JPS631253Y2 - - Google Patents

Info

Publication number
JPS631253Y2
JPS631253Y2 JP16252179U JP16252179U JPS631253Y2 JP S631253 Y2 JPS631253 Y2 JP S631253Y2 JP 16252179 U JP16252179 U JP 16252179U JP 16252179 U JP16252179 U JP 16252179U JP S631253 Y2 JPS631253 Y2 JP S631253Y2
Authority
JP
Japan
Prior art keywords
voltage
sample
measured
current
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16252179U
Other languages
Japanese (ja)
Other versions
JPS5679880U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16252179U priority Critical patent/JPS631253Y2/ja
Publication of JPS5679880U publication Critical patent/JPS5679880U/ja
Application granted granted Critical
Publication of JPS631253Y2 publication Critical patent/JPS631253Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【考案の詳細な説明】 この考案は磁気材料の交流信号に対する磁気特
性を測定する磁気特性測定装置に関する。
[Detailed Description of the Invention] This invention relates to a magnetic property measuring device for measuring the magnetic properties of a magnetic material in response to an alternating current signal.

周知のように磁性材料の交流信号に対する磁気
特性、即ち、B−H特性あるいはM−H特性を測
定する装置が種々開発されている。第1図は従来
のB−H特性測定装置の構成を示すもので、11
は正弦波発振器、12は増幅器、13は電流電圧
変換抵抗、14は被測定試料の磁心入りコイル、
15,16は電圧増幅器、17は積分器、18,
19,20は出力端子であり、例えばオシロスコ
ープ等の表示器のX,Y軸および接地入力端にそ
れぞれ接続される。
As is well known, various devices have been developed for measuring the magnetic properties of magnetic materials in response to alternating current signals, that is, the B-H characteristics or the M-H characteristics. Figure 1 shows the configuration of a conventional B-H characteristic measuring device.
is a sine wave oscillator, 12 is an amplifier, 13 is a current-voltage conversion resistor, 14 is a coil containing a magnetic core of the sample to be measured,
15, 16 are voltage amplifiers, 17 is an integrator, 18,
Reference numerals 19 and 20 are output terminals, which are connected, for example, to the X- and Y-axes and ground input terminals of a display such as an oscilloscope, respectively.

今、前記試料コイル14の1次(励磁)巻線
L1、2次(検出)巻線L2の巻数をそれぞれN1
N2、磁心の平均磁路長をl(cm)とし、励磁コイ
1に周波数f(Hz)、尖頭値im(A)なる励磁電流i1 i1=im sin2πft ……(1) を供給すると、磁化力H(Oe)は H=4π/10・N1/l・im sin(2πft) ……(2) である。
Now, the primary (excitation) winding of the sample coil 14
L 1 , the number of turns of the secondary (detection) winding L 2 is N 1 ,
N 2 , the average magnetic path length of the magnetic core is l (cm), and an excitation current i 1 i 1 = im sin2πft ……( 1 ) with frequency f (Hz) and peak value im (A) is supplied to excitation coil 1. Then, the magnetizing force H (Oe) is H=4π/10·N 1 /l·im sin(2πft) ...(2).

