JPS62246266A - Fuel cell device - Google Patents

Fuel cell device

Info

Publication number
JPS62246266A
JPS62246266A JP61089415A JP8941586A JPS62246266A JP S62246266 A JPS62246266 A JP S62246266A JP 61089415 A JP61089415 A JP 61089415A JP 8941586 A JP8941586 A JP 8941586A JP S62246266 A JPS62246266 A JP S62246266A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
gas
output
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61089415A
Other languages
Japanese (ja)
Inventor
Hideo Uekusa
植草 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Original Assignee
Toshiba Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp filed Critical Toshiba Engineering Corp
Priority to JP61089415A priority Critical patent/JPS62246266A/en
Publication of JPS62246266A publication Critical patent/JPS62246266A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04462Concentration; Density of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04791Concentration; Density
    • H01M8/04798Concentration; Density of fuel cell reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE: To keep concentration of hydrogen gas on a fuel pole within a fixed range, while the cell is in no operation, by controlling a flow rate of supplying the fuel gas to the fuel pole on the base of the concentration of hydrogen gas, which is at the outlet side of the fuel pole in the fuel cell, and the cell voltage. CONSTITUTION:A gas-concentration detector 7 is installed into an exhaustion line 8 from a fuel pole 2 in a fuel cell 1, so that output is sent out on the concentration of hydrogen gas below its regulated value and being stopped above the value. On the other hand, a voltage detector 9 is installed across the output of the cell 1, so that the output is sent out at the voltage below its regulated value and being stopped above the value. AND of both outputs is made in an AND circuit 10, to control a fuel gas supplying regulation valve 5 installed on a supply line 6. Hence, concentration of the hydrogen gas on the fuel pole 2, while the cell 1 is in no operation, can be exactly kept within a fixed range, and suppression of a rise in cell voltage enables the fuel pole 2 to be protected and reliability to be improved.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は燃料電池に係り、特に燃料電池の停止中におけ
る燃料極の水素ガス濃度を一定範囲内に保つようにした
燃料電池装置に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a fuel cell, and more particularly to a fuel cell device that maintains the hydrogen gas concentration of the fuel electrode within a certain range while the fuel cell is stopped. .

〔発明の技術的背景〕[Technical background of the invention]

従来、燃料の有している化学的エネルギーを直接電気的
エネルギーに変換するものとして燃料電池が知られてい
る。この燃料電池は通常、電解質を含浸した厚さ11I
IaI以下のマトリクスを有する電解質層を挟んで燃料
極および酸化剤極の一対の電極を配置すると共に、燃料
極に水素ガス等の燃料ガスを供給しまた酸化剤極に空気
等の酸化剤ガスを供給し、このとき起こる電気化学的反
応を利用して上記両?!!極間から電気エネルギーを取
出すようにしたものであり、上記燃料ガスと酸化剤ガス
が供給されている限り高い変換効率で電気エネルギーを
取出すことができるものである。そして、この種の燃料
電池としては種々の型のものがあるが、最近では電解質
としてリン酸を用いたリン酸型の燃料電池が実用に供さ
れつつある。
Conventionally, fuel cells have been known as devices that directly convert chemical energy contained in fuel into electrical energy. This fuel cell typically has a thickness of 11I impregnated with electrolyte.
A pair of electrodes, a fuel electrode and an oxidizer electrode, are placed across an electrolyte layer having a matrix of IaI or less, and a fuel gas such as hydrogen gas is supplied to the fuel electrode, and an oxidant gas such as air is supplied to the oxidizer electrode. Both of the above are supplied using the electrochemical reaction that occurs at this time? ! ! Electrical energy is extracted from between the electrodes, and as long as the fuel gas and oxidant gas are supplied, electrical energy can be extracted with high conversion efficiency. There are various types of fuel cells of this type, and recently, phosphoric acid fuel cells using phosphoric acid as an electrolyte have been put into practical use.

