
源、磁束検出コイルおよび磁界検出コイルのインピーダ
ンスをそれぞれZ1、ZBおよびZHとした時、n^2
>Z1/ZH、かつ、n^2>Z1/ZBであることを
特徴とする請求項1に記載の透磁率測定装置。 3)前記利得検出コイルの巻数が10以上であることを
特徴とする請求項1に記載の透磁率測定装置。 4)測定試料に交流磁界を印加するための交流磁界発生
用コイルによる磁束および磁界をそれぞれ検出する磁束
検出コイルおよび磁界検出コイルと前記二つの検出コイ
ルの検出出力を増幅する増幅器との間の伝達関数を測定
し、前記増幅器の出力から求められる前記測定試料の透
磁率を前記伝達関数によって補正することを特徴とする
透磁率測定方法。[Claims] 1) An AC signal source, an AC magnetic field generation coil for applying an AC magnetic field to a measurement sample, and a magnetic flux detection coil and magnetic field detection that respectively detect the magnetic flux and magnetic field generated by the AC magnetic field generation coil. a coil, an amplifier for amplifying the detection output of the magnetic flux detection coil and the magnetic field detection coil, and a toroidal-shaped high permeability material for measuring a transfer function from the magnetic flux detection coil and the magnetic field detection coil to the amplifier. a first switch that switches and connects a signal from the AC signal source to the AC magnetic field generation coil and the gain measurement coil, and connects the magnetic flux detection coil and the magnetic field detection coil to the amplifier; and a second switch for switching connection, and one of the two wires connecting the second switch and the amplifier is routed through a hollow part of the toroidal high magnetic permeability material. Characteristic magnetic permeability measuring device. 2) When the number of turns of the gain detection coil is n, and the impedances of the AC signal generation source, magnetic flux detection coil, and magnetic field detection coil are Z1, ZB, and ZH, respectively, n^2
The magnetic permeability measuring device according to claim 1, characterized in that >Z1/ZH and n^2>Z1/ZB. 3) The magnetic permeability measuring device according to claim 1, wherein the number of turns of the gain detection coil is 10 or more. 4) A magnetic flux detection coil that detects the magnetic flux and magnetic field from the alternating current magnetic field generating coil for applying an alternating magnetic field to the measurement sample, respectively, and transmission between the magnetic field detection coil and an amplifier that amplifies the detection outputs of the two detection coils. A method for measuring magnetic permeability, comprising: measuring a function, and correcting the magnetic permeability of the measurement sample determined from the output of the amplifier using the transfer function.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2121101A JPH0727016B2 (en) | 1990-05-14 | 1990-05-14 | Permeability measuring device and measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2121101A JPH0727016B2 (en) | 1990-05-14 | 1990-05-14 | Permeability measuring device and measuring method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0419584A true JPH0419584A (en) | 1992-01-23 |
JPH0727016B2 JPH0727016B2 (en) | 1995-03-29 |
Family
ID=14802904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2121101A Expired - Lifetime JPH0727016B2 (en) | 1990-05-14 | 1990-05-14 | Permeability measuring device and measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0727016B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101833181A (en) * | 2010-03-19 | 2010-09-15 | 福建华冠光电有限公司 | Method for retrieving image of liquid crystal panel installing equipment |
CN103941201A (en) * | 2014-04-24 | 2014-07-23 | 江苏理工学院 | Magnetic parameter measuring method for magnetic material |
JP2019045337A (en) * | 2017-09-04 | 2019-03-22 | 新日鐵住金株式会社 | Magnetic flux density detection coil and magnetic characteristic instrument |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6157871A (en) * | 1984-08-30 | 1986-03-24 | Sony Corp | Measuring instrument for magnetic permeability |
-
1990
- 1990-05-14 JP JP2121101A patent/JPH0727016B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6157871A (en) * | 1984-08-30 | 1986-03-24 | Sony Corp | Measuring instrument for magnetic permeability |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101833181A (en) * | 2010-03-19 | 2010-09-15 | 福建华冠光电有限公司 | Method for retrieving image of liquid crystal panel installing equipment |
CN103941201A (en) * | 2014-04-24 | 2014-07-23 | 江苏理工学院 | Magnetic parameter measuring method for magnetic material |
JP2019045337A (en) * | 2017-09-04 | 2019-03-22 | 新日鐵住金株式会社 | Magnetic flux density detection coil and magnetic characteristic instrument |
Also Published As
Publication number | Publication date |
---|---|
JPH0727016B2 (en) | 1995-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8901919B2 (en) | Compact, two stage, zero flux electronically compensated current or voltage transducer employing dual magnetic cores having substantially dissimilar magnetic characteristics | |
JP3445362B2 (en) | AC current sensor | |
US7132825B2 (en) | Detection device | |
US4866378A (en) | Displacement transducer with opposed coils for improved linearity and temperature compensation | |
US3260932A (en) | Magnet-field measuring device with a galvanomagnetic resistance probe | |
CA1056457A (en) | A.c. capacitance measuring bridge | |
CN1417814A (en) | Compensation method of current sensor and zero-flux microcurrent sensor | |
EP0595367B1 (en) | Displacement transducer with opposed coils for improved linearity and temperature compensation | |
US6191575B1 (en) | Device for measuring linear displacements | |
US3464002A (en) | Low q test coils for magnetic field sensing | |
JPH0720172A (en) | Measuring apparatus for circuit constant and material characteristics | |
US4050013A (en) | Magnetic field probe which measures switching current of magnetic element at moment the element switches as measure of external field | |
JPH0419584A (en) | Instrument and method for magnetic permeability measurement | |
JP2000121307A (en) | Apparatus for measuring quantity of inductive displacement | |
US3796950A (en) | Measurement apparatus | |
JPH03221886A (en) | Method for measuring core loss | |
EP0278635B1 (en) | Negative feedback power supply apparatus | |
CN2591741Y (en) | Zero flux micro current sensor | |
Grohmann et al. | Self-calibrating cryo current comparators for AC applications | |
JP2729903B2 (en) | Displacement measuring device | |
JPH07234102A (en) | Displacement measuring apparatus | |
JPS631253Y2 (en) | ||
WO2024135413A1 (en) | Electric current sensor and measurement device | |
JPH02156113A (en) | Linear displacement detector | |
Velayudhan et al. | Simple inductive displacement transducer |