一方、この磁化力による磁心内の磁束密度をB
(gauss)、磁心の断面積をS(cm2)とすると、検
出コイルN2と鎖交する磁束φ(maxwell)は、磁
束密度Bの尖頭値をBmとすると、 φ=S・B =S・Bm sin(2πft) ……(3) であるから、検出コイルN2に誘起される電圧
e2(V)は e2=−N2(dφ/dt)×10-8 =−2πfN2SBmCOS(2πft)×10-8……(4) これを時定数τ=CRとして積分すると、その
積分結果e0(V)は、 e0=1/CR∫t Oe2(t)dt =−N2S/CRBm sin(2πft)×10-8 =en sin(2πft) ……(5) である。従つて、 Bm=−CR/N2Oen×108(gauss) ……(6) となる。即ち、第1図に示す装置では、励磁コ
イルL1に励磁電流i1を供給して磁化力Hを発生さ
せ、検出コイルL2には磁化力Hによる磁心内の
磁束密度Bの時間変化(dB/dt)に比例した起
電力e2を誘起させてこれを積分回路17に加える
ことによつて磁束密度Bに比例した電圧e0を得る
ものである。したがつて、例えば抵抗13によつ
て励磁電流i1に比例した電圧e1を得る。これをオ
シロスコープのX端子に、また、e0をY端子に供
給すると画面上にB−H曲線が描かれる。
On the other hand, the magnetic flux density inside the magnetic core due to this magnetizing force is B
(gauss), and the cross-sectional area of the magnetic core is S (cm 2 ). The magnetic flux φ (maxwell) interlinking with the detection coil N 2 is as follows. If the peak value of the magnetic flux density B is Bm, φ = S・B = S・Bm sin(2πft) ……(3) Therefore, the voltage induced in the detection coil N 2
e 2 (V) is e 2 = −N 2 (dφ/dt) × 10 -8 = −2πfN 2 SBmCOS (2πft) × 10 -8 ... (4) Integrating this with the time constant τ = CR, the The integration result e 0 (V) is: e 0 = 1/CR∫ t O e 2 (t) dt = −N 2 S/CRBm sin (2πft) × 10 -8 = e n sin (2πft) ……(5 ). Therefore, Bm=-CR/N 2 Oe n ×10 8 (gauss) ...(6). That is, in the device shown in FIG. 1, an exciting current i 1 is supplied to an exciting coil L 1 to generate a magnetizing force H, and a detection coil L 2 is used to record the time change ( By inducing an electromotive force e 2 proportional to dB/dt) and applying it to the integrating circuit 17, a voltage e 0 proportional to the magnetic flux density B is obtained. Therefore, for example, the resistor 13 provides a voltage e 1 proportional to the excitation current i 1 . When this is supplied to the X terminal of the oscilloscope and e 0 is supplied to the Y terminal, a B-H curve is drawn on the screen.

しかし、上記構成の装置では試料に励磁コイル
L1および検出コイルL2の両コイルを設けねばな
らない。したがつて、励磁コイルのみが施されて
完成された例えば磁気ヘツド等の測定は不可能で
ある。また、このような磁気ヘツドでは還状試料
で測定された特性と、完成されたものとは加工に
伴なう磁気特性の劣化等を生ずるものである。こ
のため、任意形状の磁心による測定を行ない得る
ことが必要である。
However, in the device with the above configuration, the excitation coil is attached to the sample.
Both coils L 1 and detection coil L 2 must be provided. Therefore, it is impossible to measure, for example, a magnetic head that has been completed with only an excitation coil. Further, in such a magnetic head, the characteristics measured with a circular sample and the completed one are such that the magnetic characteristics deteriorate due to processing. Therefore, it is necessary to be able to perform measurements using magnetic cores of arbitrary shapes.

そこで、励磁コイルのみで、且つ任意形状の磁
心の測定を行ない得る装置が考えられている。こ
の装置は以下に説明する原理に基づいている。
Therefore, an apparatus is being considered that can measure a magnetic core of any shape using only an excitation coil. This device is based on the principle explained below.

今、任意形状の磁心に巻回された励磁コイルの
両端電圧e(t)は、印加電流をi(t)、コイル
の抵抗をr、巻数をNとすると、 e(t)=i(t)・r+N・dφ/dt×10-8……(7) となる。ここで、磁心の断面積をS(cm2)とす
ると、φ=B・Sであり、また、磁束密度Bはコ
イルの磁化力をH、磁心の磁化をM、真空の比透
磁率をμ0とすると、 B=μ0H+4πM ……(8) であるから、前記(7)式は e(t)=i(t)r+NSdB/dt×10-8 ……(9) =i(t)r+μ0NSdH/dt×10-8 +4πNSdM/dt×10-8 ……(10) である。したがつて、(9)式よりer=i(t)r
を、あるいは(10)式より er+eh=i(t)r+μ0NS dH/dt×10-8 に相当する電圧をそれぞれ前記e(t)に逆極
性で加えると、前者の場合、磁束密度Bの時間変
化(dB/dt)に、後者の場合、さらに磁化Mの
時間変化(dM/dt)に比例した電圧が得られ、
これを積分することによつて、B−H曲線あるい
はM−H曲線を得ることができる。
Now, the voltage e(t) across the excitation coil wound around a magnetic core of arbitrary shape is expressed as e(t)=i(t), where the applied current is i(t), the resistance of the coil is r, and the number of turns is N. )・r+N・dφ/dt×10 -8 ...(7) Here, if the cross-sectional area of the magnetic core is S (cm 2 ), φ=B・S, and the magnetic flux density B is the magnetizing force of the coil is H, the magnetization of the magnetic core is M, and the relative permeability of the vacuum is μ. 0 , B=μ 0 H + 4πM ...(8) Therefore, the above equation (7) is e(t)=i(t)r+NSdB/dt×10 -8 ...(9) = i(t) r+μ 0 NSdH/dt×10 −8 +4πNSdM/dt×10 −8 ……(10). Therefore, from equation (9), e r = i(t)r
or, from equation (10), if a voltage corresponding to e r + e h = i (t) r + μ 0 NS dH/dt×10 -8 is applied to e(t) with opposite polarity, in the former case, the magnetic flux In the latter case, a voltage proportional to the time change (dB/dt) of the density B and, in the latter case, to the time change (dM/dt) of the magnetization M is obtained.
By integrating this, a BH curve or an MH curve can be obtained.

