JPS641069B2 - - Google Patents

Info

Publication number
JPS641069B2
JPS641069B2 JP56066741A JP6674181A JPS641069B2 JP S641069 B2 JPS641069 B2 JP S641069B2 JP 56066741 A JP56066741 A JP 56066741A JP 6674181 A JP6674181 A JP 6674181A JP S641069 B2 JPS641069 B2 JP S641069B2
Authority
JP
Japan
Prior art keywords
region
semiconductor
gate
logic element
semiconductor logic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56066741A
Other languages
English (en)
Other versions
JPS57181167A (en
Inventor
Yoshihiko Mizushima
Masahiro Sakagami
Akio Tamama
Toshiro Ogino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Inc
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56066741A priority Critical patent/JPS57181167A/ja
Publication of JPS57181167A publication Critical patent/JPS57181167A/ja
Publication of JPS641069B2 publication Critical patent/JPS641069B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/80FETs having rectifying junction gate electrodes

Landscapes

  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高速転送動作特性を有し、かつ低消費
電力化が可能でしかも高密度な集積化の容易な例
えばシフト・レジスタ機構の得られる半導体機能
装置に関するものである。
(従来の技術) 従来のこの種の信号転送装置においては、第1
図に示すように全体として1で示され、スイツチ
2の一端が接地され、他端が負荷抵抗4を介して
電源バイアス5に接続している。外部クロツクパ
ルス6,7,8に同期して信号を転送させるに
は、スイツチ2とは別に前段状態の出力信号とシ
フトパルスとのAND論理などを行うために、3
で示す論理回路が必要不可欠であつた。スイツチ
2、論理回路3を具体的に実現する素子として
は、バイポーラトランジスタや電界効果トランジ
スタが用いられ、各要素は互いに分離領域等によ
つて電気的に隔離された状態でないと、本機能装
置のモノシリツク構成は困難であつた。
前述した回路構成では、負荷抵抗やANDゲー
ト自身の占有面積に加えて分離領域なども必要と
なる。更に入、出力伝達のための配線領域も必要
なために、回路の高密度な集積化は困難であつ
た。
一方、従来回路の動作速度はスイツチ2の応答
遅れに加えてゲート3の遅延時期と、配線やトラ
ンジスタの接合部の浮遊容量と直列抵抗効果で生
ずる時定数が付加されて限界があつた。
信号転送装置1を機能的に実現した機能素子と
してプラズマ結合素子(PCD)のみが公知であ
るが、少数キヤリアの注入、拡散効果を利用して
いるため高速度転送動作には限界があつた。
(発明の目的) 本発明はこれらの欠点を除去するため、通常の
プレナ拡散技術によつて比較的容易に製造できる
半導体機能装置、例えばシフトレジスタ機能の得
られる半導体機能装置を提案するものである。
(問題を解決する為の手段) 本願の半導体機能装置を構成する半導体論理要
素は、 第1の導電型の半導体基体内に第2の導電型を
有する環状のゲート領域があり、このゲート領域
で囲まれた半導体主面に第1の導電型を有するソ
ース領域がある。
このような半導体論理要素は、上記ゲート領域
に印加したゲート電圧と上記ソース領域に流れる
