JPS62160667A - Fuel cell power generation system - Google Patents

Fuel cell power generation system

Info

Publication number
JPS62160667A
JPS62160667A JP61001605A JP160586A JPS62160667A JP S62160667 A JPS62160667 A JP S62160667A JP 61001605 A JP61001605 A JP 61001605A JP 160586 A JP160586 A JP 160586A JP S62160667 A JPS62160667 A JP S62160667A
Authority
JP
Japan
Prior art keywords
pressure
flow rate
opening command
valve opening
command signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61001605A
Other languages
Japanese (ja)
Inventor
Yuji Nagata
裕二 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61001605A priority Critical patent/JPS62160667A/en
Publication of JPS62160667A publication Critical patent/JPS62160667A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Feedback Control In General (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve the responsiveness to a load on a fuel cell by providing a pressure/flow controller for eliminating mutual intervention between oxidant gas flow control and cathode pressure control. CONSTITUTION:An oxidant gas flow controller and a cathode pressure controller are omitted respectively and a pressure/flow noninterference controller 9 is provided in stead of them. Then, an oxidant gas flow detection value signal (b) and oxidant gas flow target value signal (a) from a flow detector 5, and an oxidant electrode pressure detection value signal (f) and oxidant electrode pressure target value signal (e) from a pressure detector 6 are inputted respectively. Based on these respective signals, a valve opening command signal (i) for an oxidant gas flow controller 3 and a valve opening command signal (j) for a pressure control valve 4 are inputted respectively.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は燃料電池発電システムに係り、特に燃料電池に
おけるガス流量および圧力制御の負荷応答性を向上させ
得るようにした燃料電池発電システムに関するものであ
る。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a fuel cell power generation system, and particularly relates to a fuel cell power generation system capable of improving load responsiveness of gas flow rate and pressure control in a fuel cell. be.

〔発明の技術的背景〕[Technical background of the invention]

従来、燃料の有している化学的エネルギーを直接電気的
エネルギーに変換するものとして燃料電池が知られてい
る。この燃Fl電池は通常、電解質を含浸した厚さ1履
以下のマトリックスを挟んで燃料種(以下、アノードと
称する)および酸化剤極(以下、カソードと称する)に
よる一対の電極を配置すると共に、アノードに水素ガス
等の燃料ガスを供給しまたカソードに空気等の酸化剤ガ
スを供給し、このとき起こる電気化学的反応を利用して
上記両電極間から電気エネルギーを取出すようにしたも
のであり、上記燃料ガスと酸化剤ガスが供給されている
限り高い変換効率で電気エネルギーを取出すことができ
るものである。
Conventionally, fuel cells have been known as devices that directly convert chemical energy contained in fuel into electrical energy. This fuel-flour cell typically includes a pair of electrodes, each consisting of a fuel species (hereinafter referred to as anode) and an oxidizer electrode (hereinafter referred to as cathode), sandwiching a matrix impregnated with an electrolyte and having a thickness of one shoe or less, and A fuel gas such as hydrogen gas is supplied to the anode, and an oxidizing gas such as air is supplied to the cathode, and the electrochemical reaction that occurs at this time is used to extract electrical energy from between the two electrodes. As long as the fuel gas and oxidant gas are supplied, electrical energy can be extracted with high conversion efficiency.

さて、このような燃料電池においては、アノードとカソ
ードとの圧力差(以下、極間差圧と称する)により、燃
料ガスまたは酸化剤ガスが容易に透過してその発電効率
つまり1池特性を低下させるのみでなく、装置としての
老朽化を早めることになる。また、この極間差圧がある
許容値を超えたような場合には、燃料電池を構成するマ
トリクスを破損することが確められている。一方、燃料
電池ではその運転方法において高度な負荷応答性が要求
されることから、負荷変動に応じてアノードとカソード
の各ガス流量を適切な値に確保しなくてはならない。従
って、このような燃料電池における圧力、流量の制御を
行なう装置としては、システムの保全として極間差圧を
抑1I11することと、負荷応答性としてのアノード、
カソードの各ガス流山制御とを同時に行なうことが要求
される。
In such fuel cells, fuel gas or oxidant gas easily permeates due to the pressure difference between the anode and cathode (hereinafter referred to as interelectrode pressure difference), reducing the power generation efficiency, that is, the single cell characteristics. This will not only accelerate the deterioration of the equipment, but also accelerate the deterioration of the equipment. Furthermore, it has been confirmed that if this interelectrode differential pressure exceeds a certain permissible value, the matrix constituting the fuel cell will be damaged. On the other hand, fuel cells require a high degree of load responsiveness in their operating method, so it is necessary to ensure appropriate gas flow rates at the anode and cathode in response to load fluctuations. Therefore, as a device for controlling the pressure and flow rate in such a fuel cell, it is necessary to suppress the differential pressure between the electrodes to maintain the system, and to control the anode and flow rate as load responsiveness.
It is required to perform each gas flow control of the cathode at the same time.