さてこの種の燃料電池では、その運転方法において高度
な負荷応答性が要求されることから、負荷変動に応じて
燃料極と酸化剤極の各ガス流出を適切な値に確保しなく
てはならない。一方、燃料電池はその停止中において燃
料極を保護する観点から、燃料極を一定濃度の水素ガス
雰囲気に保つ必要がある。そこで従来では、かかる燃料
電池の停止中における燃料極の水素ガス濃度を一定範囲
内に保つために、燃料電池の燃料極出口側から排出され
る燃料ガスの水素11度をガス濃度検出器によって検出
し、このガスS度検出器による検出濃度に応じて、すな
わち検出ll1f値が規定([(例えば3%)以下であ
れば燃料ガス供給流ffi調節弁を開いて燃料ガスを供
給し、また検出濃度値が規定(1(例えば4%)以上で
あれば燃料ガス供給流層調節弁を閉じて燃料ガスの供給
を停止することにより、燃料極の水素ガス濃度を一定範
囲内に保って燃料電池電圧を上昇させないようにするこ
とが行なわれている。
Now, this type of fuel cell requires a high degree of load responsiveness in its operating method, so it is necessary to ensure that each gas outflow at the fuel electrode and oxidizer electrode is at an appropriate value in response to load fluctuations. . On the other hand, in order to protect the fuel electrode while the fuel cell is stopped, it is necessary to maintain the fuel electrode in a hydrogen gas atmosphere with a constant concentration. Conventionally, in order to maintain the hydrogen gas concentration in the fuel electrode within a certain range while the fuel cell is stopped, a gas concentration detector detects hydrogen 11 degrees in the fuel gas discharged from the fuel electrode outlet side of the fuel cell. According to the concentration detected by this gas S degree detector, that is, if the detected ll1f value is below a specified value (e.g. 3%), the fuel gas supply flow ffi control valve is opened to supply fuel gas, and the detection If the concentration value is above a specified value (1 (for example, 4%)), the fuel gas supply flow layer control valve is closed and the supply of fuel gas is stopped, thereby maintaining the hydrogen gas concentration at the fuel electrode within a certain range and starting the fuel cell. Efforts are being made to prevent the voltage from increasing.

[背冒技術の問題点1 しかし、燃料極に燃料ガスが供給された場合に。[Problem with back-travel technology 1 However, when fuel gas is supplied to the fuel electrode.

燃料極の入口側と出口側における夫々の水素ガス濃度が
等しくなるにはある一定の時間がかかることから、上述
のように燃料電池の燃料極出口側における水素ガスの濃
度を検出して燃料ガスの供給流層を制御するようなもの
では、燃料極に燃料ガスが供給された場合に、燃料極出
口側の水素ガスlIr!1が規定値に達して燃料ガス供
給流!lU4節弁を閉じた時点では、時間遅れを生じ既
に燃料極出口側の水素ガス濃度が規定値以上に上昇して
、燃料電池電圧が規定1i1以上(例えば6〜7%ンに
上昇してしまうという問題点がある。
Since it takes a certain amount of time for the hydrogen gas concentrations at the inlet and outlet sides of the fuel electrode to become equal, as described above, the concentration of hydrogen gas at the outlet side of the fuel electrode of the fuel cell is detected and the fuel gas is supplied. In a device that controls a flow layer, when fuel gas is supplied to the fuel electrode, the hydrogen gas lIr! on the fuel electrode outlet side is 1 reaches the specified value and the fuel gas supply flow begins! By the time the lU4 control valve is closed, there is a time delay and the hydrogen gas concentration on the fuel electrode outlet side has already risen above the specified value, causing the fuel cell voltage to rise above the specified value (for example, 6 to 7%). There is a problem.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような問題点を解決するために成された
もので、その目的は燃料電池の停止中における燃料極の
水素ガス11度を一定範囲内に確実に保ち、電池電圧の
上昇を抑制して燃料極を保護することが可能な信頼性の
高い燃料電池@置を提供することにある。
The present invention was made to solve the above-mentioned problems, and its purpose is to reliably maintain the hydrogen gas temperature of the fuel electrode within a certain range while the fuel cell is stopped, and to prevent the rise in cell voltage. The object of the present invention is to provide a highly reliable fuel cell installation capable of suppressing fuel electrodes and protecting fuel electrodes.

[発明の概要] 上記目的を達成するために本発明による燃料電池装置は
、電解質を含浸した電wI質層を挟んで燃料極および酸
化剤極の一対の電極を装置して成り。
[Summary of the Invention] In order to achieve the above object, a fuel cell device according to the present invention comprises a pair of electrodes, a fuel electrode and an oxidizer electrode, sandwiching an electrolyte-impregnated electrolyte layer.

