JPH0373387B2 - - Google Patents

Info

Publication number
JPH0373387B2
JPH0373387B2 JP60088711A JP8871185A JPH0373387B2 JP H0373387 B2 JPH0373387 B2 JP H0373387B2 JP 60088711 A JP60088711 A JP 60088711A JP 8871185 A JP8871185 A JP 8871185A JP H0373387 B2 JPH0373387 B2 JP H0373387B2
Authority
JP
Japan
Prior art keywords
welding
rail
arc
wire
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60088711A
Other languages
Japanese (ja)
Other versions
JPS61249679A (en
Inventor
Hiroichi Nomura
Yukihiko Sato
Yasuhiko Nishi
Mizuho Higure
Saburo Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kokan Koji KK
JFE Engineering Corp
Original Assignee
Nippon Kokan Koji KK
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Koji KK, Nippon Kokan Ltd filed Critical Nippon Kokan Koji KK
Priority to JP8871185A priority Critical patent/JPS61249679A/en
Publication of JPS61249679A publication Critical patent/JPS61249679A/en
Publication of JPH0373387B2 publication Critical patent/JPH0373387B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレールの溶接方法の改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in a rail welding method.

〔従来の技術〕[Conventional technology]

一般にレールのガスシールドアーク溶接は、レ
ール端面に12〜17mmのギヤツプ(開先)を設け、
溶接部をシールドガスを満たしたチヤンバで覆
い、チヤンバ内に細径の溶接ノズルを挿入し、ノ
ズル内を通つている溶接ワイヤと母材との間にア
ークを発生させて行なわれる。この際レール底部
は通常の多層盛溶接であるが、レール腹部および
頭部は、チヤンバ内に設けた一対の水冷銅板でレ
ールを囲み、溶接金属の漏洩を防止するととも
に、該水冷銅板に穿設されたシールドガス噴出口
よりシールドガスを噴出させながらエレクトロガ
スアーク溶接を行なう。
Generally, gas-shielded arc welding of rails involves creating a gap of 12 to 17 mm on the end surface of the rail.
The welding area is covered with a chamber filled with shielding gas, a small-diameter welding nozzle is inserted into the chamber, and an arc is generated between the welding wire passing through the nozzle and the base metal. At this time, the bottom of the rail is made of normal multilayer welding, but the rail abdomen and head are surrounded by a pair of water-cooled copper plates installed in the chamber to prevent leakage of weld metal, and holes are made in the water-cooled copper plates. Electrogas arc welding is performed while blowing out shielding gas from the shielding gas outlet.

第3図はレールのガスシールド溶接装置の斜視
図、第4図はレール底部の溶接時の断面図、第5
図はレール腹部及び頭部の溶接時の断面図であ
る。図中1はレール、1aはその底部、1bはそ
の腹部、1cはその頭部、1dは天端、2は溶接
機、3は溶接ワイヤ、4はガスシールドチヤン
バ、5は溶接ノズル、6は水冷銅板、6aはシー
ルドガス噴出口である。前記一連の溶接は、レー
ル形状およびレール各位置での溶接条件を記憶し
たマイクロコンピユータにより全自動制御にて行
なわれる。
Figure 3 is a perspective view of the rail gas shield welding device, Figure 4 is a sectional view of the rail bottom during welding, and Figure 5 is a perspective view of the rail gas shield welding device.
The figure is a sectional view of the rail abdomen and head when welded. In the figure, 1 is the rail, 1a is the bottom, 1b is the abdomen, 1c is the head, 1d is the top, 2 is the welding machine, 3 is the welding wire, 4 is the gas shield chamber, 5 is the welding nozzle, 6 is a water-cooled copper plate, and 6a is a shielding gas outlet. The series of welding is performed under full automatic control by a microcomputer that stores the rail shape and welding conditions at each position on the rail.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところでこのガスシールドアーク溶接におい
て、溶接の能率向上を図るためには、溶接入熱の
増加すなわち溶接電流を増加させるのが、最も簡
単な方法であるが、レール溶接の場合入熱増加に
は次のような問題がある。
By the way, in order to improve welding efficiency in this gas-shielded arc welding, the simplest method is to increase the welding heat input, that is, increase the welding current, but in the case of rail welding, the following methods are used to increase the heat input: There are problems like this.