第2図、第3図はこの原理を用いたB−H曲線
測定装置である。
FIGS. 2 and 3 show a BH curve measuring device using this principle.

第2図に示す構成において、先ず、スイツチ2
1を直流電源22側とし、直流電流を増幅器2
3、電流電圧変換抵抗24を介して被測定試料2
5に供給する。また、前記抵抗24の両端電圧は
電圧増幅器26、可変抵抗27を介して前記抵抗
24の一端部出力電圧とともに差動増幅器28に
供給する。そして、可変抵抗27を調整して差動
増幅器28の出力電圧を零とする。この状態にお
いて、スイツチ21を切換え、正弦波発振器29
より交流電流を供給する。すると、差動増幅器2
8の出力電圧はインダクタンス分、即ち、前記(9)
式の右辺第2項のdB/dtに比例した電圧として
得られる。これを積分器30によつて磁心の磁束
密度Bに比例した電圧に変換して出力端子31よ
り例えばオシロスコープのY軸に入力し、また、
印加電流に比例した電圧を電圧増幅器26の出力
から得て出力端子32を介してオシロスコープの
X軸に供給すると画面上にB−H曲線が描かれ
る。尚、33は接地出力端子である。
In the configuration shown in FIG. 2, first, switch 2
1 to the DC power supply 22 side, and the DC current to the amplifier 2
3. Sample to be measured 2 via current-voltage conversion resistor 24
Supply to 5. Further, the voltage across the resistor 24 is supplied to a differential amplifier 28 together with the output voltage at one end of the resistor 24 via a voltage amplifier 26 and a variable resistor 27. Then, the variable resistor 27 is adjusted to make the output voltage of the differential amplifier 28 zero. In this state, the switch 21 is switched and the sine wave oscillator 29
supply more alternating current. Then, differential amplifier 2
The output voltage of 8 is the inductance component, that is, the above (9)
It is obtained as a voltage proportional to dB/dt of the second term on the right side of the equation. This is converted into a voltage proportional to the magnetic flux density B of the magnetic core by an integrator 30, and inputted from an output terminal 31 to the Y axis of an oscilloscope, for example, and
When a voltage proportional to the applied current is obtained from the output of the voltage amplifier 26 and supplied to the X-axis of the oscilloscope via the output terminal 32, a B-H curve is drawn on the screen. Note that 33 is a ground output terminal.

しかし、この装置では被測定試料の形状が任意
で、且つ検出コイルが不要ではあるものの、B−
H曲線しか測定できないものである。
However, although this device allows the shape of the sample to be measured to be arbitrary and does not require a detection coil, B-
Only the H curve can be measured.

そこで、これをさらに改良し、B−H曲線およ
びM−H曲線を測定可能とした装置が第3図に示
すものである。尚、第2図と同一部分には同一符
号を付す。
Therefore, an apparatus shown in FIG. 3 is a further improvement of this apparatus and is capable of measuring the B-H curve and the MH curve. Note that the same parts as in FIG. 2 are given the same reference numerals.

