JPH0727016B2 - Permeability measuring device and measuring method - Google Patents

Permeability measuring device and measuring method

Info

Publication number
JPH0727016B2
JPH0727016B2 JP2121101A JP12110190A JPH0727016B2 JP H0727016 B2 JPH0727016 B2 JP H0727016B2 JP 2121101 A JP2121101 A JP 2121101A JP 12110190 A JP12110190 A JP 12110190A JP H0727016 B2 JPH0727016 B2 JP H0727016B2
Authority
JP
Japan
Prior art keywords
coil
magnetic field
detection coil
magnetic
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2121101A
Other languages
Japanese (ja)
Other versions
JPH0419584A (en
Inventor
与志朗 米田
直人 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP2121101A priority Critical patent/JPH0727016B2/en
Publication of JPH0419584A publication Critical patent/JPH0419584A/en
Publication of JPH0727016B2 publication Critical patent/JPH0727016B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は磁性材料の透磁率の測定装置および測定方法に
関し、特に磁束検出コイルおよび磁界検出コイルを使っ
た高周波の透磁率測定装置および測定方法に関する。
The present invention relates to an apparatus and method for measuring magnetic permeability of a magnetic material, and more particularly to an apparatus and method for measuring high frequency magnetic permeability using a magnetic flux detection coil and a magnetic field detection coil. Regarding

[発明の概要] この発明は、磁束検出コイルと、磁界検出コイルの2つ
のコイルを使って透磁率の周波数特性を測定するに際
し、上記コイルから検出アンプまでの伝達関数を測定す
ることにより、高周波における測定誤差の低減化を図れ
るようにしたものである。
[Summary of the Invention] In the present invention, when a frequency characteristic of magnetic permeability is measured by using two coils, a magnetic flux detection coil and a magnetic field detection coil, a transfer function from the coil to the detection amplifier is measured to obtain a high frequency. It is intended to reduce the measurement error in.

[従来の技術] 始めに磁束検出コイルおよび磁界検出コイルを使った透
磁率測定器の透磁率の測定原理について述べておく。
[Prior Art] First, the principle of measuring the magnetic permeability of a magnetic permeability measuring device using a magnetic flux detecting coil and a magnetic field detecting coil will be described.

第2図は透磁率を測定する為の原理図で、よく知られた
測定方法である。磁束検出コイル11は断面積の等しい2
つのコイル11A,11Bで構成され、この2つのコイル11A,1
1Bは交流磁界発生用のドライブコイル(図示せず)が発
生する外部磁界12によって図示しない検出アンプの入力
端において互いに逆相の起電力が発生するように結線さ
れている。よって測定試料13がないときドライブコイル
に電流を流しても、検出アンプに検出される磁束検出コ
イル11の信号出力は0である。そこでこの2つのコイル
11A,11Bのうち1つだけに測定試料13を挿入すると、こ
のときに磁束検出コイル11に発生する信号電圧VBは、磁
束検出コイル11内の磁界をHi、その角周波数をω、測定
試料13の磁束検出コイル面を横切る断面積をSB、試料の
透磁率をμ、とすると、 VB=μ・SB・ω・Hi (1) で与えられる。ただし、試料13内の磁界と磁束検出コイ
ル11内の磁界は等しいと仮定している。
FIG. 2 is a principle diagram for measuring magnetic permeability, which is a well-known measuring method. Magnetic flux detection coil 11 has the same cross-sectional area 2
It consists of two coils 11A and 11B.
1B is connected so that electromotive forces of opposite phases are generated at the input end of a detection amplifier (not shown) by an external magnetic field 12 generated by a drive coil (not shown) for generating an AC magnetic field. Therefore, even if a current is passed through the drive coil when there is no measurement sample 13, the signal output of the magnetic flux detection coil 11 detected by the detection amplifier is 0. So these two coils
When the measurement sample 13 is inserted into only one of 11A and 11B, the signal voltage VB generated in the magnetic flux detection coil 11 at this time is that the magnetic field in the magnetic flux detection coil 11 is Hi, its angular frequency is ω, and the measurement sample 13 Let SB be the cross-sectional area that crosses the magnetic flux detection coil surface of and the permeability of the sample be μ, which is given by VB = μ ・ SB ・ ω ・ Hi (1). However, it is assumed that the magnetic field in the sample 13 and the magnetic field in the magnetic flux detection coil 11 are equal.

次に磁界検出コイル14は磁束検出コイル11の2つのコイ
ルのうち試料を挿入しない側のコイル11Bの近傍に配置
しておく。このように配置することにより、測定試料13
を磁束検出コイル11Aに挿入したときの磁界検出コイル1
4内の磁界はHiに等しくなる。よって磁界検出コイル14
に発生する信号電圧VHは、磁界検出コイル14の断面積を
SHとすると、 VH=SH・ω・Hi (2) で与えられる。よってVB,VHを測定することにより、
(1),(2)式から μ=(SH/SB)・(VB/VH) (3) とμを計算で求めることができる。
Next, the magnetic field detection coil 14 is arranged in the vicinity of the coil 11B on the side where the sample is not inserted among the two coils of the magnetic flux detection coil 11. By arranging in this way, the measurement sample 13
Magnetic field detection coil 1 when is inserted into the magnetic flux detection coil 11A
The magnetic field in 4 is equal to Hi. Therefore, the magnetic field detection coil 14
The signal voltage VH generated at
If it is SH, it is given by VH = SH ・ ω ・ Hi (2). Therefore, by measuring VB, VH,
From formulas (1) and (2), μ = (SH / SB) · (VB / VH) (3) and μ can be calculated.