レールのような高炭素鋼は入熱増加による高温
で、高温割れを発生する恐れがあるため、自ら入
熱の上限値が制限される。
High-carbon steels such as rails are subject to high temperature cracks due to increased heat input, so the upper limit of heat input is limited.

レールの底部から頭部まで連続溶接を行なう際
は、その位置によつて熱のこもり方が異なる。す
なわちレール腹部および頭部では底部より熱がこ
もりやすく、頭部でも天端近傍ではさらに熱の放
散が少ないため、同一入熱であつても溶融池の金
属量が著しく増加し、溶融池が乱れやすくなる。
これは溶接アークの安定性に悪影響を与え、スパ
ツタや溶接欠陥を発生する原因となる。
When continuous welding is performed from the bottom to the top of the rail, the way heat accumulates differs depending on the position. In other words, heat is more easily trapped in the rail abdomen and head than in the bottom, and even less heat is dissipated near the top of the rail, so even with the same heat input, the amount of metal in the molten pool increases significantly, causing turbulence in the molten pool. It becomes easier.
This adversely affects the stability of the welding arc and causes spatter and welding defects.

以上を配慮の上溶接入熱一定で、溶接金属量を
増加させる方法として、とるべき方法は次の2つ
であると考えられている。
Taking the above into account, it is thought that the following two methods should be used to increase the amount of weld metal while keeping the welding heat input constant.

Γ溶接ワイヤの突出し長さを増加させる。Increase the protrusion length of the Γ welding wire.

Γ溶接の極性を正極性(溶接ワイヤを負極、母材
を正極)とする。
The polarity of Γ welding is positive (the welding wire is the negative electrode, the base metal is the positive electrode).

第6図は、溶接ワイヤの突出し長さと溶着金属
量との関係を示す線図である。溶接ワイヤの突出
し長さを大きくする方法は、入熱一定で溶着金属
量を増加させるには優れた方法であるが、突出し
長さが長くなるとアーク力その他の力によつて溶
接ワイヤが曲り、溶接アークの安定性が妨げられ
る。第7図は、溶接時の極性による溶着金属量の
差を示す線図であり、同一電流(同一入熱)の場
合、正極性の方が逆極性(溶接ワイヤが正極、母
材が負極)より溶着金属量の多いことが判る。し
かし一般に消耗電極を用いたガスシールドアーク
溶接においては、正極性はアークの安定性に問題
があり、さらに正極性では、母材への溶込み量が
少ないので、多層盛溶接においては、溶接ビード
底部に溶込み不足や融合付良等の溶接欠陥を生じ
やすい難点がある。
FIG. 6 is a diagram showing the relationship between the protruding length of the welding wire and the amount of deposited metal. Increasing the protrusion length of the welding wire is an excellent method for increasing the amount of deposited metal with constant heat input, but if the protrusion length becomes long, the welding wire will bend due to arc force and other forces. The stability of the welding arc is disturbed. Figure 7 is a diagram showing the difference in the amount of deposited metal depending on the polarity during welding. In the case of the same current (same heat input), the positive polarity is the opposite polarity (the welding wire is the positive electrode and the base metal is the negative electrode). It can be seen that the amount of welded metal is larger. However, in gas-shielded arc welding using a consumable electrode, positive polarity has problems with arc stability, and furthermore, with positive polarity, the amount of penetration into the base metal is small, so in multilayer welding, weld bead The problem is that welding defects such as insufficient penetration and poor fusion can easily occur at the bottom.