第3図は、従来の圧力・流量制御11装置を罰えた燃料
電池発電システムの構成例をブロック的に示したもので
ある。
FIG. 3 is a block diagram showing an example of the configuration of a fuel cell power generation system using a conventional pressure/flow rate control device.

第3図において、1は電解質を含浸したマトリクスを挟
んでアノード1aおよびカソード1bの一対の電極を配
置して成り、アノード1aに燃料ガスをまたカソード1
bに酸化剤ガスを夫々供給して、このとき起こる電気化
学的反応により両電極1a、Ib間から電気エネルギー
を取出す燃料電池である。また、2および3は上記燃料
電池1に対する燃料ガスおよび酸化剤ガスの供給ライン
上に夫々設けられた燃料ガス流量調節弁および酸化剤ガ
ス流量調節弁、4は上記燃料電池1からの酸化剤ガスの
排出ライン上に設けられた圧力調節弁、5は上記酸化剤
ガスの供給ラインを通過するガス流量を検出する流量検
出器、6は上記カソード1bの圧力を検出する圧力検出
器である。
In FIG. 3, reference numeral 1 consists of a pair of electrodes, an anode 1a and a cathode 1b, arranged with an electrolyte-impregnated matrix in between.
This is a fuel cell in which an oxidant gas is supplied to each of the electrodes 1a and 1b, and electrical energy is extracted from between the electrodes 1a and 1b through the electrochemical reaction that occurs at this time. Reference numerals 2 and 3 refer to a fuel gas flow rate control valve and an oxidant gas flow rate control valve provided on the fuel gas and oxidant gas supply lines to the fuel cell 1, respectively; 4 indicates the oxidant gas supplied from the fuel cell 1; 5 is a flow rate detector for detecting the gas flow rate passing through the oxidant gas supply line, and 6 is a pressure detector for detecting the pressure of the cathode 1b.

一方、酸化剤ガスの流量制御は、電池出力等に基づいて
決定される酸化剤ガス流量目標値信号aと、上記流量検
出器5からの酸化剤ガス流量検出値信号すとを比較して
得られる偏差信号Cに基づいて、酸化剤ガス流量調節器
7から上記酸化剤ガス流量調節弁3に対して酸化剤ガス
流ff1X[弁開度指令信号dを出力することにより行
なわれる開成となっている。また、カソード1bの圧力
制御は、通常はアノード1a圧力に基づいて与えられる
カソード圧力目標値信号eと、上記圧力検出器6からの
カソード圧力検出値信号fとを比較して得られる偏差信
号qに基づいて、カソード圧力調節器8から上記圧力調
節弁4に対してカソード圧力調節弁開度指令信号りを出
力することにより行なわれる構成となっている。なお燃
料ガスの流量制御は、燃料ガス流量調節弁2によって行
なわれるようになっている。
On the other hand, the flow rate control of the oxidizing gas is obtained by comparing the oxidizing gas flow rate target value signal a determined based on the battery output etc. and the oxidizing gas flow rate detected value signal S from the flow rate detector 5. Based on the deviation signal C, the oxidizing gas flow rate controller 7 outputs the oxidizing gas flow ff1X [valve opening command signal d to the oxidizing gas flow rate regulating valve 3, thereby opening the oxidizing gas flow rate. There is. Further, the pressure control of the cathode 1b is performed using a deviation signal q obtained by comparing a cathode pressure target value signal e given based on the pressure of the anode 1a and a cathode pressure detection value signal f from the pressure detector 6. Based on this, the cathode pressure regulator 8 outputs a cathode pressure regulating valve opening command signal to the pressure regulating valve 4. Note that the fuel gas flow rate control is performed by a fuel gas flow rate control valve 2.

かかる構成の燃料電池発電システムにおいては、電池負
荷が増大した場合に燃料電池1で消費される燃料ガスや
酸化剤ガス量が増加してくるが、これに見合うだけの燃
料ガスの供給が燃料ガス流量制御によって、また酸化剤
ガスの供給が酸化剤ガス流量制御によって夫々行なわれ
る。一方、このような負荷変化によって燃料電池1のア
ノード1a、カソード1bの夫々でガスの収支が変化し
てくるため、これが燃料電池1の圧力変動となって現わ
れてくる。そして、燃料電池1の圧力が変動すると、こ
れによる極間差圧の発生を抑制するために、カソード圧
力調節器8がアノード1a圧力と等しくなるようにカソ
ード1b圧力が制御されることになる。
In a fuel cell power generation system with such a configuration, when the cell load increases, the amount of fuel gas and oxidant gas consumed by the fuel cell 1 increases, but the supply of fuel gas is insufficient to compensate for this increase. The supply of the oxidizing gas is performed by controlling the flow rate of the oxidizing gas. On the other hand, such a load change causes a change in the gas balance at each of the anode 1a and cathode 1b of the fuel cell 1, and this appears as a pressure fluctuation in the fuel cell 1. When the pressure of the fuel cell 1 fluctuates, the cathode pressure regulator 8 controls the cathode 1b pressure to be equal to the anode 1a pressure in order to suppress the generation of interelectrode pressure difference due to this.

