JPS6411394B2 - - Google Patents

Info

Publication number
JPS6411394B2
JPS6411394B2 JP18291680A JP18291680A JPS6411394B2 JP S6411394 B2 JPS6411394 B2 JP S6411394B2 JP 18291680 A JP18291680 A JP 18291680A JP 18291680 A JP18291680 A JP 18291680A JP S6411394 B2 JPS6411394 B2 JP S6411394B2
Authority
JP
Japan
Prior art keywords
welding
speed
arc
steady state
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18291680A
Other languages
Japanese (ja)
Other versions
JPS57106472A (en
Inventor
Tsutomu Kimura
Masanobu Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18291680A priority Critical patent/JPS57106472A/en
Publication of JPS57106472A publication Critical patent/JPS57106472A/en
Publication of JPS6411394B2 publication Critical patent/JPS6411394B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Description

【発明の詳細な説明】 本発明は溶接ワイヤを自動的に送給しながら連
続的に溶接するアーク溶接方法において、特に被
溶接材の始終端部の高温ワレ防止方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an arc welding method for continuously welding while automatically feeding a welding wire, and particularly to a method for preventing high-temperature cracking at the start and end portions of a welded material.

溶接ワイヤを自動的に送給しながら連続的にア
ークを維持しながら溶接線に沿つて移動させるア
ーク溶接、即ち一般的に言う自動溶接が多用され
ている。代表的な例をあげればサブマージアーク
溶接法、炭酸ガスシールドアーク溶接法、MIG
アーク溶接法等である。
Arc welding, in which a welding wire is automatically fed and moved along a welding line while continuously maintaining an arc, ie, generally referred to as automatic welding, is widely used. Typical examples are submerged arc welding, carbon dioxide shielded arc welding, and MIG.
Arc welding method, etc.

これらの溶接法は、いずれも極めて高能率、か
つ高品質な溶接法である。しかしながら、高能率
であるが故に溶接金属が大であり、その成分や凝
固過程で歪が付加され、特に局部的な位置、例え
ば片面一層溶接時の終端ワレや、ストレートシー
ム溶接鋼管の管端ワレ等の高温ワレ等が発生する
場合がある。
All of these welding methods are extremely highly efficient and high quality welding methods. However, due to its high efficiency, the weld metal is large, and strain is added during its composition and solidification process, resulting in cracks in particular localized areas, such as end cracks during single-layer welding on one side, or pipe end cracks in straight seam welded steel pipes. High temperature cracks may occur.

本発明は、これらの被溶接材の始終端における
高温ワレを防止し、溶接方向全長にわたり安定し
た高品位の製品を得ることを目的とし、その方法
を提供するものである。
The present invention aims to prevent high-temperature cracking at the beginning and end of these welded materials and to obtain a stable, high-quality product over the entire length in the welding direction, and provides a method thereof.

第1図に示すように溶接に伴なう歪現象は、溶
接始終端と中央部では異なり、普通は溶接終端が
最も大きく、次いで始端部が大きく中央部は小さ
くなる。
As shown in FIG. 1, the strain phenomenon associated with welding is different between the welding start and end and the welding center, and is usually largest at the welding end, followed by the start and center, and smaller at the center.

第1図において、Aはサイズ30″OD×0.25″WT
のパイプを、第1電極1000A×33V、第2電極
730A×37V、第3電極600A×39Vの3電極サブ
マージアーク溶接したもので溶接速度は2.1m/
minである。Bはサイズ30″OD×0.72″WTのパイ
プを、第1電極1300A×35V、第2電極930A×
37V、第3電極800A×39Vの3電極サブマージア
ーク溶接したもので溶接速度は1.4m/minであ
る。
In Figure 1, A is size 30″OD x 0.25″WT
pipe, first electrode 1000A×33V, second electrode
730A x 37V, 3rd electrode 600A x 39V, 3-electrode submerged arc welding, welding speed 2.1m/
It is min. B is a pipe of size 30″OD x 0.72″WT, first electrode 1300A x 35V, second electrode 930A x
Three-electrode submerged arc welding was performed at 37V and the third electrode was 800A x 39V, and the welding speed was 1.4m/min.

