JPS63973A - Operating method for fuel cell - Google Patents

Operating method for fuel cell

Info

Publication number
JPS63973A
JPS63973A JP61140081A JP14008186A JPS63973A JP S63973 A JPS63973 A JP S63973A JP 61140081 A JP61140081 A JP 61140081A JP 14008186 A JP14008186 A JP 14008186A JP S63973 A JPS63973 A JP S63973A
Authority
JP
Japan
Prior art keywords
anode
cathode
flow rate
control valve
inlet flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61140081A
Other languages
Japanese (ja)
Inventor
Masanori Yamaguchi
山口 雅教
Yoshimasa Kubota
久保田 善征
Takeo Kuwabara
桑原 武男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61140081A priority Critical patent/JPS63973A/en
Publication of JPS63973A publication Critical patent/JPS63973A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To reduce sufficiently the pressure difference generated in an emergent stop, by operating a cut-off or a flow restriction of a cathode inlet flow control valve at a specific time after the pressure difference between the gas space of the cathode and that of the anode passes the maximum value. CONSTITUTION:To a control device 14 to operate the anode and the cathode flow control valves 6 and 8, a load cut-off signal is input from a cut-off command device 18, and the signal from a pressure difference transmitter 13 is input at the same time. Especially, the signal from the pressure difference transmitter 13 is arranged to input to the control device 14 to control the cathode inlet flow control valve 6. Although the operation in the load cut-off condition is carried out to reduce or cut off the hydrogen gas flow by the anode inlet flow control valve 8 just at the time of the load out-off command, the flow cut-off or reduction of the cathode inlet flow control valve 6 is operated at an adequate time after the pressure difference between the anode and the cathode spaces passes the maximum value. Therefore, the cathode space pressure is delayed, and the pressure difference with the anode space can be made smaller sufficiently.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料電池の運転万法K係り,特に急激な負荷変
動や負荷遮断時における運転万法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to how to operate a fuel cell, and particularly to how to operate a fuel cell during sudden load changes or load interruptions.

〔従来の技術〕[Conventional technology]

従来一般に採用されているこの種電池の運転方法を,そ
の燃料電池の概略プラントとともに説明すると,第3図
において,1は電池容器,2はカソードのガス空間,3
ぱアノードのガス空間を示している。定常状態において
は電池容器には入口側から弁4を介して窒素が流入し、
出口側ではカソード後流側K圧力損失要素5を介して接
続されている。カソード系ではカソード入口流量調節弁
6を介してカソードのガス空間2に空気が流入し、t流
発生K必要な酸素を消費する。その後はカソード後流側
に排出され.電池容器からの窒素と合流した後、例えば
熱交換器、リホーマ燃焼部のノズル等の圧力損失7を経
てリホーマ燃焼装置11に流入する。一万アノード系で
はリホーマプロセス側(図示せず)で発生した水素を含
む改質ガスがアノード入口流量調節弁8を介してアノー
ドのガス空間3に流入し,発電に必要な水素を消費する
。そしてその後、アノード後流側に設置された差圧調節
弁9および例えば熱交換器やリホーマ燃焼装置のノズル
等により形成される圧力損失10を介してリホーマ燃焼
装[11へ流入する。
To explain the operating method of this type of battery that has been generally adopted in the past, together with a schematic plant of the fuel cell, in Fig. 3, 1 is a battery container, 2 is a cathode gas space, and 3 is a fuel cell.
The gas space of the anode is shown. In a steady state, nitrogen flows into the battery container from the inlet side through the valve 4.
On the outlet side, the cathode is connected via a pressure loss element 5 on the downstream side. In the cathode system, air flows into the gas space 2 of the cathode via the cathode inlet flow control valve 6, generating a t-flow and consuming the necessary oxygen. It is then discharged to the downstream side of the cathode. After combining with nitrogen from the battery container, it flows into the reformer combustion apparatus 11 through a pressure loss 7 such as a heat exchanger and a nozzle of the reformer combustion section. In the 10,000 anode system, reformed gas containing hydrogen generated on the reformer process side (not shown) flows into the anode gas space 3 via the anode inlet flow control valve 8, consuming the hydrogen necessary for power generation. . Thereafter, it flows into the reformer combustion equipment [11] through a pressure loss 10 formed by, for example, a heat exchanger, a nozzle of the reformer combustion equipment, and the like and a differential pressure control valve 9 installed on the downstream side of the anode.