[背景技術の問題点] しかしながら、このような圧力・流量制御装置を備えた
燃料電池発電システムにおいては、酸化剤ガス流量調節
弁3と圧力調節弁4との相互干渉が非常に強く、互いに
悪影響を及ぼして制御が良好に行なわれないという問題
がある。すなわち、酸化剤ガス流量調節弁3の開度が変
化すると、これが原因となってカソード1b圧力が変化
しカソード圧力制御への外乱となる。また、逆に圧力調
節弁4の開度が変化すると、これがカソード1b圧力に
影響を与えることになるため、これが2次側圧力の変化
となって酸化剤ガス流11111.11111への外乱
となる。
[Problems in the Background Art] However, in a fuel cell power generation system equipped with such a pressure/flow rate control device, mutual interference between the oxidant gas flow rate control valve 3 and the pressure control valve 4 is very strong, and they may adversely affect each other. There is a problem in that control is not performed satisfactorily. That is, when the opening degree of the oxidant gas flow rate control valve 3 changes, this causes a change in the cathode 1b pressure, causing a disturbance to the cathode pressure control. Conversely, if the opening degree of the pressure control valve 4 changes, this will affect the cathode 1b pressure, and this will change the secondary side pressure and cause disturbance to the oxidant gas flow 11111.11111. .

以上のことから、酸化剤ガス流山制御とカソード圧力制
御との相互干渉性を考慮し、夫々の悪影響を除去するこ
とによって制御性を向上させ、負荷応答性を改善するこ
とが強く望まれてきている。
From the above, it is strongly desired to improve controllability and load response by taking into account the mutual interference between oxidant gas flow control and cathode pressure control and eliminating their respective negative effects. There is.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような問題点を解決するために成された
もので、その目的は酸化剤ガス流量制御とカソード圧力
制御との相互干渉を除去して燃料電池の負荷応答性を改
善することが可能な信頼性の高い燃料電池発電システム
を提供することにある。
The present invention has been made to solve the above-mentioned problems, and its purpose is to improve the load response of a fuel cell by eliminating mutual interference between oxidant gas flow control and cathode pressure control. Our goal is to provide a highly reliable fuel cell power generation system that is capable of

[発明の概要] 上記目的を達成するために本発明では、電解質を含浸し
たマトリックスを挟んで燃料極および酸化剤極による一
対の電極を配置して成り、燃料極に燃料ガスをまた酸化
剤極に酸化剤ガスを夫々供給してこのとき起こる電気化
学的反応により両電極間から電気エネルギーを取出すよ
うにした燃料電池において、上記燃料電池に対する燃料
ガスおよび酸化剤ガスの供給ライン上に夫々設けられた
燃料ガス1M調節弁および酸化剤ガス流aS節弁と、上
記燃料電池からの酸化剤ガスの排出ライン上に設けられ
た圧力調節弁と、上記酸化剤ガスの供給ラインを通過す
るガス流量を検出する流量検出器と、上記酸化剤極の圧
力を検出する圧力検出器と、上記流量検出器からの酸化
剤ガス流量検出値信号と酸化剤ガス流量目標値信号とを
比較して得られる第1の比較信号に基づいて第1の流量
調節弁開度指令信号および第1の圧力調節弁開度指令信
号を導出すると共に、上記圧力検出器からの酸化剤極圧
力検出値信号と酸化剤極圧力目標値信号とを比較して得
られる第2の比較信号に基づいて第2の流量調節弁開度
指令信号および第2の圧力調節弁開度指令信号を導出し
、かつ上記第1の流量調節弁開度指令信号と第2の流f
1調節弁開度指令信号との合成信号を上記酸化剤ガス流
量調節弁に対する弁開度指令信号として出力すると共に
[Summary of the Invention] In order to achieve the above object, the present invention comprises a pair of electrodes consisting of a fuel electrode and an oxidizer electrode, which are arranged with a matrix impregnated with an electrolyte sandwiched therebetween. In a fuel cell in which an oxidant gas is supplied to each of the electrodes and electrical energy is extracted from between the two electrodes through an electrochemical reaction that occurs, a fuel cell is provided on the fuel gas and oxidant gas supply lines to the fuel cell, respectively. a fuel gas 1M control valve and an oxidant gas flow aS control valve, a pressure control valve provided on the oxidant gas discharge line from the fuel cell, and a gas flow rate passing through the oxidant gas supply line. A flow rate detector detects the pressure of the oxidant electrode, a pressure detector detects the pressure of the oxidant electrode, and a first value obtained by comparing the oxidant gas flow rate detection value signal from the flow rate detector and the oxidant gas flow rate target value signal. A first flow control valve opening command signal and a first pressure control valve opening command signal are derived based on the comparison signal of No. 1, and the oxidant extreme pressure detection value signal from the pressure detector and the oxidizer pole are derived. A second flow control valve opening command signal and a second pressure control valve opening command signal are derived based on a second comparison signal obtained by comparing the pressure target value signal, and the first flow rate is Control valve opening command signal and second flow f
A composite signal with the 1 control valve opening command signal is output as a valve opening command signal for the oxidant gas flow rate control valve.

