JPH032597B2 - - Google Patents

Info

Publication number
JPH032597B2
JPH032597B2 JP18620584A JP18620584A JPH032597B2 JP H032597 B2 JPH032597 B2 JP H032597B2 JP 18620584 A JP18620584 A JP 18620584A JP 18620584 A JP18620584 A JP 18620584A JP H032597 B2 JPH032597 B2 JP H032597B2
Authority
JP
Japan
Prior art keywords
welding
flux
slag
wire
hardfacing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18620584A
Other languages
Japanese (ja)
Other versions
JPS6163397A (en
Inventor
Minoru Yamada
Yoshizo Hashimoto
Koichi Kaneniwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP18620584A priority Critical patent/JPS6163397A/en
Publication of JPS6163397A publication Critical patent/JPS6163397A/en
Publication of JPH032597B2 publication Critical patent/JPH032597B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、ソリツドワイヤ並みの溶接能率を得
ることができ、しかも耐割れ性及び溶接作業性の
良好な硬化肉盛溶接金属を得ることのできるCO2
ガスアーク溶接用複合ワイヤに関するものであ
る。 〔従来の技術〕 製鉄・製鋼設備や土木建設機械等の各種部品の
摩耗に対する補修手段として硬化肉盛溶接法が普
及している。この硬化肉盛溶接は、以前は被覆ア
ーク溶接棒を使用する手溶接法によつて行なわれ
ていたが、最近では全自動若しくは半自動の可能
なガスメタルアーク溶接法(以後GMAと呼ぶ)
が主流となつている。ところでGMA溶接用の材
料としてはソリツドワイヤが最も一般的であり、
このワイヤを用いた全自動若しくは半自動GMA
溶接を採用すると、手溶接の3〜4倍の溶接能率
を得ることができる。しかしながらソリツドワイ
ヤを用いるGMA溶接では、スラグの被包性が悪
く且つスラグ剥離性が劣悪であるという問題があ
り、その為隣接する溶接ビートが重なり合う部分
とか、前回ビードの上へ新たに肉盛して行く部分
においてはアークが不安定になり易く、結局スラ
グの巻込みが生ずる等の問題に発展し、健全な硬
化肉盛溶接金属を得ることができなかつた。 こうした問題を生じない溶接材料として、例え
ば特開昭56−122699号に開示されている様な硬化
肉盛用のCO2ガスアーク溶接用複合ワイヤが提案
されている。この複合ワイヤは、軟鋼製外皮の内
腔部に特定成分組成のフラツクスを充填してなる
もので、スラグ被包性が良好でビード重ね部の平
滑性を改善し得る他スラグ剥離性も良好であり、
しかもソリツドワイヤ並みの溶接能率が得られる
旨開示されている。 〔発明が解決しようとする問題点〕 上記公開公報に示された複合ワイヤを使用すれ
ば、ソリツドワイヤを用いた場合に匹敵する溶接
能率が得られると共に、公報に開示されている通
りビード重ね部の平滑性をある程度改善すること
はできる。しかしながら肉盛溶接金属の耐割れ性
及び溶接作業性は依然として不十分である。又ス
ラグの剥離性においても十分改良されているとは
言い難い。即ち硬化肉盛溶接用材料においては硬
度アツプに最大の目的がある為、ともすれば耐割
れ性に対する配慮が不十分になりがちであるが、
肉盛溶接部に割れ(高温割れ又は低温割れ)が生
じるとその部分から選択的に摩耗が進んだり使用
時に受ける応力(外力及び内部応力)で割れが進
展し、切損事故等の原因となる。また肉盛溶接で
はビードとビードの重なり部が必ずできるが、ス
ラグ剥離性が不良で重なり部にスラグが残つてい
ると、この部分のビード形状が悪くなる他スラグ
巻込み欠陥が現われる。その為手直し溶接が必要
になつて溶接作業性が著しく低下するが、前記公
開公報に開示された複合ワイヤでは肉盛溶接金属
の耐割れ性及びスラグ剥離性に問題があり、溶接
作業性が悪く且つ肉盛溶接金属の信頼性にも問題
が残されている。 〔問題点を解決する為の手段〕 本発明者等は上記の様な事情に着目し、複合ワ
イヤの具備する特長を保持しつつ肉盛溶接金属の
耐割れ性及びスラグ剥離性を改善すべく、特に充
填フラツクス成分を主体にして種々研究を進めて
きた。本発明はこうした研究の結果完成されたも
のであつて、その構成は、軟鋼製外皮の内腔部
に、下記成分組成のフラツクスを前記外皮に対す
る重量比(以下単にフラツクス充填率という)で
5〜30%となる様に充填してなるところに要旨を
有するものである。 (フラツクス組成) TiO2:3〜20%(重量%:以下同じ) 鉄酸化物:5〜15% SiO2:1〜10% ZrO2:5〜20% 金属弗化物:1〜5% MgO:5〜15% Mn:5〜15% Cr:2〜40% Si:1〜10% C:0.2〜5% 〔作用〕 本発明者等は、従来のCO2ガスアーク溶接用複
合ワイヤにおいて指摘した前述の問題を解消すべ
く、充填フラツクス組成の見直しを出発点として
種々実験を進めてきた。その結果、充填フラツク
ス中のTiO2量を減少すると共に適量のMgOを配
合し、更に鉄酸化物及びZrO2の配合量を増加し
てやれば、溶接作業性、殊にスラグ剥離性が良好
で且つ耐割れ性の優れた硬化肉盛溶接金属を与え
る複合ワイヤが得られることをつきとめた。 ちなみに第1図は、第1表に示すフラツクス成
分を基本組成とし、MgO及びTiO2の量を種々変
更して得た複合ワイヤ(但し外皮:SPCC材、フ
ラツクス充填率:18%、ワイヤ径:1.2mm〓)を用
いた場合における肉盛溶接金属の耐割れ性を示し
たグラフである。但し耐割れ性試験は、第2図に
示す如く拘束板1の上面に母材2を拘束溶接した
後、各複合ワイヤを用いて肉盛溶接3(3層盛)
を行ない、表面をカラーチエツクして割れの有無
を観察した。 (実験条件) ワイヤ径:1.2mm〓 溶接電流:270A 溶接電圧:32V 溶接速度:35cm/分 予熱・パス間温度:150〜200℃ 母材:軟鋼 積層:3層盛 カラーチエツク判定基準: ○…割れなし △…割れが1〜10箇所に発生 ×…割れが10個所以上に発生
[Industrial Application Field] The present invention is a CO 2 hardfacing weld metal that can obtain welding efficiency comparable to that of solid wire and also has good cracking resistance and welding workability.
This invention relates to a composite wire for gas arc welding. [Prior Art] Hardfacing welding has become popular as a means of repairing wear of various parts of iron and steel manufacturing equipment, civil engineering and construction machinery, etc. This hardfacing welding was previously carried out by hand welding using a coated arc welding rod, but recently it has become fully automatic or semi-automatic gas metal arc welding (hereinafter referred to as GMA).
has become the mainstream. By the way, solid wire is the most common material for GMA welding.
Fully automatic or semi-automatic GMA using this wire
By employing welding, it is possible to obtain welding efficiency 3 to 4 times that of manual welding. However, GMA welding using solid wire has the problem of poor slag envelopment and poor slag peelability.As a result, there are areas where adjacent welding bead overlap, or where new welding is performed on top of the previous bead. The arc tends to become unstable in the part where the weld metal goes, which eventually leads to problems such as slag entrainment, making it impossible to obtain a sound hardfacing weld metal. As a welding material that does not cause such problems, a composite wire for CO 2 gas arc welding for hardfacing has been proposed, for example, as disclosed in JP-A-56-122699. This composite wire is made by filling the inner cavity of a mild steel outer shell with a flux of a specific composition, which has good slag envelopment properties, improves the smoothness of the bead overlap area, and also has good slag removal properties. can be,