また、本発明者の研究結果によれば、溶接金属
の凝固過程で生ずる引張の状態、例えば歪のレベ
ル、歪速度、歪の経時変化は、他の条件が一定な
らば溶接速度に大きく依存することを見い出し
た。
Furthermore, according to the research results of the present inventors, the tensile state that occurs during the solidification process of weld metal, such as the strain level, strain rate, and change in strain over time, largely depends on the welding speed if other conditions are constant. I discovered that.

第2図はこれらの説明図であつて、サイズ
30″OD×0.25″WTのパイプを第1図のAの条件
(溶接速度V=2.1m/min)、及び第1電極650A
×33V、第2電極500A×37V、第3電極400A×
39Vの3電極サブマージアーク溶接を溶接速度V
=1.2m/minで実施したものである。この図か
ら分るとおり溶接速度を低下させることにより、
歪のレベル、歪速度共に低減し、速度を半減すれ
ばほぼ半減している。
Figure 2 is an explanatory diagram of these, and the size
A pipe of 30″OD
×33V, 2nd electrode 500A×37V, 3rd electrode 400A×
Welding speed V for 39V 3-electrode submerged arc welding
= 1.2m/min. As you can see from this figure, by lowering the welding speed,
Both the strain level and strain rate are reduced, and if the speed is halved, it is almost halved.

そこで本発明の技術思想は、溶接時の熱歪が最
も大きい始終端のみを局部的に溶接歪度を低減さ
せることにより、能率の低下を極力少なくしなが
らより健全な溶接金属を得ることにある。
Therefore, the technical idea of the present invention is to locally reduce the welding strain only at the beginning and end where the thermal strain during welding is greatest, thereby obtaining a healthier weld metal while minimizing the drop in efficiency. .

以下にその内容を図示の例を用いて詳述する。
第3図は全長12mの被溶接材に対し、本発明のア
ーク溶接法を適用した例で第3図aはアークの移
動速度(以下溶接速度という)を示すものであ
る。この場合の定常状態の速度は2.0m/minで
あり、始端Sからの初期速度は1.5m/minであ
る。始端S附近における初期速度は、局部時には
遅い程好ましいが、遅くすればする程定常状態に
まで復帰する際の加速度が大きくなり、ビード外
観上商品価値を逆比例的に低下させることになる
ので不具合である。
The contents will be explained in detail below using illustrated examples.
Fig. 3 shows an example in which the arc welding method of the present invention is applied to a workpiece having a total length of 12 m, and Fig. 3a shows the moving speed of the arc (hereinafter referred to as the welding speed). In this case, the steady state speed is 2.0 m/min, and the initial speed from the starting point S is 1.5 m/min. As for the initial speed near the starting point S, it is preferable to have a lower one in the local area, but the slower it is, the greater the acceleration will be when returning to a steady state, which is a problem since the commercial value will be inversely reduced in terms of bead appearance. It is.

そこで本発明者らは多くの実験結果から初期の
速度を定常状態の50%までに遅くすると、熱歪は
大巾に低減し、かつビード外観上も定常状態のそ
れと比較して容認し得るものとなることを確認し
た。実用的には定常状態の50%以上の範囲内でビ
ード外観上の問題と、熱歪低減の問題との両者の
バランスのとれた値を選ぶか、或はいずれかにつ
いて重点的に偏らせて値を選べばよく、望ましく
は定常状態の50〜80%で実施するとよい。
Therefore, the present inventors found from many experimental results that by slowing down the initial speed to 50% of the steady state, the thermal strain was significantly reduced and the bead appearance was acceptable compared to that in the steady state. It was confirmed that Practically speaking, it is recommended to choose a value that balances both bead appearance problems and thermal distortion reduction within a range of 50% or more of the steady state, or to focus on either of them. The value may be selected, preferably 50 to 80% of the steady state.