上記燃料極に燃料ガスをまた酸化剤極に酸化剤ガスを夫
々供給してこのとき起こる電気化学的反応により上記両
電橋間から電気エネルギーを取出す燃料電池と、上記燃
料電池の燃料極に対する燃料ガスの供給ライン上に設け
られた燃料ガス供給流量調節弁と、上記燃料電池の燃料
極からの燃料ガスの排出ラインを通過する水素ガスの濃
度を検出し、かつその大きさが燃料電池停止に係る規定
濃度の下限値以下になると動作して出力を送出しまた上
限i以上になると出力の送出を停止するガスS度検出器
と、上記燃料電池からの出力電圧を検出し、かつその大
きさが燃料電池停止に係る規定電圧の下限値以下になる
と動作して出力を送出しまた上限値以上になると出力の
送出を停止する電圧検出器と、上記ガス11度検出器お
よび電圧検出器が共に動作して出力を送出していること
を判定したことを条件に、上記燃料ガス供給流ffi調
節弁を開方向に制御する手段とを備えて構成することに
より、燃料極出口側の水素ガス濃度および燃料電池電圧
に基づいて燃料極への燃料ガスの供給流層を制御するよ
うにしたことを特徴とする。
A fuel cell that supplies fuel gas to the fuel electrode and oxidant gas to the oxidizer electrode and extracts electrical energy from between the electric bridges through an electrochemical reaction that occurs; and a fuel gas for the fuel electrode of the fuel cell. detects the concentration of hydrogen gas passing through a fuel gas supply flow rate control valve provided on the supply line of the fuel cell and a fuel gas discharge line from the fuel electrode of the fuel cell, and determines the concentration of the hydrogen gas that is determined by the fuel cell stoppage. A gas S degree detector that operates to send out an output when the specified concentration is below the lower limit value and stops sending out the output when it exceeds the upper limit i, and a gas S degree detector that detects the output voltage from the fuel cell and whose magnitude is The voltage detector operates and sends output when the specified voltage for stopping the fuel cell falls below the lower limit value, and stops sending the output when it exceeds the upper limit value, and the gas 11 degree detector and voltage detector operate together. and a means for controlling the fuel gas supply flow ffi control valve in the opening direction on the condition that it is determined that the output is being sent out. The present invention is characterized in that the supply flow layer of fuel gas to the fuel electrode is controlled based on the fuel cell voltage.

(発明の実施例) 以下、本発明の一実施例について図面を参照して説明す
る。
(Embodiment of the Invention) Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明による燃料電池l1i1Fの構成例を
ブロック的に示すものである。なお第1図では、説明の
便宜上燃料電池として単位セルのリン酸型の燃料電池に
本発明を適用した場合について図示したが、実際のもの
は、例えば単位セル439枚をamし、280vの出力
電圧を生ずるものである。図において、1は電解質とし
てリン酸を含浸した電解質層を挾んで燃料極2および酸
化剤極3の一対の′FM穫を配置して成る燃料電池であ
り、その燃料極2に水素含有率の高い燃料ガスとして水
素ガスを、また酸化剤極3に酸化剤ガスとじて空気を夫
々供給し、このとき起こる電気化学的反応により上記両
電極2,3間から電気エネルギーを取出して、これを外
部負荷4へ供給するようにしている。また、5は上記燃
料電池1の燃料Ii2に対する燃料ガスの供給ライン6
上に設けられた燃料ガス供給流量調節弁である。一方、
7は上記燃料電池1の燃料極2からの燃料ガスの排出ラ
イン8を通過する水素ガスの濃度を検出するガス濃度検
出器であり、検出濃度の値が燃料電池1停止に係る規定
濃度の下限m<ここでは3%)以下になると動作して出
力を送出し、また上限値(ここでは4%)以上になると
出力の送出を停止するようになっている。また、9は上
記外部負荷4の両端に接続されその電圧つまり燃料電池
1からの出力電圧を検出する電圧検出器であり、検出電
圧の値が燃料電池1停止に係る規定電圧の下限値(ここ
では4V)以下になると動作して出力を送出しまた上限
1id(ここでは20■)以上になると出力の送出を停
止するようになっている。さらに、10は上記ガス濃度
検出器7および電圧検出器9が共に動作して出力を送出
している。つまり論理積条件が成立していることを判定
したことにより、上記水素ガス供給流量調節弁5を開方
向に制御するアンド回路である。
FIG. 1 shows in block form an example of the configuration of a fuel cell l1i1F according to the present invention. For convenience of explanation, FIG. 1 shows a case in which the present invention is applied to a phosphoric acid fuel cell with unit cells as a fuel cell, but an actual one has, for example, 439 unit cells and an output of 280V. It generates voltage. In the figure, 1 is a fuel cell consisting of a pair of FM cells, a fuel electrode 2 and an oxidizer electrode 3, sandwiching an electrolyte layer impregnated with phosphoric acid as an electrolyte. Hydrogen gas is supplied as a high fuel gas, and air is supplied as an oxidant gas to the oxidizer electrode 3, and the electrochemical reaction that occurs at this time extracts electrical energy from between the electrodes 2 and 3, and transfers it to the outside. The power is supplied to load 4. Further, 5 is a fuel gas supply line 6 for the fuel Ii2 of the fuel cell 1.
This is a fuel gas supply flow rate control valve provided above. on the other hand,
7 is a gas concentration detector that detects the concentration of hydrogen gas passing through the fuel gas discharge line 8 from the fuel electrode 2 of the fuel cell 1, and the detected concentration value is the lower limit of the specified concentration for stopping the fuel cell 1. When m < 3% in this case), it operates and sends out an output, and when it reaches an upper limit (4% in this case) or more, it stops sending out the output. A voltage detector 9 is connected to both ends of the external load 4 and detects its voltage, that is, the output voltage from the fuel cell 1, and the value of the detected voltage is the lower limit of the specified voltage (here When the voltage is below 4V), the circuit operates and sends out an output, and when the voltage is above the upper limit 1id (here, 20V), it stops sending out the output. Further, at 10, the gas concentration detector 7 and voltage detector 9 operate together to send out an output. In other words, it is an AND circuit that controls the hydrogen gas supply flow rate control valve 5 in the opening direction by determining that the logical product condition is satisfied.

