JPS59149666A - Control system for fuel cell - Google Patents

Control system for fuel cell

Info

Publication number
JPS59149666A
JPS59149666A JP58014524A JP1452483A JPS59149666A JP S59149666 A JPS59149666 A JP S59149666A JP 58014524 A JP58014524 A JP 58014524A JP 1452483 A JP1452483 A JP 1452483A JP S59149666 A JPS59149666 A JP S59149666A
Authority
JP
Japan
Prior art keywords
pressure difference
electrode
fuel
air
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58014524A
Other languages
Japanese (ja)
Inventor
Takuma Yuasa
湯浅 琢磨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58014524A priority Critical patent/JPS59149666A/en
Publication of JPS59149666A publication Critical patent/JPS59149666A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04783Pressure differences, e.g. between anode and cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To enable the quantity of the gas flow in each electrode to be controlled corresponding to the change in electric load while restricting pressure difference to within a given range by correcting the control degree of a gas- flow-controlling valve according to the signal of pressure difference between an air and a fuel electrode. CONSTITUTION:When electric load changes, the direct delivery of the opening degree commands of function generators 13 and 14 to control valves 31 and 32 causes a high change in pressure difference on the air side. A pressure difference detected with a pressure difference detector 15, after being delivered through PID controllers 16 and 17, is added to each of the outputs of the function generators 13 and 14 of an air electrode 4 and a fuel electrode 5 in adders 16 and 17. The polarity of a signal to be added is selected in such a manner that pressure difference generated is suppressed only by feed forward control. The PID controllers 16 and 17 control the degree and the speed of suppression of the pressure difference.

Description

【発明の詳細な説明】 〔発明の伎術分野〕 本発明は燃料゛覗孔の制御装置に1関する。[Detailed description of the invention] [Artistic field of invention] The present invention relates to a control device for a fuel sight hole.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

第1図を参照して従来考えられていた燃料電池の制御装
置およびその制イ卸方法を説明する。
A conventional fuel cell control device and its control method will be described with reference to FIG.

図に於て、1は燃料電池本体、2は空気極ガススペース
、3は燃料極ガススペース、4は空気極、5は燃料像、
6は空気極(陽極)4と燃料極(陰憧)5との間に負荷
8を接続する導線である。燃料電池の制御装置9は電池
本体1への空気および燃料流量の制御に関し、以下のよ
うな方式をとっている、 ・電池本俸1への空気および燃料流量の制御は、まず゛
屯池の出力゛電流を一流検出器7により検出して、それ
を関数発生要素(関数発生器またはマイクロプロセッサ
)11および12に入力する。関数発生要素11.12
では例えば第2図に示すように、出力′電流IDCに対
して空気または燃料流量の関係があらかじめ予測された
関数にて設定されている。この関数値は通常同一出力′
電流値に対して空気側が燃料側の約4倍の流量に設定さ
れる。
In the figure, 1 is the fuel cell body, 2 is the air electrode gas space, 3 is the fuel electrode gas space, 4 is the air electrode, 5 is the fuel image,
A conductive wire 6 connects a load 8 between the air electrode (anode) 4 and the fuel electrode (yin-dong) 5. The control device 9 of the fuel cell uses the following method for controlling the air and fuel flow rate to the battery main body 1. - Control of the air and fuel flow rate to the battery main body 1 is performed first by controlling the output of the tun pond. ``The current is detected by the first-line detector 7 and inputted to the function generating elements (function generator or microprocessor) 11 and 12. Function generation element 11.12
For example, as shown in FIG. 2, the relationship between the output current IDC and the air or fuel flow rate is set as a previously predicted function. This function value usually has the same output′
The flow rate on the air side is set to about four times that on the fuel side with respect to the current value.

したがって、この関数発生要素を通過すると、所定の出
力電流に対する所望の空気および燃料流量の設定値が得
られる。さらにこの出力はそれぞれ空気および′燃料の
流量と調節弁81.82の開度との関係を表わす関数発
生要素13.14を通つて、その出力信号21.22に
より、墾気および燃料の流電調節弁31.32を1t1
」呻する。すなわ−らフィードフォワード市1j御であ
る。
Passing through this function generating element therefore provides the desired air and fuel flow settings for a given output current. Furthermore, this output is passed through a function generating element 13.14 representing the relationship between the flow rate of air and fuel and the opening degree of control valve 81. Control valve 31.32 1t1
” groans. In other words, we are in charge of feedforward city 1j.