さて、初期速度を前記の如く定め溶接を開始し
てからは、溶接の始端から少なくとも2mの位置
までの範囲は、定常状態の溶接速度を復帰するよ
うに漸増していくのである。この場合加速度は等
速であることが好ましい。
After the initial speed is set as described above and welding is started, the welding speed is gradually increased over a range of at least 2 m from the welding start point so as to return to the steady state welding speed. In this case, the acceleration is preferably constant.

2mの位置を限定した理由は、第1図に示した
如く通常端部から2m付近までの範囲に熱歪が大
きいことによるもので、勿論2mを超えて中間部
にまで速度漸増区域が侵入してもかまわないが、
能率上不利となるので意味がない。
The reason for limiting the 2m position is that, as shown in Figure 1, the thermal strain is large in the range from the end to around 2m, and of course the speed gradually increasing area extends beyond 2m to the middle part. I don't mind, but
There is no point in doing so as it would be disadvantageous in terms of efficiency.

以上の条件は、溶接始端側の溶接速度について
であるが、これに並行して溶接電流もこれに追従
して変化せしめる必要がある。限定の条件および
理由は溶接速度と同様である。すなわち、溶接速
度の変化に応じて電流も変化せしむる必要のある
ものは、次の2つの理由による。
The above conditions are for the welding speed on the welding start side, but in parallel with this, the welding current also needs to be changed to follow this. The conditions and reasons for limitation are the same as those for welding speed. That is, the reason why it is necessary to change the current in accordance with the change in welding speed is due to the following two reasons.

(a) 電流を一定にして溶接速度を変化せしむると
溶接単位長さ当たりのワイヤ溶融量が変化し適
正なるビード形成が困難になる。つまり、溶接
速度をあげると電流が不足し、溶接速度を下げ
ると電流が過大となり、前者はアンダーカツ
ト、後者はオーバーラツプ等の溶接欠陥の原因
となる。従つて電流と速度の比を適正値にコン
トロールする必要がある。
(a) If the welding speed is varied while keeping the current constant, the amount of wire melting per unit length of welding changes, making it difficult to form an appropriate bead. In other words, when the welding speed is increased, the current becomes insufficient, and when the welding speed is decreased, the current becomes excessive, and the former causes welding defects such as undercuts and the latter causes welding defects such as overlap. Therefore, it is necessary to control the ratio of current and speed to an appropriate value.

(b) 同じく電流を一定にして溶接速度を変化せし
むると溶け込み深さが変化し、継手形成が困難
となる。つまり、溶接速度をあげると、溶け込
み不足となり、下げる場合は過大となり、場合
によつては溶け落ちを生ずる。以上の理由によ
り、溶接速度の変化に追従して溶接電流も変更
が必要となる。
(b) Similarly, if the welding speed is varied while keeping the current constant, the penetration depth changes, making it difficult to form a joint. In other words, increasing the welding speed will result in insufficient penetration, and decreasing the welding speed will result in excessive welding, which may lead to burn-through in some cases. For the above reasons, it is necessary to change the welding current in accordance with the change in welding speed.

また、アーク電圧について例えばサブマージア
ーク溶接の場合、フラツクス等によつて変化する
し、ガスシールド溶接ではガスの種類で変化す
る。適正な電圧はビード形状を良好に保つように
選定されるが個々には実験的に適正値を見出す必
要がある。
Further, regarding arc voltage, for example, in the case of submerged arc welding, it changes depending on the flux, etc., and in the case of gas shield welding, it changes depending on the type of gas. An appropriate voltage is selected to maintain a good bead shape, but it is necessary to find the appropriate value experimentally for each individual.