また電池で発生した直流電流の概念的な経路を12A,
12Bとして示す。電池で発生した直流電流は直流遮断
器13を介して更に外部の機器と接続される。
Also, the conceptual path of the DC current generated in the battery is 12A,
Shown as 12B. The DC current generated by the battery is further connected to external equipment via a DC breaker 13.

このようなプラントにおいてその運転方法を説明すると
、第4図は緊急停止運転法のタイムチャートを示すもの
であるが、緊急停止時においては負荷電流を遮断(第3
図の直流遮断器13にて)すると同時にカソード入口流
量,アノード入口流量を減少(B断指令装置18,制御
装置14及び弁6,8にて)させる。
To explain the operating method in such a plant, Fig. 4 shows a time chart of the emergency stop operation method.
At the same time, the cathode inlet flow rate and the anode inlet flow rate are decreased (by the B disconnection command device 18, the control device 14, and the valves 6 and 8).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この場合第2図のように負荷電流は瞬時に遮断されるが
流量調節弁は機械的K動作するため,遮断又は所定の流
量まで低減するまでに電流遮断に比較し時間がかかる。
In this case, as shown in FIG. 2, the load current is cut off instantaneously, but since the flow rate control valve operates mechanically, it takes more time to cut it off or reduce the flow rate to a predetermined level than when cutting off the current.

そのため電流遮断後アノードのガス空間では消費されて
いた水素が余分となりアノード入口流量が低減し,アノ
ード出口側の差圧調節弁9(差圧伝送器16にて作動)
がカソード・アノードのガス空間間の差圧を調整できる
状態になるまではアノードのガス空間側の圧力が上昇し
てしまう。負荷遮断時〈はアノード側の流量は出来る限
り速く所定流量まで低減又は遮断して所定流量の窒素を
流入させることが必要であり,この運転方法では、アノ
ード単独でもアノードの圧力がカソードに対して増大す
るのに,さらにカソード入口流量を低下させるのでカソ
ード・アノード間の差圧はさらK増大してしまい電池K
悪影響を及ぼす嫌いがあった。
Therefore, after the current is cut off, the consumed hydrogen becomes redundant in the gas space of the anode, reducing the anode inlet flow rate, and the differential pressure control valve 9 (operated by the differential pressure transmitter 16) on the anode outlet side is activated.
The pressure on the gas space side of the anode will increase until the pressure difference between the cathode and anode gas spaces can be adjusted. When the load is cut off, the flow rate on the anode side must be reduced to a predetermined flow rate or cut off as quickly as possible to allow a predetermined flow rate of nitrogen to flow in. In this operating method, even if the anode is alone, the pressure of the anode is lower than that of the cathode. However, since the cathode inlet flow rate is further decreased, the differential pressure between the cathode and the anode further increases by K, and the battery K
There was a dislike that had a negative influence on me.

尚この種運転方法に関連するものとしては特開昭59−
149659号が挙げられる。
Regarding this type of operation method, Japanese Patent Application Laid-open No. 1983-
No. 149659 is mentioned.

本発明は以上のことにかんがみなされたものでアり,そ
の目的とするところは,燃料電池プラントの緊急停止時
の発生差圧を充分低減することができるこの糧電池の運
転方法を提供するにある。
The present invention has been made in consideration of the above, and its purpose is to provide a method of operating a fuel cell that can sufficiently reduce the differential pressure generated during an emergency stop of a fuel cell plant. be.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明は水素を含むガスの流量を調節するアノ
ード入口流t調節弁の制御K,差圧伝送器の信号をとυ
込み、カソードのガス空間とアノードのガス空間との差
圧が最大値を通過した後の所定の時点で前記カソード入
口流量調節弁を遮断あるいは流量低減動作を行なわせる
ようにし,所期の目的を達成するようにしたものである
That is, the present invention controls the anode inlet flow t control valve K for regulating the flow rate of gas containing hydrogen, the signal of the differential pressure transmitter υ
At a predetermined point after the differential pressure between the gas space of the cathode and the gas space of the anode has passed the maximum value, the cathode inlet flow rate control valve is shut off or the flow rate is reduced, thereby achieving the desired purpose. It was designed to be achieved.

〔発明の実施例〕[Embodiments of the invention]

以下図示した実施例に基づいて本発明を説明する。 The present invention will be explained below based on the illustrated embodiments.

第1図Kはその運転方法を説明するための概略プラント
が示されている。前述した第3図と同一装置及び部品に
は同一符号が付されている。
FIG. 1K shows a schematic diagram of the plant for explaining its operating method. The same devices and parts as in FIG. 3 described above are given the same reference numerals.