次に、上述のように構成した燃料電池装置において、通
常時には燃料電池1の燃料極2に燃料ガスが、また酸化
剤極3に空気が負荷量に応じて夫々供給され、両者の電
気化学的反応により上記両電極2.3間から電気エネル
ギーが取出され、これが外部負荷4へ供給されている。
Next, in the fuel cell device configured as described above, under normal conditions, fuel gas is supplied to the fuel electrode 2 of the fuel cell 1, and air is supplied to the oxidizer electrode 3 according to the load amount, so that the electrochemical Electrical energy is extracted from between the two electrodes 2.3 due to the reaction, and is supplied to the external load 4.

次に、このような状態から燃料電池1の運転が停止した
場合には、燃料電池1の燃料極2からの燃料ガスの排出
ライン8を通過する水素ガスの濃度がガス濃度検出器7
によって検出され、また燃料電池1からの出力電圧が外
部負荷4を介して電圧検出器9によって検出される。そ
の結果、水素ガスの検出濃度値が燃料電池1停止に係る
規定濃度の下限値(ここでは3%)以下になると、ガス
濃度検出器7が動作して出力が送出され、また同様に燃
料′I11池1からの出力電圧値が燃料電池1停止に係
る規定電圧の下限値(ここでは4V)以下になると、1
i圧検出器9が動作して出力が送出されることから、こ
れらガス濃度検出器7および電圧検出器9より共に出力
が送出されていることをアンド回路10で判定し、その
論理積判定出力によって燃料ガス供給Fltll調節弁
5を開方向に制御することにより、燃料電池1停止中に
必要な燃料ガス流量が燃料N池1の燃料II 2へ供給
されることになる。また上記において、水素ガスの検出
濃度値が燃料電池1PF止に係る規定11度の上限値(
ここでは4%)以上になるか、燃料電池1からの出力電
圧値が燃料電池1停止に係る規定電圧の上限値(ここで
は20V)以上になると、ガス濃度検出器7若しくは電
圧検出器9からの出力の送出が停止することから、アン
ド回路10での論理積条件は成立せず、その論理積判定
出力によって燃料ガス供給FIL111節弁5を開方向
にIQ御することにより、燃料電池1の燃料極2への燃
料ガスの供給は停止することになる。
Next, when the operation of the fuel cell 1 is stopped in such a state, the concentration of hydrogen gas passing through the fuel gas discharge line 8 from the fuel electrode 2 of the fuel cell 1 is detected by the gas concentration detector 7.
The output voltage from the fuel cell 1 is detected by the voltage detector 9 via the external load 4. As a result, when the detected hydrogen gas concentration value falls below the lower limit of the specified concentration (3% in this case) for stopping the fuel cell 1, the gas concentration detector 7 operates and outputs an output. When the output voltage value from the I11 battery 1 becomes less than the lower limit of the specified voltage (4V in this case) for stopping the fuel cell 1, the 1
Since the i-pressure detector 9 operates and output is sent out, the AND circuit 10 determines that the output is sent out from both the gas concentration detector 7 and the voltage detector 9, and the AND circuit 10 outputs the logical product. By controlling the fuel gas supply Fltll control valve 5 in the opening direction, the necessary fuel gas flow rate is supplied to the fuel II 2 of the fuel N pond 1 while the fuel cell 1 is stopped. In addition, in the above, the detected concentration value of hydrogen gas is the upper limit of 11 degrees specified for fuel cell 1PF stop (
4%) or the output voltage from the fuel cell 1 exceeds the upper limit of the specified voltage for stopping the fuel cell 1 (20V here), the gas concentration detector 7 or voltage detector 9 Since the output of the output is stopped, the logical product condition in the AND circuit 10 is not satisfied, and by controlling the IQ in the opening direction of the fuel gas supply FIL 111 control valve 5 based on the logical product judgment output, the fuel cell 1 is The supply of fuel gas to the fuel electrode 2 will be stopped.