上記第1の圧力調節弁開度指令信号と第2の圧力調節弁
開度指令信号との合成信号を上記圧力調節弁に対する弁
開度指令信号として出力する圧力・流量非干渉υ111
1手段とから構成された圧力・流量制御装置を備えるこ
とにより、負荷応答性を向上させるようにしたことを特
徴とする。
Pressure/flow non-interference υ111 which outputs a composite signal of the first pressure regulating valve opening command signal and the second pressure regulating valve opening command signal as a valve opening command signal for the pressure regulating valve.
The present invention is characterized in that load responsiveness is improved by providing a pressure/flow rate control device composed of one means.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について図面を参照して説明す
る。第1図は、本発明による圧力・流量制御装置を備え
てなる燃料電池発電システムの構成例をブロック的に示
すもので、第3図と同一部分には同一符号を付してその
説明を省略し、ここでは異なる部分についてのみ述べる
An embodiment of the present invention will be described below with reference to the drawings. Fig. 1 shows in block form an example of the configuration of a fuel cell power generation system equipped with a pressure/flow rate control device according to the present invention, and the same parts as in Fig. 3 are given the same reference numerals and their explanation is omitted. However, only the different parts will be described here.

つまり第1図は、第3図における酸化剤ガス流量調節器
7およびカソード圧力11節器8を夫々省略し、これに
代えて前記流量検出器5からの酸化剤ガス流量検出値信
号す、1g化剤ガス流量目標値信号a、前記圧力検出器
6からの酸化剤極圧力検出値信号f、酸化剤極圧力目標
値信号eを夫々入力し、これらの各信号に基づいて前記
酸化剤ガス流量a節弁3に対する弁開度指令信号iを、
また前記圧力調節弁4に対する弁開度指令信号jを夫々
出力する圧力・流量非干渉制御装置9を備えるようにし
たものである。
That is, in FIG. 1, the oxidizing gas flow rate regulator 7 and the cathode pressure regulator 8 in FIG. The oxidizing agent gas flow rate target value signal a, the oxidizing agent extreme pressure detected value signal f from the pressure detector 6, and the oxidizing agent extreme pressure target value signal e are inputted, respectively, and the oxidizing agent gas flow rate is adjusted based on each of these signals. The valve opening command signal i for the a-section valve 3 is
Further, a pressure/flow rate non-interference control device 9 is provided which outputs a valve opening command signal j to the pressure regulating valve 4, respectively.

第2図は、上記第1図における圧力・流―非干渉制御袋
[9の詳細な回路構成例を示すもので、第1図と同一部
分には同一符号を付して示している。
FIG. 2 shows a detailed circuit configuration example of the pressure/flow non-interference control bag [9 in FIG. 1, and the same parts as in FIG.

第2図において、91は上記流量検出器5からの酸化剤
ガス流量検出値信号すと、酸化剤ガス流量目標値信号a
とを比較して得られる第1の偏差信号Cに基づいて第1
の流量調節弁開度指令信号kを導出する第1の流量WA
節器、92は同じく上記流量検出器5からの酸化剤ガス
流量検出値信号すと、酸化剤ガス流量目標値信号aとを
比較して得られる第1の偏差信@Cに基づいて第1の圧
力調節弁開度指令信号1を導出する第1の圧力調節器で
ある。また、93は上記圧力検出器6からの酸化剤極圧
力検出値信号fと、酸化剤極圧力目標値信号eとを比較
して得られる第2の偏差信号qに基づいて第2の流量調
節弁開度指令信号mを導出する第2の流fIi調節器、
94は同じく上記圧力検出器6からの酸化剤極圧力検出
値信号fと、酸化剤極圧力目標値信号eとを比較して得
られる第2の偏差信号Qに基づいて第2の圧力調節弁開
度指令信@nを導出する第2の圧力調節器である。
In FIG. 2, 91 indicates an oxidizing gas flow rate detected value signal from the flow rate detector 5, and an oxidizing gas flow rate target value signal a.
Based on the first deviation signal C obtained by comparing the
The first flow rate WA for deriving the flow rate control valve opening command signal k of
Similarly, the moderator 92 outputs the first deviation signal @C obtained by comparing the detected oxidant gas flow rate signal from the flow rate detector 5 with the target oxidant gas flow rate signal a. This is the first pressure regulator that derives the pressure regulating valve opening command signal 1. Further, reference numeral 93 indicates a second flow rate adjustment based on a second deviation signal q obtained by comparing the oxidant extreme pressure detected value signal f from the pressure detector 6 and the oxidant extreme pressure target value signal e. a second flow fIi regulator for deriving a valve opening command signal m;
94 is a second pressure regulating valve based on a second deviation signal Q obtained by comparing the oxidizer extreme pressure detected value signal f from the pressure detector 6 and the oxidizer extreme pressure target value signal e. This is a second pressure regulator that derives the opening command signal @n.