第1図において,アノード及びカソード流i調節弁6,
8を作動させる制御装置14Kは、従来同様遮断指令装
置18からの負荷電流遮断信号が取シ入れられることは
勿論,さらに差圧伝送器13からの信号が取シ入れられ
るよう洗形成されている。そしてこの場合特にこの差圧
伝送器からの信号はカソード入口流量調節弁6を制御す
る制御装置14Kとシ込まれるように形成されている。
In FIG. 1, anode and cathode flow control valves 6,
The control device 14K that operates the control device 8 is configured so as to receive not only the load current cutoff signal from the cutoff command device 18 but also the signal from the differential pressure transmitter 13 as in the conventional case. . In this case, the signal from the differential pressure transmitter is particularly configured to be input to the control device 14K that controls the cathode inlet flow control valve 6.

そして負荷遮断時の運転は.負荷遮断指令と同時Kアノ
ード入口流量調節弁8は水素ガスの流量低下あるいは遮
断が行なわれるが、カソード入口流量調節弁6の流量遮
断あるいはその低減は,カソード空間とアノード空間と
の差圧が最大値を通過した後の適描な時間に行なわれる
のである。
And what about operation during load shedding? Simultaneously with the load cutoff command, the anode inlet flow rate control valve 8 reduces or cuts off the flow rate of hydrogen gas, but the flow rate of the cathode inlet flow rate control valve 6 is cut off or reduced only when the differential pressure between the cathode space and the anode space is at its maximum. It is done at a suitable time after passing through the value.

このようK運転すると、カソード空間側の圧力が時間的
にずれアノード空間との圧力差を充分小さくすることが
できるのである。
When the K operation is performed in this manner, the pressure on the cathode space side is temporally shifted, and the pressure difference with the anode space can be made sufficiently small.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明してきたようく水素を含むガスの流量
を調節するアノード入口流量調節弁の制御に,差圧伝送
器の信号をとり込み,カソードのガス空間アノードのガ
ス空間との差圧が最大値を通過した後の所定の時点でカ
ソード入口流#調節弁を遮断若し〈ぱ流量低減動作を行
なわせるようにしたから,燃料電池プラントの緊急停止
時の発生差圧を充分低減することができる。
As described above, the present invention incorporates a signal from a differential pressure transmitter to control the anode inlet flow rate control valve that regulates the flow rate of hydrogen-containing gas, and the differential pressure between the cathode gas space and the anode gas space is Since the cathode inlet flow control valve is shut off or the flow rate is reduced at a predetermined point after passing the maximum value, it is possible to sufficiently reduce the differential pressure that occurs during an emergency stop of the fuel cell plant. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の燃料電池の運転方法を説明するための
概略プラント図,第2図はその運転方法のタイムチャー
ト、第3図は従来の燃料電池の運転方法を説明するため
の概略プラント図,第4図はその運転方法のタイムチャ
ートである。 2・・・カソードのガス空間、3・・・アノードのガス
空間,6・・・カソード入口流量調節弁S8・・・アノ
ード入口R.量調節弁,9・・・差圧調節弁,11・・
・リホ−?燃焼装置、13・・・直流遮断器,14・・
・制御装置、16・・・差圧伝送器。
Fig. 1 is a schematic plant diagram for explaining the operating method of the fuel cell of the present invention, Fig. 2 is a time chart of the operating method, and Fig. 3 is a schematic plant diagram for explaining the operating method of the conventional fuel cell. 4 are time charts of the operating method. 2...Cathode gas space, 3...Anode gas space, 6...Cathode inlet flow rate control valve S8...Anode inlet R. Volume control valve, 9...Differential pressure control valve, 11...
・Reho? Combustion device, 13... DC circuit breaker, 14...
-Control device, 16...differential pressure transmitter.

Claims (1)