なお実際の測定装置では測定試料を挿入しないときにド
ライブコイルに電流を流すと、磁束検出コイル11を構成
する2つのコイルの断面積を完全に等しく作ることは困
難なため、磁束検出コイルに発生する電圧は0ではな
い。測定試料を挿入しないときの磁束検出コイルに発生
する電圧をVB0、磁束検出コイルに発生する電圧をVH0と
すると、透磁率μは μ=(SH/SB)・(VB/VH-VB0/VH0) (4) と計算される。以上が測定原理である。
In an actual measurement device, if a current is passed through the drive coil when the measurement sample is not inserted, it is difficult to make the cross-sectional areas of the two coils forming the magnetic flux detection coil 11 completely equal. The applied voltage is not zero. When the voltage generated in the magnetic flux detection coil when the measurement sample is not inserted is VB0 and the voltage generated in the magnetic flux detection coil is VH0, the permeability μ is μ = (SH / SB) ・ (VB / VH-VB0 / VH0) (4) is calculated. The above is the measurement principle.

次に従来技術の測定方法について述べる。Next, a conventional measuring method will be described.

従来では(1)式のVBには磁束検出コイルの出力を測定
する検出アンプの出力(VBAと表すこととする)を用
い、また(2)式のVHには磁界検出コイルの出力を測定
する検出アンプの出力(VHAと表すこととする)を用い
て、これらを(3)または(4)式に代入して透磁率を
計算していた。
Conventionally, the output of the detection amplifier that measures the output of the magnetic flux detection coil (referred to as VBA) is used for VB of equation (1), and the output of the magnetic field detection coil is measured for VH of equation (2). Using the output of the detection amplifier (denoted as VHA), these values were substituted into the equation (3) or (4) to calculate the magnetic permeability.

[発明が解決しようとする課題] 上述した従来方式でが低周波数では問題はないが周波数
が高くなるとVBとVBA、VHとVHA等は等しくなくなり、問
題となる。なぜならば検出コイルのインダクタンスと検
出アンプの入力端の浮遊容量によって、VBとVBA間、お
よび、VHとVHA間の伝達関数が周波数特性を持つためで
ある。即ち伝達関数をそれぞれGB、GHとし、試料を挿入
しないときの磁束検出コイルの出力を測定する検出アン
プの出力をVB0A、磁界検出コイルの出力を測定する検出
アンプの出力をVH0A、それぞれの伝達関数をGB0、GH0と
すると、 VBA=GB・VB (5) VHA=GH・VH (6) VB0A=GB0・VB0 (7) VH0A=GH0・VH0 (8) という関係があり、真の透磁率μは(4)〜(8)式か
ら μ=(SH/SB){(VBA/VHA)(GH/GB) ‐(VB0A/VH0A)(GH0/GB0)} (9) と計算しなければならない。この伝達関数を無視、すな
わち周波数特性が一定であると仮定してしまうと、透磁
率の計算結果に伝達関係の周波数特性が含まれることに
なる。すなわち高い周波数では伝達関係の周波数特性の
分だけ測定誤差が生ずる。また、(9)式中の伝達関係
GBは試料を挿入したときの磁束検出コイルのインダクタ
ンスに関係するから、測定試料の透磁率によって変化す
る。従って、測定誤差も透磁率によって変化する。
[Problems to be Solved by the Invention] In the above-mentioned conventional method, there is no problem at low frequencies, but if the frequency becomes higher, VB and VBA, VH and VHA, etc. become unequal, which is a problem. This is because the transfer functions between VB and VBA and between VH and VHA have frequency characteristics due to the inductance of the detection coil and the stray capacitance at the input end of the detection amplifier. That is, the transfer functions are respectively GB and GH, the output of the detection amplifier that measures the output of the magnetic flux detection coil when the sample is not inserted is VB0A, the output of the detection amplifier that measures the output of the magnetic field detection coil is VH0A, and the transfer function of each Let GB0 and GH0 be VBA = GB ・ VB (5) VHA = GH ・ VH (6) VB0A = GB0 ・ VB0 (7) VH0A = GH0 ・ VH0 (8), and the true permeability μ is From formulas (4) to (8), μ = (SH / SB) {(VBA / VHA) (GH / GB)-(VB0A / VH0A) (GH0 / GB0)} (9) must be calculated. If this transfer function is ignored, that is, if it is assumed that the frequency characteristic is constant, the frequency characteristic of the transfer relationship is included in the calculation result of the magnetic permeability. That is, at a high frequency, a measurement error occurs due to the frequency characteristics related to transmission. Also, the transmission relation in equation (9)
Since GB is related to the inductance of the magnetic flux detection coil when the sample is inserted, it changes depending on the magnetic permeability of the measured sample. Therefore, the measurement error also changes depending on the magnetic permeability.