このとき、同時に実流量が測定され、所望の流量と食い
違いがあるときは、フィードバック制御によ勺この調節
弁の開度な補正することも通帛行なわれる。
At this time, the actual flow rate is measured at the same time, and if there is a discrepancy with the desired flow rate, feedback control is also used to correct the opening degree of the control valve.

このようにして所定の電気的負荷8に対応して゛電池の
出力屯流が変化し、この41flf、に対応して空気極
および燃料極のガス流量が確保され、ついにはシステム
として安定に運転される。
In this way, the output current of the battery changes in response to the predetermined electrical load 8, and the gas flow rate of the air electrode and fuel electrode is ensured in response to this 41flf, and finally the system is operated stably. Ru.

ところで、特にりん酸屋の燃料電池にあっては、′電池
本体1のハード構成上空気極4と燃料極5の間の圧力差
(以下差圧と呼ぶ)に対して非常に弱い性質をもってい
る。そこで、電気的負荷の変化に対して、上記の手順に
従って空気および燃料の流量が制御されると、過渡的に
゛電池木本1にてこの差圧が発生する。これは燃料極5
側に比べ空気極49111の流量の方が2倍も多く゛電
極を通過するために、空気極側の圧力変化が大きく現わ
れることによるものが主な原因と考えられる。
By the way, especially in the case of fuel cells manufactured by phosphate manufacturers, the hardware structure of the cell body 1 makes them extremely vulnerable to the pressure difference (hereinafter referred to as differential pressure) between the air electrode 4 and the fuel electrode 5. . Therefore, when the flow rates of air and fuel are controlled according to the above-described procedure in response to changes in electrical load, this differential pressure is transiently generated at the battery base 1. This is fuel electrode 5
The main cause is thought to be that the flow rate at the air electrode 49111 is twice as large as that at the air electrode 49111 and passes through the electrode, resulting in a large pressure change on the air electrode side.

この差圧がある値以上大きくなると、電池の破壊に至る
か、そうでなくても電池本体材料の劣化を紹き、寿命の
低下をきたすことにつながる。
If this differential pressure increases beyond a certain value, the battery may be destroyed, or even if not so, it may introduce deterioration of the battery main body material and shorten its lifespan.

〔発明の目的〕[Purpose of the invention]

本発明の目的とする戸ころは、上記のような問題点に鑑
み、空気−燃料極間の差圧検出器を備え、電池本体への
ガス流量の制御信号として、この差圧信号も取り入れ、
この信号によって上記調節弁の制(tllliを補正す
ることにより、差圧を所定値内に抑えながら、′−電気
的負荷変化に対応して、冬物のガス流量を制御すること
のできる燃料゛電池のガス流量制御装置を提供すること
にある。
In view of the above-mentioned problems, the door roller that is the object of the present invention is equipped with a differential pressure detector between the air and fuel electrodes, and also incorporates this differential pressure signal as a control signal for the gas flow rate to the battery body.
By correcting the control valve (tlli) using this signal, the fuel cell can control the gas flow rate in winter in response to electrical load changes while suppressing the differential pressure within a predetermined value. An object of the present invention is to provide a gas flow rate control device.

〔発明の実施例〕[Embodiments of the invention]

第3図は本発明による装置の一実施例を示す概略構成図
である。
FIG. 3 is a schematic diagram showing an embodiment of the apparatus according to the present invention.

第3図において9は本発明の副側1装置で、15は空気
極4と燃料俟5との間の差圧を検出する差圧検出器であ
り、16.17はその出力信号を受けてPID制御を行
なう制御器である。また18゜19は関数発生要素13
.14の出力とPID?li制御器16.17の出力と
を各々加算する加算器である。
In FIG. 3, numeral 9 denotes the sub-side 1 device of the present invention, numeral 15 denotes a differential pressure detector for detecting the differential pressure between the air electrode 4 and the fuel tube 5, and numeral 16.17 receives the output signal. This is a controller that performs PID control. Also, 18°19 is the function generation element 13
.. 14 output and PID? This is an adder that adds the outputs of the li controllers 16 and 17, respectively.