又レール底部と腹部との境界部は、磁気吹きの
影響によりアース端子側Pでは、第8図に示すよ
うなオーバラツプ7を生じやすいのが問題となつ
ている。
Another problem is that at the boundary between the bottom of the rail and the abdomen, an overlap 7 as shown in FIG. 8 tends to occur on the ground terminal side P due to the influence of magnetic blowing.

本発明はレールのガスシールドアーク溶接にお
ける上記問題点を解消した、高能率な溶接と高品
質な溶接部の得られる溶接方法を提供しようとす
るものである。
The present invention aims to provide a welding method that eliminates the above-mentioned problems in gas-shielded arc welding of rails and that provides highly efficient welding and a high-quality welded part.

〔問題点を解決するための手段〕[Means for solving problems]

レールのガスシールドアーク溶接における、上
記問題点を解消するため、本発明は次の手段を構
じた。
In order to solve the above-mentioned problems in gas-shielded arc welding of rails, the present invention has the following means.

先端に設けた溶接ワイヤ通過孔の位置を偏心
させた溶接ノズルを、ノズル軸中心に回転させ
る溶接法(以下回転アーク溶接法と称する)を
用いる。
A welding method (hereinafter referred to as a rotating arc welding method) is used in which a welding nozzle with a welding wire passing hole provided at the tip thereof is eccentrically rotated around the nozzle axis.

第9図に示すように、レール底部の初層裏波
溶接部13とレール腹部のエレクトロガス溶接
部14のみに正極性溶接を使用し、他は逆極性
溶接とする。
As shown in FIG. 9, positive polarity welding is used only for the first layer uranami welding part 13 at the bottom of the rail and the electrogas welding part 14 at the rail abdomen, and reverse polarity welding is used for the other parts.

レール頭部の天端近傍では、溶接一層ごとに
アークを切り、溶融池の温度低下を俟つて再点
弧する溶接法をとつた。
Near the top of the rail head, a welding method was used in which the arc was cut for each weld layer and then re-ignited after the temperature of the molten pool had decreased.

アース端子をレールの両側にとり、溶接方向
によりアース端子のいずれか一方を切る。
Place the ground terminals on both sides of the rail, and cut either one of the ground terminals depending on the welding direction.

〔作用〕[Effect]

回転アーク溶接法を採用したことによりアーク
の安定性が増し、正極性溶接が可能となつた。一
般に正極性のガスシールドアーク溶接では、第1
0図に示すように、溶接アーク9の陰極点11は
ワイヤ表面のかなり上方まで分布する一方、最短
距離のワイヤ端溶融金属下端面にも別の陰極点が
生じてアーク10が発生する。正極性の場合は逆
極性に比べ、ワイヤ端の溶融金属12に発生する
アーク10の押上げ力が強いことと、ワイヤ端の
溶融金属12内を通過する電流が小さいことによ
る溶融金属落下のための電磁気学的ピンチ力が小
さいこととにより、ワイヤ端の溶融金属12は連
続的に滴下せず、塊状となつてワイヤの先端に付
着し、やがてそれが大塊となり不連続的に落下す
る。そのため従来の正極性溶接では、溶滴がスム
ーズに流れず、又塊状の溶滴がワイヤ3の先端か
ら落下する際のアーク長変化が大きい。又大塊と
なつた溶融金属がワイヤ先端から落下すると、溶
融金属の先端から出ていたアーク10が瞬間的に
陰極点を失なうため、陰極点を求めてアークがよ
り一層ワイヤ3の上方に達し、アークの安定性を
著しく損なうこととなる。上記のようなメカニズ
ムで従来の正極性溶接は、アークの安定性を欠い
ていたが、回転アーク溶接法の採用により、回転
による遠心力でワイヤ下端の溶接金属が大塊とな
る前に落下させられるためアークの安定性を増
し、正極性溶接が可能となつたのである。
Adopting a rotating arc welding method increases the stability of the arc, making positive polarity welding possible. Generally, in positive polarity gas shielded arc welding, the first
As shown in FIG. 0, the cathode spots 11 of the welding arc 9 are distributed far above the wire surface, while other cathode spots are generated on the lower end surface of the molten metal at the end of the wire at the shortest distance, and the arc 10 is generated. In the case of positive polarity, compared to reverse polarity, the upward force of the arc 10 generated on the molten metal 12 at the wire end is stronger, and the molten metal falls due to the smaller current passing through the molten metal 12 at the wire end. Due to the small electromagnetic pinch force, the molten metal 12 at the end of the wire does not drip continuously, but forms a lump and adheres to the tip of the wire, and eventually becomes a large lump and falls discontinuously. Therefore, in conventional positive polarity welding, the droplets do not flow smoothly, and when the lumpy droplets fall from the tip of the wire 3, the arc length changes greatly. Furthermore, when a large lump of molten metal falls from the tip of the wire, the arc 10 emitted from the tip of the molten metal momentarily loses its cathode point. This will significantly impair the stability of the arc. Conventional positive polarity welding lacks arc stability due to the mechanism described above, but by adopting the rotating arc welding method, the centrifugal force caused by rotation allows the weld metal at the lower end of the wire to fall before it becomes a large lump. This increased arc stability and made positive polarity welding possible.