従来技術では伝達関係を無視するか、あるいは第3図に
示すように、この測定誤差を減らすために切替えスイッ
チ15と検出アンプ16との間に、検出コイルと直列に抵抗
17を挿入することにより伝達関数をできるだけ一定にし
ようとしていた。しかし前述の方法では透磁率の計算結
果に伝達関数の周波数特性が含まれることになり、後述
の方法では抵抗を挿入することにより検出アンプにおけ
る出力信号レベルが低下してしまい、検出アンプのノイ
ズに対するS/Nが悪くなる。よって測定精度が悪くな
る。
In the prior art, the transfer relationship is ignored, or as shown in FIG. 3, in order to reduce this measurement error, a resistor is connected in series with the detection coil between the changeover switch 15 and the detection amplifier 16.
I tried to make the transfer function as constant as possible by inserting 17. However, in the method described above, the frequency characteristic of the transfer function is included in the calculation result of the magnetic permeability, and in the method described later, the output signal level in the detection amplifier is lowered by inserting the resistor, and the noise of the detection amplifier is reduced. S / N becomes worse. Therefore, the measurement accuracy becomes poor.

本発明の目的は、上記伝達関数の周波数特性に起因する
測定誤差をS/Nを悪化させることなく減小させる事であ
る。
An object of the present invention is to reduce the measurement error caused by the frequency characteristic of the transfer function without deteriorating the S / N.

[課題を解決するための手段] このような目的を達成するために、本発明測定装置は交
流信号源と、測定試料に交流磁界を印加するための交流
磁界発生用コイルと、該交流磁界発生用コイルによる磁
束および磁界をそれぞれ検出する磁束検出コイルおよび
磁界検出コイルと、前記磁束検出コイルおよび磁界検出
コイルの検出出力を増幅する増幅器と、前記磁束検出コ
イルおよび磁界検出コイルから前記増幅器までの伝達関
数を測定するためのトロイダル状高透磁率材料に捲回さ
れた利得測定コイルと、前記交流信号源からの信号を前
記交流磁界発生用コイルと前記利得測定コイルとに切替
え接続する第1の切り替え器と、前記磁束検出コイルお
よび前記磁界検出コイルを前記増幅器に切替え接続する
第2の切り替え器とを具え、前記第2の切り替え器と前
記増幅器とを結ぶ2本の配線の一方が前記トロイダル状
高透磁率材料の中空部を通って配線されていることを特
徴とする。
[Means for Solving the Problems] In order to achieve such an object, the measuring apparatus of the present invention includes an AC signal source, an AC magnetic field generation coil for applying an AC magnetic field to a measurement sample, and the AC magnetic field generation. Flux detection coil and magnetic field detection coil for respectively detecting the magnetic flux and magnetic field by the coil for use, amplifier for amplifying the detection output of the magnetic flux detection coil and magnetic field detection coil, and transmission from the magnetic flux detection coil and magnetic field detection coil to the amplifier A gain measuring coil wound around a toroidal high magnetic permeability material for measuring a function, and a first switch for switching and connecting a signal from the AC signal source to the AC magnetic field generating coil and the gain measuring coil. And a second switching device for switching and connecting the magnetic flux detecting coil and the magnetic field detecting coil to the amplifier. One of two wires connecting the switch and the amplifier is wired through the hollow portion of the toroidal high-permeability material.

本発明測定方法は利得測定用コイルが巻回され、かつ一
端が磁界検出用コイルと磁束検出用コイルに切替え可能
に接続され他端が増幅器に接続された配線が中空部を貫
通して配されているトロイダル状の高透磁率材料を準備
し;被測定材料を前記磁束検出用コイル内に挿入し、前
記利得測定用コイルに信号電流を流し、前記配線を前記
磁界検出用コイルに接続したときに磁界検出用コイルに
よって検出され前記増幅器によって増幅された出力をVH
1、前記配線の接続を前記磁束検出用コイルに切替えた
ときに磁束検出用コイルによって検出され前記増幅器に
よって増幅された出力をVB1としたときにVH1/VB1を伝達
関数の比GH/GBとし;被測定試料を前記磁束検出用コイ
ル内に挿入せず、前記利得測定用コイルに信号電流を流
し、前記配線を前記磁界検出用コイルに接続したときの
前記増幅器の出力と、前記配線を磁束検出用コイルに切
替え接続したときの前記増幅器の出力との比をGH0/GB0
とし;被測定試料を磁界検出用コイル内に挿入し、交流
磁界発生用コイルに信号電流を流し、前記配線を前記磁
界検出用コイルに接続したときに磁界検出用コイルによ
って検出され前記増幅器によって増幅された出力をVH、
前記配線の接続を前記磁束検出用コイルに切替えたとき
に磁束検出用コイルによって検出され前記増幅器によっ
て増幅された出力をVBとしたときにVB/VHをVBA/VHAと
し;被測定試料を前記磁束検出用コイル内に挿入せず、
前記交流磁界検出用コイルの信号電流を流し、前記配線
を前記磁束検出用コイルに接続したときの前記増幅器の
出力と、前記配線を磁界検出用コイルに切替え接続した
ときの前記増幅器の出力との比をVB0A/VH0Aとし;次式 μ=(SH/SB){(VBA/VHA)(GH/GB) −(VB0A/VH0A)(GH0/GB0)} ただし、μは透磁率、SBが被測定試料の磁束検出コイル
面を横切る断面積、SHは磁界検出コイルの断面積、 から透磁率を求めることを特徴とする。
In the measuring method of the present invention, a gain measuring coil is wound, and a wire having one end switchably connected to the magnetic field detecting coil and the magnetic flux detecting coil and the other end connected to the amplifier is arranged through the hollow portion. When a toroidal high magnetic permeability material is prepared; the material to be measured is inserted into the magnetic flux detecting coil, a signal current is passed through the gain measuring coil, and the wiring is connected to the magnetic field detecting coil. The output detected by the magnetic field detection coil and amplified by the amplifier is
1, VH1 / VB1 is the transfer function ratio GH / GB when the output detected by the magnetic flux detection coil and amplified by the amplifier when the connection of the wiring is switched to the magnetic flux detection coil is VB1; The sample to be measured is not inserted into the magnetic flux detection coil, a signal current is passed through the gain measurement coil, the output of the amplifier when the wiring is connected to the magnetic field detection coil, and the wiring is magnetic flux detected. GH0 / GB0 is the ratio with the output of the amplifier when it is switched and connected to the coil for
A sample to be measured is inserted into a magnetic field detection coil, a signal current is passed through the AC magnetic field generation coil, and when the wiring is connected to the magnetic field detection coil, it is detected by the magnetic field detection coil and amplified by the amplifier. Output VH,
VB / VH is VBA / VHA when the output detected by the magnetic flux detection coil and amplified by the amplifier is VB when the connection of the wiring is switched to the magnetic flux detection coil; Without inserting into the detection coil,
Between the output of the amplifier when the signal current of the AC magnetic field detection coil is passed and the wiring is connected to the magnetic flux detection coil, and the output of the amplifier when the wiring is switched and connected to the magnetic field detection coil. The ratio is VB0A / VH0A; the following formula μ = (SH / SB) {(VBA / VHA) (GH / GB)-(VB0A / VH0A) (GH0 / GB0)} where μ is the magnetic permeability and SB is the measured value. The magnetic permeability is obtained from the cross-sectional area of the sample that crosses the magnetic flux detection coil surface, SH is the cross-sectional area of the magnetic field detection coil.