Moreover, it is disclosed that welding efficiency comparable to that of solid wire can be obtained. [Problems to be Solved by the Invention] If the composite wire disclosed in the above publication is used, it is possible to obtain welding efficiency comparable to that when using a solid wire, and as disclosed in the publication, the welding efficiency of the bead overlapped portion can be improved. It is possible to improve the smoothness to some extent. However, the cracking resistance and welding workability of overlay weld metal are still insufficient. Furthermore, it cannot be said that the slag releasability has been sufficiently improved. In other words, since the primary purpose of hardfacing welding materials is to increase hardness, cracking resistance tends to be insufficiently considered.
If a crack (hot crack or cold crack) occurs in the overlay weld, wear progresses selectively from that part, and the crack progresses due to the stress (external force and internal stress) received during use, causing breakage accidents, etc. . In addition, overlay welding inevitably creates an overlap between beads, but if slag removability is poor and slag remains in the overlap, the bead shape in this area will deteriorate and slag entrainment defects will appear. This necessitates re-welding and significantly reduces welding workability, but the composite wire disclosed in the above-mentioned publication has problems with the cracking resistance and slag removal of the overlay weld metal, resulting in poor welding workability. In addition, there remains a problem in the reliability of overlay weld metal. [Means for solving the problem] The present inventors focused on the above-mentioned circumstances, and aimed to improve the cracking resistance and slag removability of overlay weld metal while maintaining the features of composite wire. We have been conducting various research, especially focusing on filling flux components. The present invention has been completed as a result of such research, and has a structure in which a flux having the following composition is applied to the inner cavity of a mild steel outer shell at a weight ratio (hereinafter simply referred to as flux filling rate) to the outer shell of 5 to 5. The gist of this is that it is filled to a level of 30%. (Flux composition) TiO 2 : 3-20% (weight %: same below) Iron oxide: 5-15% SiO 2 : 1-10% ZrO 2 : 5-20% Metal fluoride: 1-5% MgO: 5 to 15% Mn: 5 to 15% Cr: 2 to 40% Si: 1 to 10% C: 0.2 to 5% [Function] The present inventors have solved the above-mentioned problems pointed out in the conventional composite wire for CO 2 gas arc welding. In order to solve this problem, various experiments have been carried out starting from a review of the filling flux composition. As a result, if the amount of TiO 2 in the filling flux is reduced, an appropriate amount of MgO is added, and the amounts of iron oxide and ZrO 2 are increased, welding workability, especially slag peelability, can be improved and the welding resistance can be improved. It has been found that a composite wire can be obtained that provides a hardfacing weld metal with excellent crackability. Incidentally, Figure 1 shows composite wires obtained by using the flux components shown in Table 1 as the basic composition and varying the amounts of MgO and TiO 2 (sheath: SPCC material, flux filling rate: 18%, wire diameter: 1.2mm〓) is a graph showing the cracking resistance of overlay weld metal. However, in the cracking resistance test, after restraint welding the base metal 2 to the upper surface of the restraint plate 1 as shown in Fig. 2, overlay welding 3 (three-layer welding) using each composite wire was performed.
The surface was color checked to observe the presence or absence of cracks. (Experimental conditions) Wire diameter: 1.2mm Welding current: 270A Welding voltage: 32V Welding speed: 35cm/min Preheating/interpass temperature: 150-200℃ Base material: Mild steel Lamination: 3-layer color check criteria: ○… No cracks △…Cracks occur in 1 to 10 locations ×…Cracks occur in 10 or more locations