上述したように本実施例による燃料電池装置は、リン酸
電解質を含浸した電解質層を挟んで燃料極2および酸化
剤極3の一対のmiを配置して成り。
As described above, the fuel cell device according to this embodiment includes a pair of mi, the fuel electrode 2 and the oxidizer electrode 3, arranged with an electrolyte layer impregnated with a phosphoric acid electrolyte sandwiched therebetween.

上記燃料極2に燃料ガスをまた酸化剤極3に空気を夫々
供給してこのとき起こる電気化学的反応により上記両電
1112.3閲から電気エネルギーを取出す燃料電池1
と、この燃料電池の燃料極2に対する燃料ガスの供給ラ
イン6上に設けられた燃料ガス供給流m調節弁5と、上
記燃料電池1の燃料極2からの燃料ガスの排出ライン8
を通過する水素ガスの濃度を検出し、かつその大きさが
燃料電池1停止に係る規定濃度の下限値以下になると動
作して出力を送出しまた上限値以上になると出力の送出
を停止するガス濃度検出器7と、上記燃料電池1からの
出力電圧を外部負荷4を介して検出し、かつその大きさ
が燃料電池停止に係る規定電圧の下限値以下になると動
作して出力を送出しまた上限値以上になると出力の送出
を停止する電圧検出器9と、上記ガス濃度検出器7およ
び電圧検出器9が共に動作して出力を送出していること
を11定したことを条件に、上記燃料ガス供給流ffi
調節弁5を開方向に制御するアンド回路10とを備えて
構成し、燃料極2出口側の水素ガス濃度および燃料電池
1電圧に基づいて燃料極2への燃料ガスの供給流量を制
■するようにしたものである。
Fuel cell 1 which supplies fuel gas to the fuel electrode 2 and air to the oxidizer electrode 3, and extracts electrical energy from the two electrodes 1112.3 through the electrochemical reaction that occurs at this time.
, a fuel gas supply flow m control valve 5 provided on a fuel gas supply line 6 to the fuel electrode 2 of the fuel cell, and a fuel gas discharge line 8 from the fuel electrode 2 of the fuel cell 1.
A gas that detects the concentration of hydrogen gas passing through the gas, and when the concentration falls below the lower limit of the specified concentration for stopping fuel cell 1, it operates and outputs output, and when it exceeds the upper limit, it stops outputting the output. The concentration detector 7 and the output voltage from the fuel cell 1 are detected via the external load 4, and when the magnitude thereof becomes equal to or lower than the lower limit of the specified voltage for stopping the fuel cell, the output voltage is activated and the output is sent out. Provided that the voltage detector 9, which stops outputting when the upper limit value is exceeded, and the gas concentration detector 7 and voltage detector 9 are both operating and transmitting output, Fuel gas supply flow ffi
The structure includes an AND circuit 10 that controls the control valve 5 in the open direction, and controls the flow rate of fuel gas supplied to the fuel electrode 2 based on the hydrogen gas concentration on the outlet side of the fuel electrode 2 and the voltage of the fuel cell 1. This is how it was done.

従って、燃料極2の水素ガス濃度を燃料極2出口側の水
素ガス1度および燃料電池1電圧から応答性よく検出す
ることができ、これにより燃料電池1の停止中における
燃料極2の水素ガス濃度を常に一定範囲内に゛確実に保
ち、燃料l!池1電圧の上昇を抑制して燃料極2を保護
することが可能となり、極めて信頼性の高い燃料電池5
A置を得ることができるものである。
Therefore, the hydrogen gas concentration at the fuel electrode 2 can be detected with good responsiveness from the hydrogen gas at the outlet side of the fuel electrode 2 and the voltage at the fuel cell 1. Always keep the concentration within a certain range and keep the fuel l! It is now possible to protect the fuel electrode 2 by suppressing the rise in battery 1 voltage, resulting in an extremely reliable fuel cell 5.
It is possible to obtain the A position.