[作用] 本発明によれば、測定回路中に利得測定用のコイルを挿
入するという簡単な構成により、簡単な操作で伝達関数
を測定でき、それによって透磁率の値を補正することに
よって測定誤差を低下することができる。
[Operation] According to the present invention, the transfer function can be measured by a simple operation by inserting the gain measurement coil in the measurement circuit, and thereby the measurement error is corrected by correcting the permeability value. Can be reduced.

[実施例] 以下に本発明の実施例について図面を参照して説明す
る。
Embodiments Embodiments of the present invention will be described below with reference to the drawings.

本発明による透磁率測定装置の信号検出部を示す回路図
である第1図を参照すると、本発明の実施例は、交流磁
界発生用コイル1と、磁界検出コイル2と、磁界検出コ
イル3と、検出コイル切り替えスイッチ4と、検出アン
プ5と、トロイダル状フェライト6と、フェライト6に
複数回巻いた利得測定用コイル7と、信号電源切り替え
スイッチ8からなる。入力端子9には、図示しない交流
信号源が接続されている。なお第1図では便宜上、磁束
検出コイル2と、磁界検出コイル3は実際と異なる配置
を示してある。
Referring to FIG. 1, which is a circuit diagram showing a signal detecting unit of a magnetic permeability measuring apparatus according to the present invention, an embodiment of the present invention is characterized by an AC magnetic field generating coil 1, a magnetic field detecting coil 2, and a magnetic field detecting coil 3. A detection coil changeover switch 4, a detection amplifier 5, a toroidal ferrite 6, a gain measurement coil 7 wound around the ferrite 6 a plurality of times, and a signal power supply changeover switch 8. An AC signal source (not shown) is connected to the input terminal 9. Note that, in FIG. 1, for convenience, the magnetic flux detection coil 2 and the magnetic field detection coil 3 are shown in an arrangement different from the actual arrangement.

次に本発明による測定手順を第1図を参照して説明す
る。
Next, the measurement procedure according to the present invention will be described with reference to FIG.

まず(9)式の中の伝達関数の比GB/GH、およびGB0/GH0
の測定法を説明する。
First, the transfer function ratios GB / GH and GB0 / GH0 in equation (9)
The measurement method of is explained.

測定試料を磁束検出コイル2に挿入し、信号源切り替え
スイッチ8を利得測定用コイル7側に倒し、検出コイル
切り替えスイッチ4を磁界検出コイル3側に倒し、入力
端子9に信号を流して、検出アンプ5の出力端子10の出
力を測定し、これをVH1とする。次に検出コイル切り替
えスイッチ4を磁束検出コイル2側に倒し、その他はVH
1を測定した時と同じにして出力端子10の出力を測定
し、これをVB1とする。VB1/VH1を伝達関数の比GB/GHと
する。また、測定試料を磁束検出コイル2に挿入しない
で同様の測定を行い、検出アンプ5を磁束検出コイル2
に接続した時および磁界検出コイル3に接続した時の出
力端子10の出力の比をGB0/GH0とする。
The measurement sample is inserted into the magnetic flux detection coil 2, the signal source changeover switch 8 is tilted to the gain measurement coil 7 side, the detection coil changeover switch 4 is tilted to the magnetic field detection coil 3 side, and a signal is supplied to the input terminal 9 for detection. The output of the output terminal 10 of the amplifier 5 is measured, and this is VH1. Next, turn down the detection coil changeover switch 4 to the magnetic flux detection coil 2 side, and set the others to VH.
Measure the output of output terminal 10 in the same way as when 1 was measured, and set this as VB1. Let VB1 / VH1 be the transfer function ratio GB / GH. In addition, the same measurement is performed without inserting the measurement sample into the magnetic flux detection coil 2, and the detection amplifier 5 is set to
The output ratio of the output terminal 10 when connected to and to the magnetic field detection coil 3 is GB0 / GH0.