第3図に示す装置は被測定試料34に励磁電流
を供給するための増幅器35、電流電圧変換抵抗
36とからなる被測定回路と、前記(10)式の右辺第
1項、第2項の電圧分を発生するための可変抵抗
37、位相器38、電流電圧変換抵抗39およ
び、これに前記被測定回路と、同一電流値を供給
するための出力増幅器40とからなる打消し電圧
発生回路より構成されることが特徴である。この
装置によりB−H曲線を測定するには、前記同
様、先ず、スイツチ21を直流電源22側、スイ
ツチ41を試料34側とし、直流電流をそれぞれ
の回路に供給する。そして、試料34の内部抵抗
による電圧に等しい電圧を可変抵抗37で発生さ
せ、これと被測定回路の電圧をそれぞれ差動増幅
器28に供給して、この差動増幅器28の出力電
圧が零となるよう可変抵抗37を調整する。この
状態において、スイツチ21を切換え、正弦波発
振器29より交流電流を供給すると、試料34の
磁心内の磁束密度Bの時間変化に比例した電圧が
差動増幅器28の出力として得られる。これを積
分器30を介して、電圧増幅器26の出力電圧と
ともにオシロスコープのY軸、X軸に供給すると
B−H曲線が画面上に描かれる。
The apparatus shown in FIG. 3 includes a circuit to be measured consisting of an amplifier 35 for supplying an excitation current to a sample to be measured 34, a current-voltage conversion resistor 36, and the first and second terms on the right side of equation (10). From a cancellation voltage generation circuit consisting of a variable resistor 37, a phase shifter 38, a current-voltage conversion resistor 39 for generating a voltage component, the circuit under test, and an output amplifier 40 for supplying the same current value. It is characterized by its composition. In order to measure the B-H curve with this device, as described above, first, switch 21 is set to the DC power supply 22 side, switch 41 is set to the sample 34 side, and DC current is supplied to each circuit. Then, a voltage equal to the voltage due to the internal resistance of the sample 34 is generated by the variable resistor 37, and this and the voltage of the circuit under test are respectively supplied to the differential amplifier 28, so that the output voltage of the differential amplifier 28 becomes zero. Adjust the variable resistor 37 accordingly. In this state, when the switch 21 is switched and alternating current is supplied from the sine wave oscillator 29, a voltage proportional to the time change of the magnetic flux density B in the magnetic core of the sample 34 is obtained as the output of the differential amplifier 28. When this is supplied to the Y-axis and X-axis of the oscilloscope via the integrator 30 together with the output voltage of the voltage amplifier 26, a B-H curve is drawn on the screen.

一方、M−H曲線を測定する場合は、被測定試
料34と同一形状、同一巻数の空心コイル42を
設け、これらをスイツチ41で切換え得る構成と
する。そして、先ず、スイツチ41を空心コイル
42側として正弦波発振器29より交流励磁電流
を供給し、空心コイル42の端子電圧と振幅およ
び位相角が等しい電圧を可変抵抗37、位相器3
8で発生させて差動増幅器28の出力電圧を零と
する。この状態において、スイツチ41を試料3
4側とすると、試料34の磁心の磁化Mのみの時
間変化(dM/dt)に比例した電圧が変動増幅器
28の出力として得られる。これを積分器30を
介して電圧増幅器26の出力電圧とともにオシロ
スコープのY軸、X軸に供給するとM−H曲線が
画面上に描かれる。
On the other hand, when measuring the MH curve, an air-core coil 42 having the same shape and the same number of turns as the sample to be measured 34 is provided, and a switch 41 is used to switch between these coils. First, the switch 41 is set to the air-core coil 42 side, and an AC excitation current is supplied from the sine wave oscillator 29, and a voltage having the same amplitude and phase angle as the terminal voltage of the air-core coil 42 is applied to the variable resistor 37 and the phase shifter 3.
8 to make the output voltage of the differential amplifier 28 zero. In this state, switch 41 is set to sample 3.
4 side, a voltage proportional to the time change (dM/dt) of only the magnetization M of the magnetic core of the sample 34 is obtained as the output of the variable amplifier 28. When this is supplied to the Y-axis and X-axis of the oscilloscope together with the output voltage of the voltage amplifier 26 via the integrator 30, an MH curve is drawn on the screen.