ソース電流の間に電流制御形の負性抵抗特性をも
つように構成され、上記半導体基体を共通として
複数形成されている。
なお、後述するように、電流制御形の負性抵抗
は、ゲート電圧とソース電流に限定されず、ゲー
ト電圧とドレイン電流の間でも同様に生ずる構成
とする。
本願の半導体機能装置は、その1の半導体論理
要素のソース領域とゲート領域間に制御電圧を印
加してターンオン状態で生じた電界の変化に基き
当該1の半導体論理要素を隣りの他の少くとも1
つの半導体論理要素のターンオン電圧が低下する
ように各々半導体論理要素を配置している。
(作用) 本発明は、半導体基板内における隣接素子間の
電気的結合効果と外部クロツクパルスとを組み合
わせてシフト動作をさせていて、外部クロツクに
より転送動作を制御している。
(実施例) 先ず本発明の半導体装置の構成例を、平面図で
示した第2図Aについて説明する。この平面図の
単位セルは第5図に示した電界効果トランジスタ
で構成され、ドレインは全て共通に束ねてある。
この場合には主として横型構造の接合型を例とし
て示す。
セル17において小さな電極のソース領域9と
環状形ゲート領域11およびドレイン領域10よ
り電界効果トランジスタが形成されている。電界
効果トランジスタの開閉はゲート領域11の周辺
の空乏層の拡がりを制御するゲート電圧及び隣接
素子の電位変化によつて行われる。定常状態にお
いて、ソース領域9とドレイン領域10とは、ゲ
ート領域11と基板12との間に存在する空乏層
で遮断状態となる条件を満足するよう電極配置、
基板比抵抗及びバイアスを設定する。
良く知られているように、一例としてn形の高
抵抗基板に高濃度のp+層を熱拡散したp+−nの
段階形不純物分布の接合の場合、n形領域に延び
る空乏層(xd)は、{2εs(Vbi−V)/(qNB)}
で与えられる。ここでεsは半導体の誘導率、Vbi
は接合の拡散電位、Vは接合に印加した外部電
圧、qは電子電荷、そしてNBはn領域の不純物
キヤリア濃度をあらわす物理定数である。
例えば、9−11の電極間距離はバイアス電圧
13が10Vの場合、シリコン基板12の比抵抗50
Ωcm(n型)のとき4〜7μm以内、比抵抗が10
Ωcm(n型)のとき3〜5μmの程度以内が設計
の目安となる。バイアス電源の一方の電極端子と
して10のようなラテラル型ドレイン電極の他に
基板の裏面から取る事も出来る。又、ドレイン領
域10とゲート領域11の間隔は論理要素のピツ
チと関係しており、ピツチが50μmの場合は10μ
m〜20μm程度とする。
一方、本論理要素のゲート領域11に印加した
ゲート電圧とソース領域9に流れるソース電流間
の電流電圧特性はpnpnダイオードやUJTなど類
似の電流制御形負性抵抗特性を示す。それは、ソ
ース領域が例えば10μm角と小さく、且つソース
を中心に生じた電導度変調領域内にゲート領域を
配置して電流電圧の正帰還が顕著にあらわれる構
造のためである。
なお、論理要素がターンオン時のソース電流
は、ゲート電流とドレイン電流の和とから成つて
いる。本発明の素子の構造定数では、ソース電流
に占めるドレイン電流はわずかであり、ゲート電
流がほとんどである。従つてソース電流≠ドレイ
ン電流の関係が成立するので、負性抵抗はゲート
電圧とソース電流又はドレイン電流間で得られ
る。
以下にシフト動作原理を述べる。
シフトパルス印加電極14と接続されたゲート
をもつ、あるセル17が第2図Bに示すシフトパ
ルス21の時刻t1でON状態のとき、当該ドレイ
ン電流は領域10から9に向かつて流れ、その流
通電流によつて生じた基板内の電位降下のため、
セル17の半導体基板内領域18の電位はドレイ
ン領域10の電位13よりも降下する。その効果
はセル17の左右両隣りのセルにも基板12を介
して電位変化の影響を与え、領域19及び20の
電位を低下させる。すなわち、セル17をON状
態にすることにより、その両側のセルのスイツチ
ングのしきい値を低下させたことになる。この
時、第2図Bに示すクロツクパルスのタイミング
チヤートの22の相を有するパルスをセル24の
ゲート領域11に印加すると、セル24のゲート
領域周辺の領域19の空乏層は、その右隣りのセ
ルの領域25に比べてより狭くなり、セル24の
チヤネルが開いてソース・ドレイン間が導通状態
に転移する。一たんセル24がON状態になる
と、シフトパルスの電圧でON状態は保持され
る。その後21のシフトパルスをハイからロウレ