次に(9)式のVBA/VHAおよびVB0A/VH0Aの測定法につい
て説明する。
Next, the method for measuring VBA / VHA and VB0A / VH0A in the formula (9) will be described.

測定試料を磁束検出コイル2に挿入し、信号源切り替え
スイッチ8を交流磁界発生用コイル1側に倒し、検出コ
イル切り替えスイッチ4を磁界検出コイル3側に倒し、
入力端子9に信号を流して、出力端子10の出力を測定
し、これをVHとする。次に検出コイル切り替えスイッチ
4を磁束検出コイル2に倒し、その他はVHを測定した時
と同じにして出力端子10の出力を測定し、これをVBとす
る。VB/VHをVBA/VHAとする。また、測定試料を磁束検出
コイル2に挿入しないで同様の測定を行い、検出アンプ
5を磁束検出コイル2に接続した時および磁界検出コイ
ル3に接続した時の出力端子10の出力の比をVB0A/VH0A
とする。
Insert the measurement sample into the magnetic flux detection coil 2, tilt the signal source changeover switch 8 to the AC magnetic field generation coil 1 side, and tilt the detection coil changeover switch 4 to the magnetic field detection coil 3 side,
A signal is sent to the input terminal 9, the output of the output terminal 10 is measured, and this is VH. Next, the detection coil changeover switch 4 is tilted to the magnetic flux detection coil 2, and otherwise the output of the output terminal 10 is measured in the same manner as when measuring VH, and this is designated as VB. Let VB / VH be VBA / VHA. In addition, the same measurement is performed without inserting the measurement sample into the magnetic flux detection coil 2, and the output ratio of the output terminal 10 when the detection amplifier 5 is connected to the magnetic flux detection coil 2 and the magnetic field detection coil 3 is VB0A. / VH0A
And

このようにして得られたGB/GH,GB0/GH0,VBA/VHAおよびV
B0A/VH0Aを(9)式に代入して透磁率を求める。
GB / GH, GB0 / GH0, VBA / VHA and V thus obtained
Substituting B0A / VH0A into the equation (9), the magnetic permeability is obtained.

次に、VH1とVB1を測定する事により伝達関数の比が測定
できる理由について第4図に示した等価回路を用いて説
明する。
Next, the reason why the ratio of transfer functions can be measured by measuring VH1 and VB1 will be described using the equivalent circuit shown in FIG.

利得検出コイル7の巻数をnとすると、利得検出コイル
7とトロイダル状フェライト6の中空部を通した配線と
は、n対1のトランスを形成する。トランスが理想的で
あれば、利得検出コイル7に入力信号eiを流すとコア内
を通っている配線にei/nなる起電力が生じ、そのインピ
ーダンスZtは、利得検出コイル7から信号発生器側をみ
たインピーダンスをZsとすると、Zt=Zs/n2である。そ
こで、Ztが検出コイルのインピーダンス(ZC)や検出ア
ンプのインピーダンス(ZA)に比べ、十分小さくなる
(Zt<<ZC、かつZt<<ZA)ようにnを設計すれば、内
部インピーダンスがほぼ0の電圧源が配線内に発生する
とみなしてよい。実際にできるトランスは理想的ではな
く、配線に発生する起電力もk・eiとなる。ここでkは
コイル7の巻数nの他、巻き方やトロイダル状材料6の
透磁率等、コイル自身の特性によって決まるもので、こ
れらの特性に起因する周波数特性を有するようになる。
しかし、nを前述のように設計すればインピーダンスは
ほぼ0とみなせ、kは検出コイルや検出アンプのインピ
ーダンスには無関係の係数とみなせる。測定精度の点か
ら、巻数nは10以上が望ましい。
When the number of turns of the gain detection coil 7 is n, the gain detection coil 7 and the wiring passing through the hollow portion of the toroidal ferrite 6 form an n: 1 transformer. If the transformer is ideal, when an input signal ei is passed through the gain detection coil 7, an electromotive force of ei / n is generated in the wiring passing through the core, and its impedance Zt is from the gain detection coil 7 to the signal generator side. Let Zs be the impedance seen by, then Zt = Zs / n 2 . Therefore, if n is designed so that Zt is sufficiently smaller (Zt << ZC, and Zt << ZA) than the impedance (ZC) of the detection coil or the impedance (ZA) of the detection amplifier, the internal impedance is almost zero. May be considered to occur in the wiring. A practical transformer is not ideal, and the electromotive force generated in the wiring is k · ei. Here, k is determined by the characteristics of the coil itself, such as the number of turns n of the coil 7, the winding method, the magnetic permeability of the toroidal material 6, and the like, and has frequency characteristics due to these characteristics.
However, if n is designed as described above, the impedance can be regarded as almost 0, and k can be regarded as a coefficient irrelevant to the impedance of the detection coil or the detection amplifier. From the viewpoint of measurement accuracy, the number of turns n is preferably 10 or more.