次にレール底部の初層裏波溶接とレール腹部に
正極性溶接を使用したが、前者については第11
図aに示すような固形フラツクス15か、又はb
図の裏波ビード形状に形成した耐火煉瓦製又は銅
板製の裏当材16を使用するので、母材に及ぼす
アーク力が弱くても比較的良好な裏波ビードが得
られる。又後者に関しては第12図に示すように
溶接部水平断面全体が溶融池17となり、溶接の
進行とともに上昇するだけなので、融合不良等の
問題は正極性溶接でも発生しない。一般に正極性
溶接では、母材の溶込みが少なく従つてレールの
ような高炭素鋼の場合でも、母材からビードへの
炭素の溶込みが少ないため、炭素による高温割れ
が減少し、溶接金属の品質は向上することとな
る。
Next, we used the first layer uranami welding at the bottom of the rail and the positive polarity welding at the rail belly, but for the former, the
solid flux 15 as shown in figure a, or b
Since the backing material 16 made of refractory brick or copper plate and formed into the uranami bead shape shown in the figure is used, a relatively good uranami bead can be obtained even if the arc force exerted on the base material is weak. Regarding the latter, as shown in FIG. 12, the entire horizontal section of the weld becomes a molten pool 17, which only rises as welding progresses, so problems such as poor fusion do not occur even in positive polarity welding. In general, in positive polarity welding, there is little penetration into the base metal.Even in the case of high carbon steel like rails, there is little penetration of carbon from the base metal into the bead, which reduces hot cracking caused by carbon and reduces the weld metal. The quality of the products will improve.

レール頭部の天端近傍では、溶接一層ごとにア
ークを切り、溶融池の温度低下を待つて再点弧す
るように構成したので、溶融池内の溶融金属量も
減少し、その結果溶融池の乱れからくるアークの
不安定性な防止され、この位置に発生しがちな溶
接不良は大幅に減少した。
Near the top of the rail head, the arc is cut for each weld layer and re-ignited after waiting for the temperature of the molten pool to drop. This reduces the amount of molten metal in the molten pool, and as a result, the amount of molten metal in the molten pool decreases. Arc instability caused by turbulence has been prevented, and welding defects that tend to occur at this location have been significantly reduced.

さらにレール両側のアース端子を溶接方向に応
じて切換えることにより、常に始端アースとなる
ように構成したので、アークが進行方向前方へ吹
かれて溶け込み量が増加し、オーバラツプの発生
する現象を抑えることができた。
Furthermore, by switching the ground terminals on both sides of the rail according to the welding direction, the starting end ground is always set, so the arc is blown forward in the direction of travel, increasing the amount of penetration, and suppressing the phenomenon of overlapping. was completed.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例を示すレールのガス
シールドアーク溶接における溶接方法を示す説明
図、第2図は回転アーク溶接のための溶接ノズル
の斜視図である。
FIG. 1 is an explanatory view showing a welding method in gas-shielded arc welding of rails according to an embodiment of the present invention, and FIG. 2 is a perspective view of a welding nozzle for rotary arc welding.