そして、上記第1の流量調節弁開度指令信号にと第2の
流I調節弁開度指令信号mとの加算信号を上記酸化剤ガ
ス流量調節弁3に対する弁開度指令信@iとして出力す
ると共に、上記第1の圧力調節弁開度指令信号1と第2
の圧力調節弁開度指令信号nとの加算信号を上記圧力調
節弁4に対する弁開度指令信号jとして出力するように
(構成している。
Then, the addition signal of the first flow rate control valve opening command signal and the second flow I control valve opening command signal m is output as the valve opening command signal @i for the oxidant gas flow rate control valve 3. At the same time, the first pressure regulating valve opening command signal 1 and the second
The sum signal of the pressure regulating valve opening command signal n and the pressure regulating valve opening command signal n is outputted as the valve opening command signal j for the pressure regulating valve 4.

次に、かかる如く構成した圧力・流世制御fIl装置を
備えてなる燃料電池発電システムの作用について述べる
Next, the operation of the fuel cell power generation system equipped with the pressure/flow control fIl device configured as described above will be described.

まず、燃料電池1の負荷量に応じてアノード1aへ水素
等の燃料ガスを、またカソード1bへ空気等の酸化剤ガ
スを夫々供給することにより、これらを電気化学的に反
応させて両電極1a。
First, by supplying a fuel gas such as hydrogen to the anode 1a and an oxidizing gas such as air to the cathode 1b according to the load amount of the fuel cell 1, they are caused to react electrochemically, and both electrodes 1a .

1b間から電気エネルギーを取出し発電が行なわれてい
る。また、流量検出器5からのaロ化剤ガス流量検出値
信号す、酸化剤ガス流量目標値信号a。
Electrical energy is extracted from between 1b and power generation is performed. Further, the a-oxidizing agent gas flow rate detection value signal (a) and the oxidizing agent gas flow rate target value signal (a) from the flow rate detector 5 are provided.

圧力検出器6からの酸化剤極圧力検出値信号f。Oxidizer extreme pressure detection value signal f from the pressure detector 6.

酸化剤極圧力目標値信号eが、圧力・流量非干渉制御装
置9に夫々入力されている。
The oxidant extreme pressure target value signal e is inputted to the pressure/flow rate non-interference control device 9, respectively.

今、かかる状態から燃料電池1の負荷量の変動によって
、例えば酸化剤ガス流量目tF!値信号aが変化しこれ
によって第1の偏差信@Cが発生して酸化剤ガス流量調
節弁3の開度が変化した場合には、これがカソード1b
圧力に及ぼす影響を打消すように、第1の圧力調節器9
2が圧力調節弁開度指令信号1により圧力調節弁4を動
作させる。
Now, from this state, due to a change in the load amount of the fuel cell 1, for example, the oxidant gas flow rate tF! When the value signal a changes and thereby the first deviation signal @C is generated and the opening degree of the oxidizing gas flow rate control valve 3 changes, this changes to the cathode 1b.
the first pressure regulator 9 so as to cancel the effect on the pressure;
2 operates the pressure regulating valve 4 according to the pressure regulating valve opening command signal 1.

また、例えばカソード1b圧力の変化によって第2の偏
差信号Ωが発生し、これによって圧力調節弁4の開度が
変化した場合には、これが酸化剤ガス流量に及ぼす影響
を打消すように、第2の流量調節器93が流量調節弁開
度指令信号mにより酸化剤ガス流量調節弁3を動作させ
る。
Further, for example, when the second deviation signal Ω is generated due to a change in the cathode 1b pressure and the opening degree of the pressure regulating valve 4 is changed thereby, a second deviation signal Ω is generated so as to cancel the influence of this on the oxidant gas flow rate. The flow rate regulator 93 of No. 2 operates the oxidizing gas flow rate regulating valve 3 based on the flow rate regulating valve opening command signal m.

すなわち本構成は、酸化剤ガス流量制御がカソード圧力
に、またカソード圧力制御が酸化剤ガス流量に及ぼす影
響を夫々打消すように作用することになる。その結果、
酸化剤ガス流量制顛とカソード圧力制御の相互干渉を打
消し、これによりいずれか一方のシリ御動作の変化が他
方の制■への外乱となる悪影響が除去されることから、
夫々の制御性が向上してより良好なυIWJを行なうこ
とが可能となる。
That is, this configuration acts so as to cancel out the effects of the oxidizing gas flow rate control on the cathode pressure and the effects of the cathode pressure control on the oxidizing gas flow rate. the result,
This eliminates the mutual interference between the oxidizing gas flow rate control and the cathode pressure control, thereby eliminating the negative effect of a change in either one of the cylinder control operations causing disturbance to the other control.
Each controllability is improved and it becomes possible to perform better υIWJ.