すなわち、電流値の増減に応じてアーク電圧も
増減してやる必要がある。
That is, it is necessary to increase or decrease the arc voltage in accordance with the increase or decrease in the current value.

第3図bのイに示すように定常状態の電流は
1050Aであり、初期電流は800Aである。この場
合は速度の加速にバランスをとつた状態となり、
溶接始端から少なくとも2mまでの範囲を定常状
態の電流の50%以上の範囲で可及的に低い値から
定常状態に至るまで漸増するように変化せしめ
る。この場合も初期電流の値は好ましくは50〜80
%の範囲であることが好ましい。
As shown in Figure 3b, the steady state current is
1050A, and the initial current is 800A. In this case, the speed acceleration is balanced,
The current is gradually increased from the lowest possible value to the steady state in a range of at least 2 m from the welding start point in a range of 50% or more of the steady state current. In this case too, the initial current value is preferably 50 to 80
% range is preferable.

前記の如く溶接速度、ならびに溶接電流が漸増
して定常状態のそれに至つたのちは、引続いてそ
のまま定常状態の高速溶接が行なわれる。
As described above, after the welding speed and welding current are gradually increased to reach the steady-state state, high-speed welding in the steady state is continued.

更に終端F部から少なくとも2mの範囲は、始
端S側とは逆に溶接速度、ならびに溶接電流は漸
減される。終端F部附近での溶接速度、ならびに
溶接電流はいづれも定常状態の50%以上の範囲で
可及的に低い値となるように選ばれる。この場合
も50〜80%の範囲であることが好ましく漸減する
加速度も等速であることが望ましい。
Furthermore, in a range of at least 2 m from the terminal end F, the welding speed and welding current are gradually reduced, contrary to the starting end S side. The welding speed near the terminal end F and the welding current are both selected to be as low as possible within a range of 50% or more of the steady state. In this case as well, it is preferable that the range is from 50 to 80%, and that the gradually decreasing acceleration is also preferably constant.

以下大径鋼管の溶接における本発明による実施
例を示す。
Examples of the present invention for welding large-diameter steel pipes will be described below.

素材:API 5LX/X−52;C:0.11%, Mn:1.30%,Nb:0.02%以下略 溶接材料:ワイヤY−D;C:0.12%,Mn: 1.93%以下略 フラツクス;NF−820 SiO2:35%,
MnO:40% パイプサイズ 30″OD×0.375″WT×12000 以上の様な材料をベンデイングロールで冷間成
形した後、CO2溶接により全線仮付を外面側に施
し、しかる後次の条件で内面溶接を行つた。
Material: API 5LX/X-52; C: 0.11%, Mn: 1.30%, Nb: 0.02% or less Welding material: Wire Y-D; C: 0.12%, Mn: 1.93% or less Flux: NF-820 SiO 2 :35%,
MnO: 40% Pipe size : 30"OD Internal welding was performed.

溶接法、2ワイヤタンデム溶接、第3図a〜b
に示す条件で実施した。
Welding method, 2-wire tandem welding, Figure 3 a-b
The experiment was carried out under the conditions shown in .

その結果は第3図cに示す如く被溶接12m全長
を通して安定した状態が得られビード外観上も商
品価値を失なわない良好なものが得られた。
As a result, as shown in Fig. 3c, a stable condition was obtained throughout the entire length of the welded object of 12 m, and a good bead appearance was obtained that did not lose its commercial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来法による溶接で得られる被溶接部
全長長さ方向の熱歪状態の分布を示す。第2図は
溶接速度の差によつて変化する熱歪状態を示す。
第3図は本発明の実施例における下記の状態を示
す。aは、溶接速度の変化状態、bは溶接電流の
変化状態、cはその結果得られた被溶接長さ方向
の熱歪分布状態。
FIG. 1 shows the distribution of thermal strain state in the length direction of the welded part obtained by welding by the conventional method. FIG. 2 shows the thermal strain state that changes depending on the difference in welding speed.
FIG. 3 shows the following situation in the embodiment of the present invention. a is a state of change in welding speed, b is a state of change in welding current, and c is a state of thermal strain distribution in the length direction of the welded object obtained as a result.