【表】【table】

【表】 第1図からも明らかな様に、充填フラツクス中
に5%以上のMgOを配合し且つTiO2量を20%以
下に抑えてやれば、肉盛溶接金属の耐割れ性を改
善することができる。 次に第3図は、第2表に示すフラツクス成分を
基本組成とし、ZrO2及び鉄酸化物の量を種々変
えて調製した複合ワイヤ(但し外皮:SPCC材、
フラツクス充填率:18%、ワイヤ径:1.2mm〓)を
用いた場合におけるスラグ剥離性を示したグラフ
である。但しスラグ剥離試験は、第3図に示す如
く厚さ12mm、幅75mmの母材2の表面に、2条の溶
接ビード3が側部で互いに重なる様に肉盛溶接
し、溶接後のスラグ剥離性を調べた。 (実験条件) ワイヤ径:1.2mm〓 溶接電流:270A(DC・RP) 溶接電圧:32V 溶接速度:35cm/分 予熱・パス間温度:150〜200℃ 母材:軟鋼(SPCC) スラグ剥離性判定: ○…良好、△…やや悪い、×…悪い
[Table] As is clear from Figure 1, if 5% or more of MgO is added to the filling flux and the amount of TiO2 is kept to 20% or less, the cracking resistance of overlay weld metal can be improved. be able to. Next, Figure 3 shows composite wires prepared with the basic composition of the flux components shown in Table 2 and varying amounts of ZrO 2 and iron oxide (exterior shell: SPCC material,
This is a graph showing the slag removability when using flux filling rate: 18%, wire diameter: 1.2 mm. However, in the slag peeling test, two weld beads 3 are overlaid on the surface of the base metal 2 with a thickness of 12 mm and a width of 75 mm, overlapping each other at the sides, as shown in Figure 3, and the slag peeling is performed after welding. I looked into gender. (Experiment conditions) Wire diameter: 1.2mm Welding current: 270A (DC/RP) Welding voltage: 32V Welding speed: 35cm/min Preheating/interpass temperature: 150 to 200℃ Base material: Mild steel (SPCC) Slag removability judgment : ○...Good, △...Slightly bad, ×...Poor