上述したように本実施例では、電解質を含浸したマトリ
ックスを挟んでアノード1a、l>よびカソード1bに
よる一対の電極を配置して成り、アノード1aに燃料ガ
スをまたカソード1bに酸化剤ガスを夫々供給してこの
とき起こる電気化学的反応により両電極1a、1b間か
ら電気エネルギーを取出すようにした燃料電池1におい
て、上記燃料電池1に対する燃料ガスおよび酸化剤ガス
の供給ライン上に夫々設けられた燃料ガス流量調節弁2
および酸化剤ガス流量調節弁3と、上記燃料電池1から
の酸化剤ガスの排出ライン上に設けられた圧力調節弁4
と、上記酸化剤ガスの供給ラインを通過するガス流量を
検出する流量検出器5と、上記カソード1bの圧力を検
出する圧力検出器6と、上記流量検出器5からの酸化剤
ガス流量検出値信号すと酸化剤ガス流量目標値信号aと
を比較して得られる第1の偏差信号Cに基づいて、第1
の流量調節弁開度指令信号におよび第1の圧力調節弁開
度指令信号1を導出する第1の流量調節器91、第1の
圧力調節器92.上記圧力検出器6からの酸化剤極圧力
検出値信号fとカソード圧力目標値信号eとを比較して
得られる第2のg差信号Qに基づいて、第2の流量調節
弁開度指令信号mおよび第2の圧力調節弁開度指令信号
nを導出する第2の流量調節器93.第2の圧力調節器
94を有してなり、かつ上記第1の流量調節弁開度指令
信号にと第2の流口調節弁開度指令信号1との加算信号
を上記酸化剤ガス流量調節弁3に対する弁開度指令信号
iとして出力すると共に、上記第1の圧力調節弁開度指
令信号mと第2の圧力調節弁開度指令信号nとの加算信
号を上記圧力調節弁4に対する弁開度指令信号jとして
出力する圧力・流量非干渉制御装置9とから構成された
圧力・流量制御装置を備えて、燃料電池発電システムを
構成するようにしたものである。
As described above, in this embodiment, a pair of electrodes consisting of the anodes 1a and 1b and the cathode 1b are arranged with an electrolyte-impregnated matrix in between, and the anode 1a is supplied with fuel gas and the cathode 1b is supplied with oxidizing gas. In the fuel cell 1, in which electrical energy is extracted from between the electrodes 1a and 1b through an electrochemical reaction that occurs at the time of supply, electrical energy is provided on the fuel gas and oxidant gas supply lines to the fuel cell 1, respectively. Fuel gas flow control valve 2
and an oxidant gas flow rate control valve 3, and a pressure control valve 4 provided on the oxidant gas discharge line from the fuel cell 1.
, a flow rate detector 5 that detects the gas flow rate passing through the oxidizing gas supply line, a pressure detector 6 that detects the pressure of the cathode 1b, and a detected oxidizing gas flow rate value from the flow rate detector 5. Based on the first deviation signal C obtained by comparing the signal A and the oxidant gas flow rate target value signal a, the first
A first flow rate regulator 91, a first pressure regulator 92, which derives a flow rate regulating valve opening command signal and a first pressure regulating valve opening command signal 1. Based on the second g difference signal Q obtained by comparing the oxidant extreme pressure detection value signal f from the pressure detector 6 and the cathode pressure target value signal e, a second flow rate control valve opening command signal is generated. m and a second flow rate regulator 93 that derives the second pressure regulating valve opening command signal n. A second pressure regulator 94 is provided, and the addition signal of the first flow rate control valve opening command signal and the second flow control valve opening command signal 1 is used to adjust the oxidizing gas flow rate. In addition to outputting the valve opening command signal i to the valve 3, a sum signal of the first pressure regulating valve opening command signal m and the second pressure regulating valve opening command signal n is output as the valve opening command signal i to the pressure regulating valve 4. A fuel cell power generation system is constructed by including a pressure/flow control device including a pressure/flow non-interference control device 9 that outputs an opening command signal j.

従って、負荷変化を始めとする様々な燃料電池発電シス
テムの運転状態に対して、燃料電池1の酸化剤ガス流量
制御の追従性やカソード圧力制御の安定性の向上を図る
ことができる。特に、燃料電池1においては極間差圧を
良好に抑制することが不可欠であることから、上述した
カソード圧力制御の安定性向上は、システム全体の負荷
応答性の向上に対して大きな効果を有するものである。
Therefore, it is possible to improve the followability of the oxidizing gas flow rate control of the fuel cell 1 and the stability of the cathode pressure control with respect to various operating conditions of the fuel cell power generation system including load changes. In particular, in the fuel cell 1, it is essential to suppress the differential pressure between electrodes well, so improving the stability of cathode pressure control described above has a large effect on improving the load response of the entire system. It is something.