今、電気的負荷が変化した場合を考えると、前に述べた
ように関数発生要素13.14の出力が調節弁81.8
2のl;T−1K指令を出すところまでは同じである。
Now, if we consider the case where the electrical load changes, the output of the function generating element 13.14 will change to the control valve 81.8 as described above.
2-1: The steps up to issuing the T-1K command are the same.

この開度指令をそのま1各々の調節弁a 1.82に対
して出すと、空気側に高い差圧の変化が発生する。そこ
でこの差圧を差圧検出器15にょシ検出してPIDID
制御器167を通し、空気極4および燃料極5の各々の
rJJ数発生要素18.14の出力と加算する。加算す
る1i号はフィードフォワードVii制御のみにより発
生する差圧を抑えるように極性が選択される。1)ID
制御器16.17はこの差圧を抑える量と速さを調整す
るためのものである。
If this opening command is directly issued to each control valve a1.82, a high differential pressure change will occur on the air side. Therefore, this differential pressure is detected by the differential pressure detector 15 and PIDID is detected.
It is passed through the controller 167 and added to the outputs of the rJJ number generating elements 18 and 14 of each of the air electrode 4 and the fuel electrode 5. The polarity of No. 1i to be added is selected so as to suppress the differential pressure generated only by the feedforward Vii control. 1) ID
Controllers 16 and 17 are for adjusting the amount and speed of suppressing this differential pressure.

〔発明の効果〕〔Effect of the invention〕

このようVこして、本発明Vこよれは空気極と燃料帖と
の差圧を抑1tIll Lながら、゛電気的負荷の急変
に対して空気極および燃料極のガス流量を迅速に対応さ
せることができる。
Thus, the purpose of the present invention is to suppress the differential pressure between the air electrode and the fuel electrode while quickly adjusting the gas flow rates of the air electrode and fuel electrode to sudden changes in electrical load. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1因は燃料電池と従来考えられた空気極および燃料極
の流を制御の制御装置の構成を示す図、第2図はフィー
ドフォワード制御における燃料電池の出力電流に対する
空気流量および燃料流量の関係を示す図、第3図は本発
明の一実施例を示す概略構成図である。 1・・・燃料電池本体  2・・・空気極ガススペース
3・・・燃料ガススペース 4・・・空気極(陽極)5
・・・燃料極(陰極) 6・・・導線7°・・出力電流
検出器 8・・・負荷9・・制御装置 11. L9・
・・空気便側関数発生要素12、14・・・燃#+極1
i11関数発生要素15・・・差圧検出器 16・・・
空気換側PID訓御回路17 ・・・ヵセ(料1傘…リ
 pi: D@H卸回路18、19・・・加算器 21
・・・空気極制御信号22・・・燃料極1tjlJ御信
号 31・・・空気極流量調節弁32・・・燃料極流童
調節弁 第1図 第2図 ゴDCエフ7豐;筬 第3図
The first factor is a diagram showing the configuration of a control device that controls the flow of the air electrode and fuel electrode, which was conventionally thought to be a fuel cell. Figure 2 shows the relationship between the air flow rate and fuel flow rate with respect to the output current of the fuel cell in feedforward control. FIG. 3 is a schematic configuration diagram showing an embodiment of the present invention. 1... Fuel cell body 2... Air electrode gas space 3... Fuel gas space 4... Air electrode (anode) 5
...Fuel electrode (cathode) 6...Conductor 7°...Output current detector 8...Load 9...Control device 11. L9・
...Air flight side function generating elements 12, 14...Fuel #+pole 1
i11 Function generating element 15...Differential pressure detector 16...
Air ventilation side PID control circuit 17 ... case (feed 1 umbrella ... repi: D@H wholesale circuit 18, 19 ... adder 21
...Air electrode control signal 22...Fuel electrode 1tjlJ control signal 31...Air electrode flow control valve 32...Fuel electrode flow control valve Fig. 1 Fig. 2 figure

Claims (1)