第1図において、レールのガスシールドアーク
溶接は、A点からスタートする。矢印23は溶接
進行方向を示している。まずA点でアークを発生
させ、A点からB点までの初層裏波溶接を正極性
溶接で行ない、B点で極性を逆極性に切り換え、
c点まで逆極性で連続溶接を行なう。次にC点で
再び正極性溶接に切換え、正極性エレクトロガス
アーク溶接を行ない、D点で再び逆極性に切換
え、レール頭部中段のE点まで連続溶接を行な
う。E点以降のレール頭部の天端近傍では、最も
熱がこもりやすく、溶融池が大きくなつてアーク
の安定性を欠くので、溶接一層ごとにアークを切
り、溶融池が小さくなるのを待つて再点弧するよ
うに構成した。F点は再点弧点を示している。な
お再点弧を行なう際、溶融池が完全に冷却凝固し
てしまうと、再点弧が困難となるばかりでなく、
融合不良等の欠陥を発生しやすいので、溶融池が
完全に凝固しないうちに再点弧する必要がある。
In FIG. 1, gas-shielded arc welding of the rail starts from point A. Arrow 23 indicates the direction of welding progress. First, an arc is generated at point A, and the first layer welding is performed from point A to point B using positive polarity welding, and at point B, the polarity is switched to reverse polarity.
Continue welding with reverse polarity up to point c. Next, at point C, the welding is again switched to positive polarity, and positive electrogas arc welding is performed, and at point D, the polarity is switched again, and continuous welding is performed up to point E, which is in the middle of the rail head. Near the top of the rail head after point E, heat is most likely to accumulate, the molten pool becomes large and the arc becomes unstable, so cut the arc after each weld layer and wait until the molten pool becomes smaller. It was configured to re-ignite. Point F indicates the restriking point. When re-igniting, if the molten pool is completely cooled and solidified, it will not only be difficult to re-ignite;
Since defects such as poor fusion are likely to occur, it is necessary to re-ignite the molten pool before it completely solidifies.

なお上記溶接は回転アーク溶接法によつて行な
うのであるが、第2図に該溶接法のための溶接ノ
ズルを示している。溶接ノズル5の先端のワイヤ
通過孔5aを、ノズル回転軸に対し偏心させて穿
設し、ノズル5を歯車列19を介してモータ18
で回転せしめると、アークは回転しながらビード
20を形成する。21はワイヤを送る送給ロール
である。
The above welding is performed by a rotating arc welding method, and FIG. 2 shows a welding nozzle for this welding method. A wire passing hole 5a at the tip of the welding nozzle 5 is bored eccentrically with respect to the nozzle rotation axis, and the nozzle 5 is connected to the motor 18 via a gear train 19.
When rotated, the arc forms a bead 20 while rotating. 21 is a feed roll for feeding the wire.