〔実施例〕〔Example〕

第4表に示す成分組成の粉粒状フラツクスと、
第3表に示す化学成分の軟鋼製外皮材を使用し、
外径1.2mm〓の複合ワイヤを作製した。但しフラツ
クス充填率は第4表に併記した通りとした。
Powder-like flux having the component composition shown in Table 4,
Using a mild steel shell material with the chemical composition shown in Table 3,
A composite wire with an outer diameter of 1.2 mm was fabricated. However, the flux filling rate was as shown in Table 4.

【表】【table】

【表】【table】

【表】【table】

【表】 得られた各複合ワイヤを使用し、下記の方法で
アーク安定性、スパツタ発生状況、スラグ剥離
性、ビード外観及び肉盛溶接金属の耐割れ性を調
べた。 スラグ剥離性:第3図に示した方法に準じて行な
つた。 アーク安定性:アーク切れの回数、アーク電圧の
振れ幅を観察した。 ビード外観:ビードの波目、ビード幅の安定性、
なじみ等を観察した。 スパツター:溶接中のスパツタの飛散状態を観察
した。 耐割れ性:第1図の方法に準じて測定した。 結果を第5表に一括して示す。
[Table] Using each of the obtained composite wires, arc stability, spatter occurrence, slag removability, bead appearance, and crack resistance of overlay weld metal were investigated using the following methods. Slag removability: Performed according to the method shown in FIG. Arc stability: The number of arc breaks and the amplitude of the arc voltage were observed. Bead appearance: bead wavy pattern, stability of bead width,
We observed familiarity, etc. Spatter: The state of spatter being scattered during welding was observed. Cracking resistance: Measured according to the method shown in FIG. The results are summarized in Table 5.

〔発明の効果〕〔Effect of the invention〕

本発明は以上の様に構成されるが、要は充填フ
ラツクスの成分組成を厳密に規定することによつ
て、硬化肉盛溶接要複合ワイヤ本来の特性を維持
しつつ、その問題点として指摘しておいたスラグ
剥離性及び耐割れ性を大幅に改善することができ
た。その結果、ソリツドワイヤに匹敵する高レベ
ルの溶接能率のもとで高性能の硬化肉盛溶接金属
を作業性良く形成し得ることになつた。
The present invention is constructed as described above, but the key point is that by strictly specifying the composition of the filling flux, the inherent characteristics of the composite wire required for hardfacing welding can be maintained, while the problems pointed out can be solved. It was possible to significantly improve the slag removability and cracking resistance. As a result, it has become possible to form high-performance hardfacing weld metal with good workability at a high level of welding efficiency comparable to that of solid wire.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は硬化肉盛溶接金属の耐割れ性に及ぼす
フラツクス中のMgO量及びTiO2量の影響を示す
実験結果のグラフ、第2図は耐割れ性試験で採用
した肉盛溶接法を示す説明図、第3図はスラグ剥
離性に及ぼすフラツクス中の鉄酸化物量及び
ZrO2量の影響を示す実験結果のグラフ、第4図
はスラグ剥離性確認実験採で用した肉盛溶接法を
示す説明図である。 1……拘束板、2……母材、3……肉盛溶接ビ
ード。
Figure 1 is a graph of experimental results showing the influence of the amount of MgO and TiO2 in flux on the cracking resistance of hardfacing weld metal, and Figure 2 shows the overlay welding method used in the cracking resistance test. An explanatory diagram, Figure 3, shows the effect of the amount of iron oxide in flux on slag removability and
A graph of the experimental results showing the influence of the amount of ZrO 2 , and FIG. 4 is an explanatory diagram showing the overlay welding method used in the experiment to confirm slag removability. 1... Restriction plate, 2... Base metal, 3... Overlay weld bead.