尚、本発明は上述した実施例に限定されるものではなく
、その要旨を変更しない範囲で種々に変形して実施する
ことができるものである。
Note that the present invention is not limited to the embodiments described above, and can be implemented with various modifications without changing the gist thereof.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明によれば、酸化剤ガス流多制御
とカソード圧力制御との相互干渉を除去して燃料電池の
負荷応答性を改善することが可能な極めて信頼性の高い
燃料電池発電システムが提供できる。
As explained above, according to the present invention, extremely reliable fuel cell power generation can be achieved in which mutual interference between oxidant gas flow rate control and cathode pressure control can be eliminated to improve the load response of the fuel cell. system can provide.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成ブロック図、第2
図は同実施例における圧力・流量非干渉制御装置の詳細
を示す構成ブロック図、第3図は従来の燃料電池発電シ
ステムを示す構成ブロック図である。 1・・・燃料電池、1a・・・アノード、1b・・・カ
ソード、2・・・燃料ガス流山調節弁、3・・・酸化剤
ガス流量調節弁、4・・・圧力調節弁、5・・・流量検
出器、6・・・圧力検出器、7・・・酸化剤ガス流量調
節器、8・・・カソード圧力調節器、9・・・圧力・流
量非干渉制御装置、91・・・第1の流量調節器、92
・・・第1の圧力調節器、93・・・第2の流量調節器
、94・・・第2の圧力調節器、a・・・酸化剤ガス流
量目標値信号、b・・・酸化剤ガス流量検出値信号、C
・・・第1の偏差信号、e・・・酸化剤極圧力目標値信
号、f・・・酸化剤極圧力検出値信号、Q・・・第2の
偏差信号、i・・・弁開度指令信号、j・・・弁開度指
令信号、k・・・流量調節弁開度指令信号、1・・・圧
力調節弁開度指令信号、m・・・流II節弁開度指令信
号、n・・・圧力調節弁開度指令信号。 出願人代理人  弁理士 鈴江武彦 第1図
FIG. 1 is a configuration block diagram showing one embodiment of the present invention, and FIG.
The figure is a block diagram showing details of the pressure/flow rate non-interference control device in the same embodiment, and FIG. 3 is a block diagram showing the structure of a conventional fuel cell power generation system. DESCRIPTION OF SYMBOLS 1... Fuel cell, 1a... Anode, 1b... Cathode, 2... Fuel gas flow rate control valve, 3... Oxidizing gas flow rate control valve, 4... Pressure control valve, 5... ...Flow rate detector, 6...Pressure detector, 7...Oxidant gas flow rate regulator, 8...Cathode pressure regulator, 9...Pressure/flow rate non-interference control device, 91... first flow regulator, 92
... first pressure regulator, 93... second flow regulator, 94... second pressure regulator, a... oxidizing gas flow rate target value signal, b... oxidizing agent Gas flow rate detection value signal, C
...First deviation signal, e... Oxidizer extreme pressure target value signal, f... Oxidizer extreme pressure detected value signal, Q... Second deviation signal, i... Valve opening degree Command signal, j...Valve opening command signal, k...Flow control valve opening command signal, 1...Pressure control valve opening command signal, m...Flow II node valve opening command signal, n...Pressure control valve opening command signal. Applicant's agent Patent attorney Takehiko Suzue Figure 1

Claims (1)