又第4図にみるように溶接のためのアース端子
22はレールの両側に設け、レール底部と腹部と
の境界部を溶接する際は、溶接方向の変るごとに
アース端子22のいずれか一方を切り、常に始端
アースとなるようにして溶接を行なつたので、オ
ーバラツプの発生は防止され、滑かなビード外観
が得られた。
Also, as shown in Figure 4, ground terminals 22 for welding are provided on both sides of the rail, and when welding the boundary between the rail bottom and the abdomen, one of the ground terminals 22 is connected each time the welding direction changes. Since welding was carried out so that the starting end was always grounded, overlapping was prevented and a smooth bead appearance was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明はレールのガスシールドアーク溶接にお
いて、回転アーク溶接法を利用し、レール溶接部
の位置に応じて、溶接の極性を切換え、レール頭
部天端近傍では溶接一層ごとにアークを切り再点
弧を行ない、又レール両側にアース端子を設けて
レール底部と腹部との境界面溶接では溶接方向に
よりアース端子を切換えるなどの方法を構じて溶
接を行なつたので、次に述べるような優れた効果
を上げることができた。
The present invention utilizes a rotating arc welding method in gas-shielded arc welding of rails, switches the welding polarity according to the position of the rail weld, and cuts and repoints the arc for each weld layer near the top of the rail head. We welded in an arc, provided ground terminals on both sides of the rail, and switched the ground terminals depending on the welding direction when welding the interface between the bottom and abdomen of the rails, resulting in the advantages described below. I was able to improve the effect.

正極性溶接をとることによつて、アークタイ
ムが約10%短縮された。
By using positive polarity welding, the arc time was reduced by approximately 10%.

レール腹部における高温割れが減少した。 Hot cracking in the rail abdomen was reduced.

レール頭部天端近傍におけるアークの安定性
が増し、又入熱の増大による高温割れが減少し
た。
The stability of the arc near the top of the rail head has increased, and hot cracking due to increased heat input has been reduced.

レール底部と腹部との境界面におけるオーバ
ラツプが防止された。
Overlapping at the interface between the rail bottom and the abdomen was prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す多層盛溶接の
説明図、第2図は回転アーク溶接法のための溶接
ノズルの斜視図、第3図はガスシールド溶接装置
の斜視図、第4図はレール底部の溶接時の断面
図、第5図はレール腹部および頭部の溶接時の断
面図、第6図はワイヤ突出し長さと溶着金属量と
の関係を示す線図、第7図は溶接電流と溶着金属
量との関係を示す線図、第8図はオーバラツプの
説明図、第9図はレール溶接における溶接極性を
示す説明図、第10図は溶接部の説明図、第11
図は溶接部に使用する裏当材の説明図、第12図
はレール腹部の溶接時の断面図である。 図中1はレール、1aはその底部、1bはその
腹部、1cはその頭部、1dはその天端、3は溶
接ワイヤ、5は溶接ノズル、5aはワイヤ通過
孔、8は溶融池、9,10はアーク、22はアー
ス端子、Aは溶接始点、Bは正極性から逆極性へ
の切換点、Cは逆極性から正極性への切換点、D
は正極性から逆極性への切換点、Eは連続溶接の
終点、Fは再点弧点である。
Fig. 1 is an explanatory diagram of multilayer welding showing an embodiment of the present invention, Fig. 2 is a perspective view of a welding nozzle for rotating arc welding, Fig. 3 is a perspective view of a gas shield welding device, and Fig. 4 is a perspective view of a welding nozzle for rotating arc welding. The figure is a sectional view of the rail bottom when welded, Figure 5 is a sectional view of the rail abdomen and head when welded, Figure 6 is a diagram showing the relationship between wire protrusion length and amount of welded metal, and Figure 7 is A diagram showing the relationship between the welding current and the amount of deposited metal, Fig. 8 is an explanatory diagram of overlap, Fig. 9 is an explanatory diagram showing welding polarity in rail welding, Fig. 10 is an explanatory diagram of the welded part, and Fig. 11 is an explanatory diagram showing the welding polarity in rail welding.
The figure is an explanatory diagram of the backing material used for the welded part, and FIG. 12 is a cross-sectional view of the rail abdomen when welding. In the figure, 1 is a rail, 1a is its bottom, 1b is its abdomen, 1c is its head, 1d is its top, 3 is a welding wire, 5 is a welding nozzle, 5a is a wire passage hole, 8 is a molten pool, 9 , 10 is the arc, 22 is the ground terminal, A is the welding start point, B is the switching point from positive polarity to reverse polarity, C is the switching point from reverse polarity to positive polarity, D
is the switching point from positive polarity to reverse polarity, E is the end point of continuous welding, and F is the restriking point.