Claims (1)

【特許請求の範囲】 1 軟鋼製外皮の内腔部に、下記成分組成のフラ
ツクスを前記外皮に対する重量比で5〜30%とな
る様に充填してなることを特徴とする硬化肉盛溶
接用のCO2ガスアーク溶接用複合ワイヤ。 (フラツクス組成) TiO2:3〜20%(重量%:以下同じ) 鉄酸化物:5〜15% SiO2:1〜10% ZrO2:5〜20% 金属弗化物:1〜5% MgO:5〜15% Mn:5〜15% Cr:2〜40% Si:1〜10% C:0.2〜5%
[Scope of Claims] 1. For hardfacing welding, characterized in that the inner cavity of a mild steel outer skin is filled with a flux having the following composition so that the weight ratio to the outer skin is 5 to 30%. Composite wire for CO2 gas arc welding. (Flux composition) TiO 2 : 3-20% (weight %: same below) Iron oxide: 5-15% SiO 2 : 1-10% ZrO 2 : 5-20% Metal fluoride: 1-5% MgO: 5-15% Mn: 5-15% Cr: 2-40% Si: 1-10% C: 0.2-5%
JP18620584A 1984-09-05 1984-09-05 Composite wire for co2 gas arc welding for hardening built-up welding Granted JPS6163397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18620584A JPS6163397A (en) 1984-09-05 1984-09-05 Composite wire for co2 gas arc welding for hardening built-up welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18620584A JPS6163397A (en) 1984-09-05 1984-09-05 Composite wire for co2 gas arc welding for hardening built-up welding

Publications (2)

Publication Number Publication Date
JPS6163397A JPS6163397A (en) 1986-04-01
JPH032597B2 true JPH032597B2 (en) 1991-01-16

Family

ID=16184210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18620584A Granted JPS6163397A (en) 1984-09-05 1984-09-05 Composite wire for co2 gas arc welding for hardening built-up welding

Country Status (1)

Country Link
JP (1) JPS6163397A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115696A (en) * 1986-10-31 1988-05-20 Kobe Steel Ltd Flux-cored wire for hard overlay
JP5022428B2 (en) * 2009-11-17 2012-09-12 株式会社神戸製鋼所 MIG arc welding wire for hardfacing and MIG arc welding method for hardfacing
JP5665663B2 (en) * 2011-06-16 2015-02-04 株式会社神戸製鋼所 Submerged arc overlay welding flux
CN103008924B (en) * 2012-12-06 2015-01-14 北京工业大学 Flux-cored wire for overlay welding of forging die and application thereof

Also Published As

Publication number Publication date
JPS6163397A (en) 1986-04-01

Similar Documents

Publication Publication Date Title
US6730876B2 (en) Highly ductile reduced imperfection weld for ductile iron and method for producing same
JPH032597B2 (en)
JP3801186B2 (en) Ultra-thick welded material by multilayer submerged arc welding
JP2002011575A (en) Welding method for steel pipe
JP2675894B2 (en) Flux-cored wire for welding high strength austenitic stainless steel
US5854463A (en) Flux cored wire for stainless steel
JP3182672B2 (en) Internal welding method of clad steel pipe
JPH0673757B2 (en) Large heat input latent arc welding method for thick steel plate
JP5057615B2 (en) Manufacturing method of welded joint
JPS6333941B2 (en)
JP3624727B2 (en) Multi-layer submerged arc welding method for extra-thick steel plates
JPS61147993A (en) Flux cored wire for gas shielded arc welding
JP4516702B2 (en) High toughness low temperature transformation flux cored wire
JPH09206945A (en) Multi-electrode gas shielded one-side welding method
JP3180257B2 (en) Inner surface seam welding method for clad steel pipe
JPS591517B2 (en) CO↓2 shield flux-cored wire for hardfacing
JPH10296486A (en) Flux cored wire for welding 9% nickel steel
JPS6247111B2 (en)
JP3068280B2 (en) Low hydrogen coated arc welding rod
KR20030052604A (en) Titania based flux cored wire
JPS6121750B2 (en)
JPH081338A (en) High heat input multi-layer submerged arc welding method for thick steel plate
JPS61226187A (en) Production of high-alloy steel clad steel pipe
JPS63115696A (en) Flux-cored wire for hard overlay
JPS61132296A (en) Flux cored wire electrode for gas shield arc welding