検出アンプにおける電圧eoは eo=ZA/(ZC+ZA)・k・ei (10) である。一方、検出コイルから検出アンプまでの伝達関
数Gは G=ZA/(ZC+ZA) (11) であるから、磁束検出コイルのインピーダンスをZB、磁
界検出コイルのインピーダンスをZHとすると、 GB=ZA/(ZB+ZA) (12) GH=ZA/(ZH+ZA) (13) である。また上述の測定手順によれば(10)式により VB1=ZA/(ZB+ZA)・k・ei (14) VH1=ZA/(ZH+ZA)・k・ei (15) となる関係が成立する。(12)〜(15)より VB1/VH1=GB/GH (16) となり、VH1とVB1を測定することにより伝達関数の比が
測定できる。
The voltage eo in the detection amplifier is eo = ZA / (ZC + ZA) ・ k ・ ei (10). On the other hand, the transfer function G from the detection coil to the detection amplifier is G = ZA / (ZC + ZA) (11), so if the impedance of the magnetic flux detection coil is ZB and the impedance of the magnetic field detection coil is ZH, GB = ZA / ( ZB + ZA) (12) GH = ZA / (ZH + ZA) (13). According to the above measurement procedure, the relationship of VB1 = ZA / (ZB + ZA) · k · ei (14) VH1 = ZA / (ZH + ZA) · k · ei (15) is established by the equation (10). From (12) to (15), VB1 / VH1 = GB / GH (16), and the transfer function ratio can be measured by measuring VH1 and VB1.

本発明による透磁率測定結果を従来法による結果と比較
して説明する。
The magnetic permeability measurement result according to the present invention will be described in comparison with the result by the conventional method.

第5図は厚さ0.2μmの薄膜の透磁率を伝達関数を考慮
せずに計算するという従来技術の手法で測定したもので
ある。横軸は周波数で500kHzから120MHzまで対数目盛り
で表示している。縦軸は透磁率で10から5000まで対数目
盛りで表示している。実線は透磁率の有効分と無効分、
点線は絶対値を表わしている。
FIG. 5 shows the measurement of the magnetic permeability of a thin film having a thickness of 0.2 μm by the conventional technique of calculating without considering the transfer function. The horizontal axis shows the frequency from 500 kHz to 120 MHz on a logarithmic scale. The vertical axis is the magnetic permeability, which is displayed on a logarithmic scale from 10 to 5000. The solid line is the effective and ineffective part of permeability,
The dotted line represents the absolute value.

第6図は第5図の従来法による測定に用いた薄膜と同じ
ものを本発明による手法で測定したものである。
FIG. 6 shows the same thin film used for the measurement by the conventional method of FIG. 5 measured by the method of the present invention.

第5図と第6図を比較すると、約50MHzまでは殆ど差は
ないが、それ以上の周波数では第5図では透磁率の絶対
値が増加していくのに対し、第6図では減少していくの
が分かる。第5図に示した従来法では、伝達関数を考慮
しないためにこのような測定結果になったと考えられ
る。これに対し、本発明手法による測定では従来技術の
ような結果にはならず、従来技術よりも測定誤差の少な
い結果が得られているということができる。
Comparing Fig. 5 and Fig. 6, there is almost no difference up to about 50MHz, but at higher frequencies, the absolute value of magnetic permeability increases in Fig. 5, whereas it decreases in Fig. 6. You can see it going. It is considered that such a measurement result is obtained because the transfer function is not taken into consideration in the conventional method shown in FIG. On the other hand, it can be said that the measurement by the method of the present invention does not give the result as in the conventional technique, and the result with less measurement error than the conventional technique is obtained.