Claims (1)

【特許請求の範囲】 1 溶接ノズルの先端のワイヤ通過孔を、該溶接
ノズルの中心軸に対し偏心して穿設し、該溶接ノ
ズルをその中心軸を中心に回転せしめて得られる
回転アークを利用して溶接するレールのガスシー
ルドアーク溶接において、 レール底部の初層並びにレール腹部に正極性溶
接を、初層を除くレール底部とレール頭部に逆極
性溶接を行うとともに、 レールの頭部天端近傍においては、溶接一層ご
とにアークを切り、溶融池が完全に凝固する以前
に再点弧する溶接法を行う ことを特徴とするレールの溶接方法。
[Claims] 1. A wire passage hole at the tip of a welding nozzle is bored eccentrically with respect to the central axis of the welding nozzle, and a rotating arc obtained by rotating the welding nozzle about the central axis is utilized. In gas-shielded arc welding of rails to be welded, positive polarity welding is performed on the first layer at the bottom of the rail and the rail belly, reverse polarity welding is performed on the bottom of the rail, excluding the first layer, and the rail head, and at the same time, welding is performed on the top of the rail head. Nearby, a rail welding method characterized by cutting the arc for each weld layer and re-igniting the weld pool before it completely solidifies.
JP8871185A 1985-04-26 1985-04-26 Welding method for rail Granted JPS61249679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8871185A JPS61249679A (en) 1985-04-26 1985-04-26 Welding method for rail

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8871185A JPS61249679A (en) 1985-04-26 1985-04-26 Welding method for rail

Publications (2)

Publication Number Publication Date
JPS61249679A JPS61249679A (en) 1986-11-06
JPH0373387B2 true JPH0373387B2 (en) 1991-11-21

Family

ID=13950476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8871185A Granted JPS61249679A (en) 1985-04-26 1985-04-26 Welding method for rail

Country Status (1)

Country Link
JP (1) JPS61249679A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3928398A1 (en) * 1989-08-28 1991-03-14 Maurer Friedrich Soehne Butt welding rail section for improved fatigue strength - using copper support brackets at base and side to enable prodn. of fatigue resistant weld
US5175405A (en) * 1990-04-18 1992-12-29 Nippon Steel Corporation Method of automatically welding rails

Also Published As

Publication number Publication date
JPS61249679A (en) 1986-11-06

Similar Documents

Publication Publication Date Title
US4125758A (en) Vertical welding method
US5521353A (en) Welding robot
US4019018A (en) Process for narrow gap welding of aluminum alloy thick plates
CN113941763A (en) Shaking/rotating arc consumable electrode welding method adopting coarse welding wire
US3293400A (en) Submerged arc welding process
US5945014A (en) Method of arc welding heavy steel plates
US20040226931A1 (en) Gas metal buried arc welding of lap-penetration joints
JPH0373387B2 (en)
JP3867164B2 (en) Welding method
JPH0994658A (en) One side butt welding method
CA2568798C (en) Gas metal buried arc welding of lap-penetration joints
SU1320030A1 (en) Current-conducting nozzle
JP3256089B2 (en) Non-consumable nozzle type electroslag welding method
JP2646388B2 (en) Gas shielded arc welding method
JP6715682B2 (en) Submerged arc welding method
JP3226767B2 (en) Non-consumable nozzle type electroslag welding method
JPS6123069B2 (en)
JP3706892B2 (en) 4-electrode single-sided submerged arc welding method
JPH071126A (en) Automatic horizontal position one side welding method
JP3233782B2 (en) Horizontal automatic welding method
JP3741402B2 (en) Two-electrode electrogas welding method
JPS6348627B2 (en)
JPH054185B2 (en)
JP2656423B2 (en) Vertical automatic welding method
SU1593851A1 (en) Method of electroslag welding with consumable nozzle