【特許請求の範囲】[Claims] 1、水素を含むガスがアノード入口流量調節弁を介して
流入し、電流発生に必要な水素を消費するアノードと、
該アノードに隣接して配置され、空気がカソード入口流
量調節弁を介して流入し、電流発生に必要な酸素を消費
するカソードと、該カソードのガス空間と前記アノード
のガス空間との差圧を検出し信号を発する差圧伝送器と
、該差圧伝送器からの信号に基づき作動し、カソードの
ガス空間とアノードのガス空間との差圧を調節する差圧
調節弁と、前記カソード及びアノードからの排出ガスを
燃焼させるリホーマ燃焼装置と、前記アノード・カソー
ドより発生した直流電流を遮する直流遮断器と、前記ア
ノード入口及びカソード入口流量調節弁を制御する制御
装置とを備え、負荷電流遮断時に前記制御装置により前
記アノード入口及びカソード入口流量調節弁を作動させ
ガス流量を低減若しくは遮断するようになした燃料電池
の運転方法において、前記水素を含むガスの流量を調節
するアノード入口流量調節弁の制御に、前記差圧伝送器
の信号をとり込み、カソードのガス空間とアノードのガ
ス空間との差圧が最大値を通過した後の所定の時点で前
記カソード入口流量調節弁を遮断若しくは流量低減動作
を行なわせるようにしたことを特徴とする燃料電池の運
転方法。
1. An anode into which a hydrogen-containing gas flows through an anode inlet flow rate control valve and consumes the hydrogen necessary for generating electric current;
a cathode disposed adjacent to the anode, into which air enters through a cathode inlet flow control valve to consume the oxygen necessary for current generation; a differential pressure transmitter that detects and issues a signal; a differential pressure regulating valve that operates based on the signal from the differential pressure transmitter to adjust the differential pressure between the cathode gas space and the anode gas space; and the cathode and anode gas space. a reformer combustion device that burns exhaust gas from the anode/cathode, a DC breaker that interrupts the direct current generated from the anode/cathode, and a control device that controls the anode inlet and cathode inlet flow rate control valves, and a load current interrupter. In the method of operating a fuel cell, the anode inlet flow rate control valve and the cathode inlet flow rate control valve are operated by the control device to reduce or cut off the gas flow rate, wherein the anode inlet flow rate control valve adjusts the flow rate of the hydrogen-containing gas. The signal from the differential pressure transmitter is taken in to control the cathode inlet flow rate control valve or the flow rate is adjusted at a predetermined point after the differential pressure between the cathode gas space and the anode gas space has passed the maximum value. A method of operating a fuel cell, characterized by causing a reduction operation to be performed.
JP61140081A 1986-06-18 1986-06-18 Operating method for fuel cell Pending JPS63973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61140081A JPS63973A (en) 1986-06-18 1986-06-18 Operating method for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61140081A JPS63973A (en) 1986-06-18 1986-06-18 Operating method for fuel cell

Publications (1)

Publication Number Publication Date
JPS63973A true JPS63973A (en) 1988-01-05

Family

ID=15260517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61140081A Pending JPS63973A (en) 1986-06-18 1986-06-18 Operating method for fuel cell

Country Status (1)

Country Link
JP (1) JPS63973A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59149659A (en) * 1983-02-02 1984-08-27 Toshiba Corp Control device for fuel cell
JPS59149666A (en) * 1983-02-02 1984-08-27 Toshiba Corp Control system for fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59149659A (en) * 1983-02-02 1984-08-27 Toshiba Corp Control device for fuel cell
JPS59149666A (en) * 1983-02-02 1984-08-27 Toshiba Corp Control system for fuel cell

Similar Documents

Publication Publication Date Title
US5648182A (en) Fuel cell power generation system
JP2660097B2 (en) Fuel cell generator
US8088530B2 (en) Method of operating a fuel cell system in standby/regenerative mode
CA2289291A1 (en) Control system and method for controlling a gas generating system
US7611785B2 (en) Generation method with fuel cell generation system and fuel cell generation system
CA1131302A (en) Hydrogen/oxygen fuel cell with control ensuring prevailing hydrogen pressure
JPS63973A (en) Operating method for fuel cell
JP2004178990A (en) Oxidant flow rate control method of fuel cell system
JPS58163182A (en) Fuel cell
JPH0652665B2 (en) Fuel cell operation method
EP1995811A1 (en) Method for purging pem-type fuel cells
JPS6356673B2 (en)
JPS59105275A (en) Fuel cell power generating system
JP2931372B2 (en) Operating method of fuel cell power generation system
JPS6231954A (en) Fuel cell differential pressure control device
JP2005129462A (en) Fuel cell system
JPS6224570A (en) Fuel cell power generating system
JPH10255827A (en) Fuel cell power generation system
JPS58166672A (en) Operation control method of fuel cell
JP2011529246A (en) Discharge means and associated adjustment modes for fuel cell systems
JPH0461466B2 (en)
JPH06223856A (en) Fuel cell generator
JP2006302612A (en) Fuel cell system
JPS60157163A (en) Fuel cell system
JPH06251786A (en) Protecting system for solid polymer electrolyte fuel cell