しかし、この装置では励磁回路に被測定回路と
打消し電圧発生回路の2回路が必要であり、しか
も、それぞれ別々の増幅器35,40を有する両
者に同一電流値を加え、正確に試料34の内部抵
抗による電圧降下、および空心コイル42のみの
インダクタンスによる電圧降下を打消し電圧発生
回路で発生させ、差動増幅器28の出力電圧を零
とする調整は極めて雑しいものである。しかも、
出力増幅器が定電流でなく、試料のインピーダン
スの影響および同一電流波形を流していないため
に誤差が非常に多いものである。
However, in this device, the excitation circuit requires two circuits: the circuit under test and the cancellation voltage generating circuit, and each of them has separate amplifiers 35 and 40. Adjustment in which the voltage drop caused by the resistance and the voltage drop caused by the inductance of the air-core coil 42 alone are canceled out by the voltage generation circuit and the output voltage of the differential amplifier 28 is made zero is extremely complicated. Moreover,
There are many errors because the output amplifier is not a constant current, is affected by the impedance of the sample, and does not flow the same current waveform.

以上のように、従来の磁気特性測定装置は何れ
も満足し得るものではなかつた。
As mentioned above, none of the conventional magnetic property measuring devices were satisfactory.

この考案は上記事情に基づいてなされたもの
で、従来に比べて構成が簡単で、単一巻線が施さ
れた任意形状の被測定試料のB−H曲線およびM
−H曲線を高精度、高安定度に測定し得る磁気特
性測定装置を提供しようとするものである。
This idea was made based on the above circumstances, and it has a simpler configuration than the conventional one, and the B-H curve and M
It is an object of the present invention to provide a magnetic property measuring device that can measure -H curves with high precision and high stability.

以下、この考案の一実施例について説明する。 An embodiment of this invention will be described below.

第4図において51は正弦波発振器である。こ
の発振器51の一端は定電流増幅器52の入力端
に接続されている。この定電流増幅器52の出力
端は被測定試料53が接続される端子54,55
のうち、端子54に接続されている。前記端子5
5は予め測定された試料の直流抵抗に等しい参照
用の抵抗56あるいは試料に等しい形状と巻数を
有する参照用の空心コイル57が接続される端子
58,59のうち端子58に接続されている。前
記端子59は抵抗60を介して前記正弦波発振器
51の接地された他端および前記定電流増幅器5
2に接続されている。この抵抗60は前記定電流
増幅器52の電流検出用抵抗および電流電圧変換
用抵抗である。また前記端子54,55には被測
定試料53の端子間電圧を取り出す差動増幅器6
1の入力端が接続され、前記端子58,59には
参照用抵抗56あるいは空心コイル57の端子間
電圧を取り出す差動増幅器62の入力端が接続さ
れている。これら差動増幅器61,62の出力端
はこれらの電圧差を取り出す差動増幅器63の入
力端に接続されている。この差動増幅器63は被
測定試料53における磁心の磁束密度Bまたは磁
化Mの時間tにおける微分(dB/dt)あるいは
(dM/dt)を得るもので、この出力端は出力端子
64に接続されるとともに積分器65に接続され
ている。この積分器65は前記微分出力を積分し
て磁束密度Bまたは磁化Mに比例した電圧を出力
するもので、この出力端は出力端子66に接続さ
れている。また、前記端子59には電圧増幅器6
7の入力端が接続されている。この電圧増幅器6
7は前記抵抗60に流れる電流を検出して、磁化
力Hに比例した電圧を出力するもので、この出力
端は出力端子68に接続されている。さらに、前
記正弦波発振器51の他端部、差動増幅器61,
62,63,積分器65、電圧増幅器67の接地
端は一括して出力端子69に接続されている。
尚、被測定試料53としては励磁巻線のみが施さ
れていれば如何なる形状の磁心でもよく、例えば
磁気ヘツド、トランス、モータ等の磁心の測定が
可能である。
In FIG. 4, 51 is a sine wave oscillator. One end of this oscillator 51 is connected to the input end of a constant current amplifier 52. The output end of this constant current amplifier 52 is connected to terminals 54 and 55 to which the sample to be measured 53 is connected.
Of these, the terminal 54 is connected. Said terminal 5
5 is connected to the terminal 58 of the terminals 58 and 59 to which a reference resistor 56 equal to the DC resistance of the sample measured in advance or a reference air-core coil 57 having the same shape and number of turns as the sample is connected. The terminal 59 is connected to the grounded other end of the sine wave oscillator 51 and the constant current amplifier 5 via a resistor 60.
Connected to 2. This resistor 60 is a current detection resistor and a current-voltage conversion resistor of the constant current amplifier 52. Further, a differential amplifier 6 is connected to the terminals 54 and 55 to take out the voltage between the terminals of the sample to be measured 53.
The terminals 58 and 59 are connected to the input terminal of a differential amplifier 62 which takes out the voltage between the terminals of the reference resistor 56 or the air-core coil 57. The output terminals of these differential amplifiers 61 and 62 are connected to the input terminal of a differential amplifier 63 which extracts the voltage difference between them. This differential amplifier 63 obtains the differential (dB/dt) or (dM/dt) of the magnetic flux density B or magnetization M of the magnetic core in the sample to be measured 53 with respect to time t, and its output end is connected to the output terminal 64. and is connected to an integrator 65. This integrator 65 integrates the differential output and outputs a voltage proportional to the magnetic flux density B or magnetization M, and its output end is connected to an output terminal 66. In addition, a voltage amplifier 6 is connected to the terminal 59.
7 input terminals are connected. This voltage amplifier 6
Reference numeral 7 detects the current flowing through the resistor 60 and outputs a voltage proportional to the magnetizing force H, and this output end is connected to an output terminal 68. Further, the other end of the sine wave oscillator 51, a differential amplifier 61,
62, 63, the integrator 65, and the ground terminals of the voltage amplifier 67 are all connected to an output terminal 69.
The sample 53 to be measured may be a magnetic core of any shape as long as only an excitation winding is provided, and for example, magnetic cores of magnetic heads, transformers, motors, etc. can be measured.