[発明の効果] 以上説明したように、本発明においては、伝達関数を考
慮して透磁率を測定するので、従来技術に比べ、正しく
透磁率を評価することができる。
[Effects of the Invention] As described above, in the present invention, since the magnetic permeability is measured in consideration of the transfer function, the magnetic permeability can be evaluated correctly as compared with the prior art.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による透磁率測定装置の実施例の構成を
示す図、 第2図は透磁率の測定原理を示した図、 第3図は従来技術による透磁率測定器の構成例を示す
図、 第4図は測定器の等価回路の一部を示す図、 第5図は従来技術による透磁率の測定結果例を示す図、 第6図は本発明による透磁率測定結果例を示す図であ
る。 1…交流磁界発生用コイル、2…磁束検出コイル、3…
磁界検出コイル、4…検出コイル切り替えスイッチ、5
…検出アンプ、6…トロイダル状高透磁率材料、7…利
得測定コイル、8…信号源切り替えスイッチ、9…入力
端子、10…出力端子、11…磁束検出コイル、12…外部磁
界、13…測定試料、14…磁界検出コイル、15…切り替え
スイッチ、16…検出アンプ、17…抵抗。
FIG. 1 is a diagram showing a configuration of an embodiment of a magnetic permeability measuring device according to the present invention, FIG. 2 is a diagram showing a principle of measuring magnetic permeability, and FIG. 3 is a structural example of a magnetic permeability measuring device according to a conventional technique. Fig. 4 is a diagram showing a part of an equivalent circuit of the measuring device, Fig. 5 is a diagram showing an example of the result of measuring the permeability according to the prior art, and Fig. 6 is a diagram showing an example of the result of the permeability according to the present invention. Is. 1 ... AC magnetic field generating coil, 2 ... Magnetic flux detecting coil, 3 ...
Magnetic field detection coil, 4 ... Detection coil changeover switch, 5
... detection amplifier, 6 ... toroidal high magnetic permeability material, 7 ... gain measurement coil, 8 ... signal source selector switch, 9 ... input terminal, 10 ... output terminal, 11 ... magnetic flux detection coil, 12 ... external magnetic field, 13 ... measurement Sample, 14 ... Magnetic field detection coil, 15 ... Changeover switch, 16 ... Detection amplifier, 17 ... Resistance.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】交流信号源と、測定試料に交流磁界を印加
するための交流磁界発生用コイルと、該交流磁界発生用
コイルによる磁束および磁界をそれぞれ検出する磁束検
出コイルおよび磁界検出コイルと、前記磁束検出コイル
および磁界検出コイルの検出出力を増幅する増幅器と、
前記磁束検出コイルおよび磁界検出コイルから前記増幅
器までの伝達関数を測定するためのトロイダル状高透磁
率材料に捲回された利得測定コイルと、前記交流信号源
からの信号を前記交流磁界発生用コイルと前記利得測定
コイルとに切替え接続する第1の切り替え器と、前記磁
束検出コイルおよび前記磁界検出コイルを前記増幅器に
切替え接続する第2の切り替え器とを具え、前記第2の
切り替え器と前記増幅器とを結ぶ2本の配線の一方が前
記トロイダル状高透磁率材料の中空部を通って配線され
ていることを特徴とする透磁率測定装置。
1. An AC signal source, an AC magnetic field generating coil for applying an AC magnetic field to a measurement sample, and a magnetic flux detecting coil and a magnetic field detecting coil for respectively detecting a magnetic flux and a magnetic field by the AC magnetic field generating coil, An amplifier for amplifying the detection output of the magnetic flux detection coil and the magnetic field detection coil,
A gain measuring coil wound around a toroidal high-permeability material for measuring a transfer function from the magnetic flux detecting coil and the magnetic field detecting coil to the amplifier, and the AC magnetic field generating coil for generating a signal from the AC signal source. And a second switcher for switching and connecting the magnetic flux detection coil and the magnetic field detection coil to the amplifier, and a second switcher for switching between the gain measuring coil and the gain measuring coil. A magnetic permeability measuring device, wherein one of two wirings connecting to an amplifier is wired through the hollow portion of the toroidal high magnetic permeability material.
【請求項2】前記利得検出コイルの巻数をn、前記交流
信号発生源、磁束検出コイルおよび磁界検出コイルのイ
ンピーダンスをそれぞれZ1,ZBおよびZHとした時、n2>Z
1/ZH、かつ、n2>Z1/ZBであることを特徴とする請求項
1に記載の透磁率測定装置。
2. When the number of turns of the gain detection coil is n and the impedances of the AC signal generation source, the magnetic flux detection coil and the magnetic field detection coil are Z1, ZB and ZH, respectively, n 2 > Z
The magnetic permeability measuring apparatus according to claim 1, wherein 1 / ZH and n 2 > Z1 / ZB.
【請求項3】前記利得検出コイルの巻数が10以上である
ことを特徴とする請求項1に記載の透磁率測定装置。
3. The magnetic permeability measuring device according to claim 1, wherein the number of turns of the gain detecting coil is 10 or more.
【請求項4】利得測定用コイルが巻回され、かつ一端が
磁界検出用コイルと磁束検出用コイルに切替え可能に接
続され他端が増幅器に接続された配線が中空部を貫通し
て配されているトロイダル状の高透磁率材料を準備し; 被測定試料を前記磁束検出用コイル内に挿入し、前記利
得測定用コイルに信号電流を流し、前記配線を前記磁界
検出用コイルに接続したときに磁界検出用コイルによっ
て検出され前記増幅器によって増幅された出力をVH1、
前記配線の接続を前記磁束検出用コイルに切替えたとき
に磁束検出用コイルによって検出され前記増幅器によっ
て増幅された出力をVB1としたときにVH1/VB1を伝達関数
の比GH/GBとし; 被測定試料を前記磁束検出用コイル内に挿入せず、前記
利得測定用コイルに信号電流を流し、前記配線を前記磁
界検出用コイルに接続したときの前記増幅器の出力と、
前記配線を磁束検出用コイルに切替え接続したときの前
記増幅器の出力との比をGH0/GB0とし; 被測定試料を磁界検出用コイル内に挿入し、交流磁界発
生用コイルに信号電流を流し、前記配線を前記磁界検出
用コイルに接続したときに磁界検出用コイルによって検
出され前記増幅器によって増幅された出力をVH、前記配
線の接続を前記磁束検出用コイルに切替えたときに磁束
検出用コイルによって検出され前記増幅器によって増幅
された出力をVBとしたときにVB/VHをVBA/VHAとし; 被測定試料を前記磁束検出用コイル内に挿入せず、前記
交流磁界発生用コイルに信号電流を流し、前記配線を前
記磁束検出用コイルに接続したときの前記増幅器の出力
と、前記配線を磁界検出用コイルに切替え接続したとき
の前記増幅器の出力との比をVB0A/VH0Aとし;次式 μ=(SH/SB){(VBA/VHA)(GH/GB) −(VB0A/VH0A)(GH0/GB0)} ただし、μは透磁率、SBが被測定試料の磁束検出コイル
面を横切る断面積、SHは磁界検出コイルの断面積、 から透磁率を求めることを特徴とする透磁率測定方法。
4. A wire around which a gain measuring coil is wound, one end of which is switchably connected to a magnetic field detecting coil and a magnetic flux detecting coil, and the other end of which is connected to an amplifier is arranged through the hollow portion. When a toroidal high magnetic permeability material is prepared; a sample to be measured is inserted into the magnetic flux detecting coil, a signal current is passed through the gain measuring coil, and the wiring is connected to the magnetic field detecting coil. The output detected by the magnetic field detection coil and amplified by the amplifier is VH1,
VH1 / VB1 is the transfer function ratio GH / GB, where VB1 is the output detected by the magnetic flux detection coil and amplified by the amplifier when the connection of the wiring is switched to the magnetic flux detection coil; A sample is not inserted into the magnetic flux detecting coil, a signal current is passed through the gain measuring coil, and the output of the amplifier when the wiring is connected to the magnetic field detecting coil,
The ratio of the output of the amplifier when the wiring is switched and connected to the magnetic flux detection coil is GH0 / GB0; the sample to be measured is inserted into the magnetic field detection coil, and a signal current is passed through the AC magnetic field generation coil, When the wiring is connected to the magnetic field detection coil, the output detected by the magnetic field detection coil and amplified by the amplifier is VH, and when the connection of the wiring is switched to the magnetic flux detection coil, the magnetic flux detection coil is used. When the output detected and amplified by the amplifier is VB, VB / VH is VBA / VHA; the sample to be measured is not inserted into the magnetic flux detection coil, and a signal current is passed through the AC magnetic field generation coil. , The ratio of the output of the amplifier when the wiring is connected to the magnetic flux detecting coil and the output of the amplifier when the wiring is switched and connected to the magnetic field detecting coil is VB0A / VH0A; μ = (SH / SB) {(VBA / VHA) (GH / GB)-(VB0A / VH0A) (GH0 / GB0)} where μ is the magnetic permeability and SB is the cut across the magnetic flux detection coil surface of the DUT. Area, SH is the cross-sectional area of the magnetic field detection coil, and the permeability is calculated from
JP2121101A 1990-05-14 1990-05-14 Permeability measuring device and measuring method Expired - Lifetime JPH0727016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2121101A JPH0727016B2 (en) 1990-05-14 1990-05-14 Permeability measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2121101A JPH0727016B2 (en) 1990-05-14 1990-05-14 Permeability measuring device and measuring method