【特許請求の範囲】[Claims] 燃料電池の出力電流を検出する電流検出器と、空気極と
燃料極との差圧を検出する差圧検出器とを備え、電流検
出器の出力信号を関数発生要素への入力信号とし、差圧
検出器の出力信号をPID制御器への入力信号とし、前
記関数発生要素の出力信号と前記PID制御器の出力1
g号とを加算器によシ加算し、その出力信号により空気
極および燃料極の調節弁な開側1することを特徴とする
燃料電池の制御装置。
Equipped with a current detector that detects the output current of the fuel cell and a differential pressure detector that detects the differential pressure between the air electrode and the fuel electrode, the output signal of the current detector is used as an input signal to the function generating element, and the difference The output signal of the pressure detector is used as an input signal to the PID controller, and the output signal of the function generating element and the output 1 of the PID controller are
1. A control device for a fuel cell, characterized in that the control valves of the air electrode and the fuel electrode are opened according to the output signal of the adder.
JP58014524A 1983-02-02 1983-02-02 Control system for fuel cell Pending JPS59149666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58014524A JPS59149666A (en) 1983-02-02 1983-02-02 Control system for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58014524A JPS59149666A (en) 1983-02-02 1983-02-02 Control system for fuel cell

Publications (1)

Publication Number Publication Date
JPS59149666A true JPS59149666A (en) 1984-08-27

Family

ID=11863496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58014524A Pending JPS59149666A (en) 1983-02-02 1983-02-02 Control system for fuel cell

Country Status (1)

Country Link
JP (1) JPS59149666A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63973A (en) * 1986-06-18 1988-01-05 Hitachi Ltd Operating method for fuel cell
JP2004192973A (en) * 2002-12-12 2004-07-08 Sony Corp Fuel cell system and fuel cell operation method
JP2006210047A (en) * 2005-01-26 2006-08-10 Toshiba Fuel Cell Power Systems Corp Fuel cell system
CN112635791A (en) * 2020-12-18 2021-04-09 东风汽车集团有限公司 Hydrogen supply control method for hydrogen fuel cell automobile

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63973A (en) * 1986-06-18 1988-01-05 Hitachi Ltd Operating method for fuel cell
JP2004192973A (en) * 2002-12-12 2004-07-08 Sony Corp Fuel cell system and fuel cell operation method
JP4590819B2 (en) * 2002-12-12 2010-12-01 ソニー株式会社 Fuel cell system and fuel cell operating method
JP2006210047A (en) * 2005-01-26 2006-08-10 Toshiba Fuel Cell Power Systems Corp Fuel cell system
JP4634163B2 (en) * 2005-01-26 2011-02-16 東芝燃料電池システム株式会社 Fuel cell system
CN112635791A (en) * 2020-12-18 2021-04-09 东风汽车集团有限公司 Hydrogen supply control method for hydrogen fuel cell automobile

Similar Documents

Publication Publication Date Title
DE69203437T2 (en) Propulsion system for spacecraft.
CN110758125B (en) Control system and method for power quick response of range extender for electric automobile
JPH01500533A (en) Output current control system for multiple hollow cathode devices
JPS6151772A (en) Flow rate controller of fuel cell system
JPS59149666A (en) Control system for fuel cell
JPS6326961A (en) Fuel cell power generating system and its operation method
JPH0324744B2 (en)
GB1239835A (en) A method of regulating voltage and eliminating short-circuits in cells for the electrolysis of alkali metal chlorides
JP3146541B2 (en) Fuel cell
JPS6438968A (en) Control of fuel cell
US8124287B2 (en) Controlling an amount of liquid within a fuel cell
JPS6231954A (en) Fuel cell differential pressure control device
JPS6091568A (en) Air-supply-controlling system for fuel cell plant
JPS6452386A (en) Fuel cell power generating system
JPH09237634A (en) Fuel cell generating device
WO2019000164A1 (en) Plasma device and plasma processing method
US11522240B2 (en) Metal-air battery apparatus and method of controlling temperature thereof
JPS62160666A (en) Fuel cell power generation system
JPS62160667A (en) Fuel cell power generation system
JPH0230384B2 (en) SUPATSUTAHOHOOYOBISOCHI
JPS58166672A (en) Operation control method of fuel cell
JPS62160665A (en) Fuel cell power generation system
JPS60107268A (en) Control system for fuel cell power generation plant
JP2675688B2 (en) Gas introduction system for ion milling equipment
KR20060070091A (en) Mock-up stack for valuation of a fuel cell balance of plant