上記構成において動作を説明する。尚、動作原
理は前述した数式と同一である。先ず、B−H曲
線を測定する場合には、端子54,55に被測定
試料53を接続し、端子58,59に試料53の
巻線抵抗に等しい抵抗56を接続する。また、出
力端子64または66に表示器、例えばオシロス
コープのY軸端子の接続し、出力端子68にオシ
ロスコープのX軸端子を接続するとともに、出力
端子69を接地端子に接続する。この状態におい
て出力端子68の出力波形を目視しながら、正弦
波発振器51を調整して所望の電流振幅と周波数
を有する励磁電流を発生させる。すると、所定の
増幅度に設定された差動増幅器63より出力端子
64に(dB/dt)に比例した電圧が得られ、積
分器65からは磁束密度Bが得られる。また、電
圧増幅器67からは出力端子68に磁化力Hに比
例した電圧が出力される。したがつて、オシロス
コープの画面上にB−H曲線が描かれる。
The operation in the above configuration will be explained. Note that the operating principle is the same as the formula described above. First, when measuring the B-H curve, the sample 53 to be measured is connected to the terminals 54 and 55, and the resistor 56 equal to the winding resistance of the sample 53 is connected to the terminals 58 and 59. Further, a display device such as a Y-axis terminal of an oscilloscope is connected to the output terminal 64 or 66, an X-axis terminal of the oscilloscope is connected to the output terminal 68, and an output terminal 69 is connected to a ground terminal. In this state, while visually observing the output waveform of the output terminal 68, the sine wave oscillator 51 is adjusted to generate an excitation current having a desired current amplitude and frequency. Then, a voltage proportional to (dB/dt) is obtained at the output terminal 64 from the differential amplifier 63 set to a predetermined amplification degree, and a magnetic flux density B is obtained from the integrator 65. Further, the voltage amplifier 67 outputs a voltage proportional to the magnetizing force H to the output terminal 68. Therefore, a BH curve is drawn on the screen of the oscilloscope.

また、M−H曲線の場合は前記参照抵抗56に
代えて被測定試料53と同一形状、同一巻数の空
心コイル57を端子58,59に接続する。この
状態において、正弦波発振器51より所望の電流
振幅および周波数を有する励磁電流を供給する
と、出力端子64にdM/dt、出力端子66に磁
化Mが得られる。また、出力端子68には磁化力
Hに比例した電圧が出力される。したがつて、オ
シロスコープの画面上にM−H曲線が描かれる。
Further, in the case of the MH curve, an air-core coil 57 having the same shape and the same number of turns as the sample to be measured 53 is connected to the terminals 58 and 59 instead of the reference resistor 56. In this state, when an excitation current having a desired current amplitude and frequency is supplied from the sine wave oscillator 51, dM/dt is obtained at the output terminal 64 and magnetization M is obtained at the output terminal 66. Further, a voltage proportional to the magnetizing force H is output to the output terminal 68. Therefore, an MH curve is drawn on the screen of the oscilloscope.