ベルにすることによつて、領域18の空乏層を拡
げてチヤネルを閉じセル17をオフ状態にする。
このような動作を順次くり返えすことにより、オ
ン信号をクロツクのシフトパルスの周波数に対応
した速度で転送させシフトレジスタ動作が行われ
る。
空乏層の開閉動作は、オン電流によるバルク内
の電位降下の依存性を敏感に受ける事から、例え
ば第3図に示すようにドレイン電極の形状を鋸歯
状にするなどして、電位分布に非対称性を与え、
一方向性を有する転送特性を構造的に制御でき
る。前記の電位分布に非対称性を付与する手段に
は、この他にもイオン注入法等を用いて基板の比
抵抗に分布をもたせ、電位分布を一方向に拡げる
かあるいは狭ばめるなどの操作が出来る。これら
の非対称電位分布をもつたセルアレイを用いる事
により、シフトパルス電圧の動作範囲が拡がり、
大きな動作マージンが得られる。
2相クロツクによる2相シフトレジスタを実現
するには、第4図Aに示す電極配置例にて、コン
デンサ26を導入すると共に、第4図Bに示す例
えば27,28のような重なりのある2相シフト
パルスをゲートの入力端子29,30に印加する
事によつて、オン状態を蛇行状に矢印方向に転送
する。
本構成の動作原理は以下の通りである。ゲート
入力端子29に接続されている単位セル32が
OFFからON状態に変化したとき、隣接セル33
もON状態となるがソースはコンデンサ26を介
して接地されているため、ON状態はコンデンサ
の端子電圧が低い間だけである。このときコンデ
ンサの容量値Cはセル33のゲートからソースに
至る直列抵抗成分Rと該コンデンサの容量値Cで
定める時定数CRを与えるため、シフトパルスの
クロツク周波数に比して小さな値を選ぶ。セル3
3がON状態となつた結果、対向するセル35,
34の近傍の電位が低下ししきい値も下がる。一
方、シフトパルス30により、セル35,34は
共にON状態になるが、ソースが接地されている
セル34の方がより長時間ON状態を保持でき
る。その結果、ON状態がセル32から34に転
送可能となる。
ゲート近傍の電位の検出方法として第5図に示
したオーミツク拡散電極31を該素子の近傍又は
内部に設ける。本出力電極は低出力インピーダン
ス特性をもつ回路構成のため、大きな電流及び電
圧を駆動出来、したがつてフアンアウトが大きい
ため回路設計における制約が少くいろいろな応用
がある。
(発明の効果) 以上説明したように、半導体基板内における隣
接素子間の電気的結合効果と、外部クロツクパル
スとを組み合わせて、シフト動作をさせる事によ
つて、素子間分離領域や隣接素子相互間の信号伝
達のための入、出力配線が不要となる。また、負
荷抵抗も省けるため、本機能素子は高密度、大容
量集積回路に適した構造である。更に、外部クロ
ツクにより転送動作が制御されているため、安定
でしかも周辺回路との同期をとる事が容易であ
る。少数キヤリアを利用しないこと、比較的高比
抵抗基板を利用するため接合容量を小さく出来そ
の充放電時定数を短くとれることなどから高速動
作が容易になる。ノーマリ・オフ形の回路構成の
ため、スタンバイ時における消費電力は無視出
来、また、動作時においても動作電圧には低電圧
動作に対して本質的な制限がなく低電力動作が可
能である。なお、本実施例ではn型シリコン半導
体基板を例にして説明したが、シリコン以外の材
料及びP型基板とそれに対応する電極層を用いて
も得られる効果は同様に大きい。
【図面の簡単な説明】
第1図は従来形シフトレジスタの概念図、第2
図以下は本発明の実施例で第2図Aは平面図、第
2図Bはそれを駆動するシフトパルスのタイミン
グチヤート。第3図は電位分布に非対称性をもた
せたシフトレジスタの一例。第4図Aは2相駆動
形シフトレジスタの実施例で第4図Bはその駆動
シフトパルスタイミングチヤート。第5図は単位
セルの一例。 1……従来形シフトレジスタ、2……スイツ
チ、3……ANDゲート、4……負荷抵抗、5…
…電源、6,7,8……ANDゲート入力端子、
9……ソース領域、10……ドレイン領域、11
……ゲート領域、12……基板層、13……電
源、14,15,16……ゲート電極入力端子、
17……単位セル、18,19,20……基板
層、21,22,23……シフトパルス、24…
…単位セル、25……基板層、26……コンデン
サ、27,28……2相シフトパルス、29,3
0……ゲート電極端子、31……出力電極、3
2,33,34,35……単位セル。