Publications (2)

Publication Number Publication Date
JPH0419584A JPH0419584A (en) 1992-01-23
JPH0727016B2 true JPH0727016B2 (en) 1995-03-29

Family

ID=14802904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2121101A Expired - Lifetime JPH0727016B2 (en) 1990-05-14 1990-05-14 Permeability measuring device and measuring method

Country Status (1)

Country Link
JP (1) JPH0727016B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101833181B (en) * 2010-03-19 2012-11-14 福建华冠光电有限公司 Method for retrieving image of liquid crystal panel installing equipment
CN103941201A (en) * 2014-04-24 2014-07-23 江苏理工学院 Magnetic parameter measuring method for magnetic material
JP7052261B2 (en) * 2017-09-04 2022-04-12 日本製鉄株式会社 Magnetic flux density detection coil and magnetic characteristic measuring instrument

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157871A (en) * 1984-08-30 1986-03-24 Sony Corp Measuring instrument for magnetic permeability

Also Published As

Publication number Publication date
JPH0419584A (en) 1992-01-23

Similar Documents

Publication Publication Date Title
JP2829521B2 (en) Current detector
EP0708912B1 (en) Methods and apparatus for determining a displacement of an object
JP3445362B2 (en) AC current sensor
US4430615A (en) Reflection type probes for eddy current testing instruments
US3260932A (en) Magnet-field measuring device with a galvanomagnetic resistance probe
US3464002A (en) Low q test coils for magnetic field sensing
JPH0720172A (en) Measuring apparatus for circuit constant and material characteristics
JPS5832114A (en) Inducing displacement transducer
JPH0727016B2 (en) Permeability measuring device and measuring method
US3708749A (en) Current transformer
US4050013A (en) Magnetic field probe which measures switching current of magnetic element at moment the element switches as measure of external field
JP2000121307A (en) Apparatus for measuring quantity of inductive displacement
JPH027031B2 (en)
US4490671A (en) Apparatus and method for determining the number of turns on a sample coil
US10101179B2 (en) Electromagnetic position tracking system
JP2729903B2 (en) Displacement measuring device
US2614151A (en) Means for determining the resistance of insulated joints
JPS6230562B2 (en)
JPH07234102A (en) Displacement measuring apparatus
JPH0261573A (en) Correction of parasitic capacitance or the like in iron loss measuring system
JP2665912B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
WO2024135413A1 (en) Electric current sensor and measurement device
JPS631253Y2 (en)
JPS631254Y2 (en)
JP2612724B2 (en) Insulation resistance measurement method