Claims (1)

【特許請求の範囲】[Claims] 1 溶接ワイヤを自動的に送給しながら連続的に
溶接を行なうアーク溶接方法において、溶接の始
端から少なくとも2mの範囲はアークの移動速度
ならびに溶接電流が定常状態の50%以上の範囲で
可及的に低い値から定常状態の値に至るまで漸増
するように変化せしめ、引き続いて溶接の中間帯
では定常の高速溶接を行ないたるのち、溶接の終
端から少なくとも2mの位置から終端までの範囲
はアークの移動速度ならびに溶接電流が定常状態
の50%以上の範囲で可及的に低い値に至るまで漸
減するように変化せしめることを特徴とするアー
ク溶接方法。
1. In an arc welding method in which welding is performed continuously while automatically feeding a welding wire, arc movement speed and welding current can be maintained at 50% or more of the steady state for a range of at least 2 m from the welding start point. The arc is gradually increased from a low value to a steady state value, followed by steady high speed welding in the middle zone of the weld, and then arc An arc welding method characterized by changing the moving speed and welding current so that they gradually decrease to the lowest possible value within a range of 50% or more of the steady state.
JP18291680A 1980-12-25 1980-12-25 Arc welding method Granted JPS57106472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18291680A JPS57106472A (en) 1980-12-25 1980-12-25 Arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18291680A JPS57106472A (en) 1980-12-25 1980-12-25 Arc welding method

Publications (2)

Publication Number Publication Date
JPS57106472A JPS57106472A (en) 1982-07-02
JPS6411394B2 true JPS6411394B2 (en) 1989-02-23

Family

ID=16126621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18291680A Granted JPS57106472A (en) 1980-12-25 1980-12-25 Arc welding method

Country Status (1)

Country Link
JP (1) JPS57106472A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2093009B1 (en) * 2006-10-19 2016-08-31 Panasonic Intellectual Property Management Co., Ltd. Method for controlling arc welding and arc welding apparatus
CN109048052B (en) * 2018-08-09 2021-02-12 江苏大学 Scanning method for inhibiting bending deformation of laser welding sheet

Also Published As

Publication number Publication date
JPS57106472A (en) 1982-07-02

Similar Documents

Publication Publication Date Title
KR101888780B1 (en) Vertical narrow gap gas shielded arc welding method
CN107921569A (en) Stand to narrow groove gas-shielded arc welding method
US3922519A (en) Method for a build-up welding of different metals
JP2007260684A (en) Multiple electrode submerged arc welding method of thick steel plate
JPS6411394B2 (en)
JP3951593B2 (en) MAG welding steel wire and MAG welding method using the same
KR20230021579A (en) One-side submerged arc welding method for multielectrode
US3854028A (en) High speed vertical electro-slag welding
JPS61115682A (en) Two-electrode submerged arc welding
JP4319713B2 (en) Multi-electrode gas shield arc single-sided welding method
JPS62286675A (en) Multi electrode gas shield arc welding method for strip steel
JPS6348627B2 (en)
SU1006137A1 (en) Method of electric arc welding of non-slewing butt joints of pipes
JPS6327109B2 (en)
JP3247236B2 (en) Manufacturing method of flux cored wire for arc welding
JPH032597B2 (en)
JP2005246385A (en) Multi-electrode one side submerged arc welding method
JPH03234368A (en) Root running method for narrow groove welding
JPH0318986B2 (en)
JPS60177966A (en) Narrow gap submerged arc welding method
JPH0373387B2 (en)
JPS6316870A (en) Large leg horizontal filiet submerged arc welding method
JPS5811313B2 (en) High efficiency multi-electrode submerged arc welding method
JPH0245554B2 (en)
JPH0131995B2 (en)