Claims (1)

  1. 【特許請求の範囲】 1 第1の導電型式を有する半導体基体内に形成
    された第2の導電型式を有する環状の第1の領域
    から成るゲート領域と、 該ゲート領域で囲まれた半導体主面に形成され
    た第1の導電型式を有する第2の領域から成るソ
    ース領域と、 前記ゲート領域に対し、該ソース領域と反対側
    に配置された第1の導電型式を有する第3の領域
    から成るドレイン領域とより成り、 前記ゲート領域に印加したゲート電圧と前記ソ
    ース領域に流れるソース電流の間に電流制御形の
    負性抵抗特性を呈するようになれされた構成の半
    導体論理要素の複数が、前記半導体基体を共通と
    して形成され、 その1の半導体論理要素の前記ソース領域と前
    記ゲート領域間に印加した制御電圧によるターン
    オン状態で生じた電界の変化に基き、当該1の半
    導体論理要素と隣る他の少くとも1つの半導体論
    理要素がそのターンオン電圧が低下するに十分な
    関係が得られるべく互の間隔を保つて配され、各
    半導体論理要素の前記ゲート領域には、ターンオ
    ン電圧が低下した状態の半導体論理要素のみをタ
    ーンオン状態とし得る制御電圧が印加され、 上記制御電圧により、半導体論理要素のターン
    オン状態の転送を行うことを特徴とする半導体機
    能装置。
JP56066741A 1981-05-01 1981-05-01 Semiconductor functional device Granted JPS57181167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56066741A JPS57181167A (en) 1981-05-01 1981-05-01 Semiconductor functional device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56066741A JPS57181167A (en) 1981-05-01 1981-05-01 Semiconductor functional device

Publications (2)

Publication Number Publication Date
JPS57181167A JPS57181167A (en) 1982-11-08
JPS641069B2 true JPS641069B2 (ja) 1989-01-10

Family

ID=13324598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56066741A Granted JPS57181167A (en) 1981-05-01 1981-05-01 Semiconductor functional device

Country Status (1)

Country Link
JP (1) JPS57181167A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144970A (ja) * 1984-01-06 1985-07-31 Hamamatsu Photonics Kk 半導体装置

Also Published As

Publication number Publication date
JPS57181167A (en) 1982-11-08

Similar Documents

Publication Publication Date Title
US3819959A (en) Two phase charge-coupled semiconductor device
US3356858A (en) Low stand-by power complementary field effect circuitry
US4161038A (en) Complementary metal-ferroelectric semiconductor transistor structure and a matrix of such transistor structure for performing a comparison
US4158239A (en) Resistive gate FET flip-flop storage cell
KR920006014B1 (ko) 입력버퍼 및 임계전압 증가방법
US4458261A (en) Insulated gate type transistors
KR960012249B1 (ko) 래치업 방지회로를 가진 cmos 집적회로장치
JPS5918870B2 (ja) 半導体集積回路
US3134912A (en) Multivibrator employing field effect devices as transistors and voltage variable resistors in integrated semiconductive structure
US3549911A (en) Variable threshold level field effect memory device
US4150392A (en) Semiconductor integrated flip-flop circuit device including merged bipolar and field effect transistors
US4510516A (en) Three-electrode MOS electron device
US3662356A (en) Integrated circuit bistable memory cell using charge-pumped devices
US3543052A (en) Device employing igfet in combination with schottky diode
JPH09270196A (ja) 電源切り替え回路
US4132903A (en) CCD output circuit using thin film transistor
US4547790A (en) Semiconductor device having contacting but electrically isolated regions of opposite conductivity types
JPH0152906B2 (ja)
JPS5944720B2 (ja) ダイナミック半導体記憶装置
US3582975A (en) Gateable coupling circuit
US3591840A (en) Controllable space-charge-limited impedance device for integrated circuits
JPS641069B2 (ja)
US4320312A (en) Smaller memory cells and logic circuits
GB2125215A (en) Gated diode
US4374334A (en) Signal comparator apparatus