【特許請求の範囲】[Claims] 電解質を含浸したマトリックスを挟んで燃料極および酸
化剤極による一対の電極を配置して成り、燃料極に燃料
ガスをまた酸化剤極に酸化剤ガスを夫々供給してこのと
き起こる電気化学的反応により両電極間から電気エネル
ギーを取出すようにした燃料電池において、前記燃料電
池に対する燃料ガスおよび酸化剤ガスの供給ライン上に
夫々設けられた燃料ガス流量調節弁および酸化剤ガス流
量調節弁と、前記燃料電池からの酸化剤ガスの排出ライ
ン上に設けられた圧力調節弁と、前記酸化剤ガスの供給
ラインを通過するガス流量を検出する流量検出器と、前
記酸化剤極の圧力を検出する圧力検出器と、前記流量検
出器からの酸化剤ガス流量検出値信号と酸化剤ガス流量
目標値信号とを比較して得られる第1の比較信号に基づ
いて第1の流量調節弁開度指令信号および第1の圧力調
節弁開度指令信号を導出すると共に、前記圧力検出器か
らの酸化剤極圧力検出値信号と酸化剤極圧力目標値信号
とを比較して得られる第2の比較信号に基づいて第2の
流量調節弁開度指令信号および第2の圧力調節弁開度指
令信号を導出し、かつ前記第1の流量調節弁開度指令信
号と第2の流量調節弁開度指令信号との合成信号を前記
酸化剤ガス流量調節弁に対する弁開度指令信号として出
力すると共に、前記第1の圧力調節弁開度指令信号と第
2の圧力調節弁開度指令信号との合成信号を前記圧力調
節弁に対する弁開度指令信号として出力する圧力・流量
非干渉制御手段とから構成された圧力・流量制御装置を
備えるようにしたことを特徴とする燃料電池発電システ
ム。
A pair of electrodes, a fuel electrode and an oxidizer electrode, are arranged with an electrolyte-impregnated matrix sandwiched between them, and fuel gas is supplied to the fuel electrode and oxidant gas is supplied to the oxidizer electrode, respectively, and the electrochemical reaction that occurs at this time is performed. In a fuel cell configured to extract electrical energy from between both electrodes, a fuel gas flow rate control valve and an oxidant gas flow rate control valve are provided on the fuel gas and oxidant gas supply lines to the fuel cell, respectively; a pressure control valve provided on an oxidant gas discharge line from the fuel cell; a flow rate detector that detects a gas flow rate passing through the oxidant gas supply line; and a pressure that detects the pressure of the oxidant electrode. A detector generates a first flow rate control valve opening command signal based on a first comparison signal obtained by comparing the detected oxidizing gas flow rate signal from the flow rate detector and the target oxidizing gas flow rate signal. and a first pressure regulating valve opening command signal, and a second comparison signal obtained by comparing the oxidizer extreme pressure detected value signal from the pressure detector and the oxidizer extreme pressure target value signal. derive a second flow control valve opening command signal and a second pressure control valve opening command signal based on the first flow control valve opening command signal and the second flow control valve opening command signal; output a composite signal of the first pressure regulating valve opening command signal and the second pressure regulating valve opening command signal as a valve opening command signal for the oxidizing gas flow rate regulating valve. A fuel cell power generation system comprising a pressure/flow rate control device comprising a pressure/flow rate non-interference control means that outputs a valve opening command signal to the pressure regulating valve.
JP61001605A 1986-01-08 1986-01-08 Fuel cell power generation system Pending JPS62160667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61001605A JPS62160667A (en) 1986-01-08 1986-01-08 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61001605A JPS62160667A (en) 1986-01-08 1986-01-08 Fuel cell power generation system

Publications (1)

Publication Number Publication Date
JPS62160667A true JPS62160667A (en) 1987-07-16

Family

ID=11506131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61001605A Pending JPS62160667A (en) 1986-01-08 1986-01-08 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JPS62160667A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092104A (en) * 2008-10-03 2010-04-22 Horiba Stec Co Ltd Mass flow controller
KR20110066394A (en) * 2009-12-11 2011-06-17 가부시키가이샤 호리바 에스텍 Mass flow controller
US8265795B2 (en) 2009-11-05 2012-09-11 Horiba Stec, Co., Ltd. Mass flow controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092104A (en) * 2008-10-03 2010-04-22 Horiba Stec Co Ltd Mass flow controller
US8265795B2 (en) 2009-11-05 2012-09-11 Horiba Stec, Co., Ltd. Mass flow controller
KR20110066394A (en) * 2009-12-11 2011-06-17 가부시키가이샤 호리바 에스텍 Mass flow controller

Similar Documents

Publication Publication Date Title
US7666535B2 (en) Fuel cell system and method of operating a fuel cell system
JP4338914B2 (en) Fuel circulation fuel cell system
JPH0824050B2 (en) Operation method of fuel cell power generation system
JPH07240220A (en) Fuel cell system
US3711333A (en) Fuel cell battery
US6815104B2 (en) Method for controlling flow rate of oxidizer in fuel cell system
JPS62160667A (en) Fuel cell power generation system
JPH0444391B2 (en)
JPS62160666A (en) Fuel cell power generation system
JPH01304668A (en) Phosphoric acid type fuel cell power generating plant
JPS6282659A (en) Pressure and flow rate controller of fuel cell power generating plant
JP2007515726A (en) Process gas pressure decay control during shutdown
JPS60253171A (en) Fuel battery power generation system
JPS62160665A (en) Fuel cell power generation system
JPS60154471A (en) Air and fuel control system of fuel cell
JPS62246266A (en) Fuel cell device
JPS62241266A (en) Fuel cell power generating system
JPS62259353A (en) Fuel cell power generating system
JPS62259354A (en) Fuel cell power generating system
JPS63148562A (en) Fuel cell power generating system
JPS6091568A (en) Air-supply-controlling system for fuel cell plant
JPS60230364A (en) Fuel cell system
JPS58166672A (en) Operation control method of fuel cell
JPS62259355A (en) Fuel cell power generating system
JPH01144569A (en) Pressure and flow control device for fuel cell power generating system