上記構成によれば従来に比べて簡単な構成でB
−H曲線あるいはM−H曲線を測定することが可
能である。しかも、被測定試料53、参照用の抵
抗56あるいは空心コイル57および抵抗60を
直列接続し、この直列回路に定電流増幅器52よ
り試料のインピーダンスの影響のない所望の励磁
電流を供給している。したがつて、試料53およ
び参照用の抵抗56等に同一波形の励磁電流が流
れるため、従来に比べて測定精度および安定性を
格段に向上することが可能である。
According to the above configuration, B
It is possible to measure -H curves or M-H curves. Furthermore, the sample to be measured 53, a reference resistor 56 or an air-core coil 57, and a resistor 60 are connected in series, and a constant current amplifier 52 supplies a desired excitation current that is not affected by the impedance of the sample to this series circuit. Therefore, since an excitation current having the same waveform flows through the sample 53, the reference resistor 56, etc., it is possible to significantly improve measurement accuracy and stability compared to the conventional method.

尚、この考案は上記実施例に示した方法以外に
種々の測定方法が考えられる。例えば端子54,
55,58,59に同一形状、同一巻線の空心コ
イルをそれぞれ接続し、差動増幅器61の出力電
圧が零となるように両者のインピーダンス等を完
全に等くなるよう調整した後、一方のコイルに磁
性薄膜等任意の形状の磁心を挿入すれば、その磁
心のM−H曲線を測定することが可能である。ま
た、全く同一の特性を有する空隙が設けられた磁
心に同一コイルが施された磁気ヘツド状のものを
端子54,55,58,59にそれぞれ接続し、
差動増幅器61の出力電圧が零となるよう調整し
た後、一方に、磁性薄片あるいは比較的高い保磁
力を有する磁性材料を密着させると、その際のイ
ンピーダンスの変化に応じてその磁気特性を測定
できる。これを利用すれば磁気探傷器や厚み計等
を提供することが可能である。
In addition to the methods shown in the above embodiments, various measurement methods can be considered for this invention. For example, the terminal 54,
Connect air-core coils of the same shape and winding to 55, 58, and 59, respectively, and adjust the impedance of both to be completely equal so that the output voltage of the differential amplifier 61 becomes zero, and then connect one of the air-core coils to By inserting a magnetic core of any shape, such as a magnetic thin film, into a coil, it is possible to measure the M-H curve of the magnetic core. In addition, a magnetic head-like structure in which the same coil is applied to a magnetic core provided with an air gap having exactly the same characteristics is connected to the terminals 54, 55, 58, and 59, respectively.
After adjusting the output voltage of the differential amplifier 61 to zero, when a magnetic thin piece or a magnetic material having a relatively high coercive force is brought into close contact with one side, its magnetic properties are measured according to the change in impedance at that time. can. By utilizing this, it is possible to provide magnetic flaw detectors, thickness gauges, etc.

以上、詳述したようにこの考案によれば、従来
に比べて構成が簡単で、単一巻線が施された任意
形状の被測定試料のB−H曲線およびM−H曲線
を高精度、高安定に測定し得る磁気特性測定装置
を提供できる。
As described in detail above, this invention has a simpler configuration than the conventional one, and can measure the B-H curve and M-H curve of a sample of arbitrary shape with a single winding with high accuracy. A magnetic property measuring device capable of highly stable measurement can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図はそれぞれ異なる従来の磁気
特性測定装置を示す構成図、第4図はこの考案に
係る磁気特性測定装置の一実施例を示す構成図で
ある。 51……正弦波発振器、52……定電流増幅
器、53……被測定試料、56,57……参照抵
抗、参照コイル、60……電流検出抵抗、61,
62,63……差動増幅器、65……積分器、6
7……電圧増幅器。
FIGS. 1 to 3 are block diagrams showing different conventional magnetic property measuring apparatuses, and FIG. 4 is a block diagram showing an embodiment of the magnetic property measuring apparatus according to the present invention. 51... Sine wave oscillator, 52... Constant current amplifier, 53... Sample to be measured, 56, 57... Reference resistor, reference coil, 60... Current detection resistor, 61,
62, 63...Differential amplifier, 65...Integrator, 6
7...Voltage amplifier.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 任意の周波数を発生可能な正弦波発振器と、こ
の正弦波発振器の一端に接続され発振出力を増幅
し定電流化する定電流増幅器と、この定電流増幅
器の出力電流が供給される被測定試料接続端子
と、この被測定試料接続端子に直列接続され、磁
性体およびこの磁性体に巻回されたコイルとから
なる被測定試料に対応する抵抗あるいはコイルが
接続される参照用接続端子と、この参照用接続端
子と前記正弦波発振器の他端間に直列に接続され
る電流検出抵抗と、前記被測定試料接続端子およ
び参照用接続端子の両端電圧をそれぞれ検出する
第1、第2の電圧検出手段と、これら第1、第2
の電圧検出手段によつて検出された電圧の差成分
を検出する差電圧検出手段と、この差電圧検出手
段の出力電圧が供給される積分手段と、前記電流
検出抵抗の両端電圧を検出する第3の電圧検出手
段とを具備したことを特徴とする磁気特性測定装
置。
A sine wave oscillator capable of generating any frequency, a constant current amplifier connected to one end of this sine wave oscillator to amplify the oscillation output and make it a constant current, and a connection to the sample to be measured to which the output current of this constant current amplifier is supplied. A terminal, a reference connection terminal that is connected in series to this sample-to-be-measured connection terminal, and is connected to a resistor or coil that corresponds to the sample to be measured, which is made up of a magnetic material and a coil wound around the magnetic material; a current detection resistor connected in series between the connection terminal for the sine wave oscillator and the other end of the sine wave oscillator, and first and second voltage detection means for detecting voltages across the sample connection terminal to be measured and the reference connection terminal, respectively. And these first and second
a differential voltage detecting means for detecting a difference component of the voltage detected by the voltage detecting means; an integrating means to which the output voltage of the differential voltage detecting means is supplied; and a first integrating means for detecting the voltage across the current detecting resistor. 3. A magnetic property measuring device characterized by comprising: voltage detecting means according to item 3.
JP16252179U 1979-11-22 1979-11-22 Expired JPS631253Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16252179U JPS631253Y2 (en) 1979-11-22 1979-11-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16252179U JPS631253Y2 (en) 1979-11-22 1979-11-22

Publications (2)

Publication Number Publication Date
JPS5679880U JPS5679880U (en) 1981-06-29
JPS631253Y2 true JPS631253Y2 (en) 1988-01-13

Family

ID=29673522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16252179U Expired JPS631253Y2 (en) 1979-11-22 1979-11-22

Country Status (1)

Country Link
JP (1) JPS631253Y2 (en)

Also Published As

Publication number Publication date
JPS5679880U (en) 1981-06-29

Similar Documents

Publication Publication Date Title
US4596950A (en) Compensated transducer
US4188577A (en) Pulse eddy current testing apparatus for magnetic materials, particularly tubes
US2418553A (en) Flux measuring system
Yang et al. A new compact fluxgate current sensor for AC and DC application
US3260932A (en) Magnet-field measuring device with a galvanomagnetic resistance probe
US3007106A (en) Current meter and probe therefor
JPS6323405A (en) Magnetic amplifier
JP2816175B2 (en) DC current measuring device
US3621382A (en) Anistropic thin ferromagnetic film magnetometer
JP2008532012A (en) Current sensor with annular coil
Palmer A small sensitive magnetometer
JP4716030B2 (en) Current sensor
JPS631253Y2 (en)
US2468154A (en) Permeability determination
JPH06347489A (en) Electric current sensor
JPH027031B2 (en)
JPH0784021A (en) Very weak magnetism measuring apparatus and non-destructive inspection method
KR102039268B1 (en) An Alternating and Direct Current Detection Circuit
Grim et al. Rogowski coil with ferromagnetic core for precise monitoring of low-frequency currents
US3821637A (en) Automatically compensated permeameter
KR102039270B1 (en) A Ground-Fault Current Detection Circuit
JPH0247557A (en) Current detecting apparatus
Leehey et al. DC current transformer
CN114280350B (en) High-precision current sensor and shunt-based high-current measurement method
KR102039271B1 (en) A Earth Leakage Current Detection Circuit