尚、本発明は上述した実施例に限定されるものではなく
、その要旨を変更しない範囲で種々に変形して実施する
ことができるものである。
Note that the present invention is not limited to the embodiments described above, and can be implemented with various modifications without changing the gist thereof.

例えば、上記実施例では燃料電池としてリン酸型の燃料
電池に本発明を適用した場合について述べたが、これに
限らずその他の型の燃料電池についても本発明を同様に
適用することができるものである。
For example, in the above embodiment, the present invention is applied to a phosphoric acid fuel cell as a fuel cell, but the present invention is not limited to this, and the present invention can be similarly applied to other types of fuel cells. It is.

(発明の効果) 以上説明した様に本発明によれば、燃料極出口側の水素
ガス濃度および燃料電池電圧に基づいて燃料極への燃料
ガスの供給流量を制御する構成としたので、燃料電池の
停止中における燃料極の水素ガス濃度を一定範囲内に確
実に保ち、電池電圧の上昇を抑制して燃料極を保:!す
ることが可能な極めて信頼性の高い燃料電池装置が提供
できる。
(Effects of the Invention) As explained above, according to the present invention, the flow rate of fuel gas supplied to the fuel electrode is controlled based on the hydrogen gas concentration on the fuel electrode outlet side and the fuel cell voltage, so that the flow rate of fuel gas supplied to the fuel electrode is controlled. Ensures that the hydrogen gas concentration at the fuel electrode is within a certain range while the system is stopped, suppresses the rise in battery voltage, and maintains the fuel electrode. It is possible to provide an extremely reliable fuel cell device that can perform the following steps.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例を示す構成ブロック図である。 1・・・燃料電池、2・・・燃料極、3・・・酸化剤極
、4・・・外部負荷、5・・・燃料ガス供給流量調節弁
、6・・・燃料ガスの供給ライン、7・・・ガス濃度検
出器、8・・・燃料ガスの排出ライン、9・・・電圧検
出器、10・・・アンド回路。
The figure is a configuration block diagram showing one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Fuel cell, 2... Fuel electrode, 3... Oxidizer electrode, 4... External load, 5... Fuel gas supply flow rate control valve, 6... Fuel gas supply line, 7... Gas concentration detector, 8... Fuel gas discharge line, 9... Voltage detector, 10... AND circuit.

Claims (1)

【特許請求の範囲】[Claims] 電解質を含浸した電解質層を挟んで燃料極および酸化剤
極の一対の電極を配置して成り、前記燃料極に燃料ガス
をまた酸化剤極に酸化剤ガスを夫々供給してこのとき起
こる電気化学的反応により前記両電極間から電気エネル
ギーを取出す燃料電池と、前記燃料電池の燃料極に対す
る燃料ガスの供給ライン上に設けられた燃料ガス供給流
量調節弁と、前記燃料電池の燃料極からの燃料ガスの排
出ラインを通過する水素ガスの濃度を検出し、かつその
大きさが燃料電池停止に係る規定濃度の下限値以下にな
ると動作して出力を送出しまた上限値以上になると出力
の送出を停止するガス濃度検出器と、前記燃料電池から
の出力電圧を検出し、かつその大きさが燃料電池停止に
係る規定電圧の下限値以下になると動作して出力を送出
しまた上限値以上になると出力の送出を停止する電圧検
出器と、前記ガス濃度検出器および電圧検出器が共に動
作して出力を送出していることを判定したことを条件に
、前記燃料ガス供給流量調節弁を開方向に制御する手段
とを備えて構成するようにしたことを特徴とする燃料電
池装置。
It consists of a pair of electrodes, a fuel electrode and an oxidizer electrode, sandwiching an electrolyte layer impregnated with an electrolyte, and the electrochemistry that occurs at this time is achieved by supplying fuel gas to the fuel electrode and oxidant gas to the oxidizer electrode, respectively. a fuel cell that extracts electrical energy from between the two electrodes by a chemical reaction; a fuel gas supply flow rate control valve provided on a fuel gas supply line to the fuel electrode of the fuel cell; and a fuel gas supply flow rate control valve provided from the fuel electrode of the fuel cell It detects the concentration of hydrogen gas passing through the gas discharge line, and when the concentration falls below the lower limit of the specified concentration for stopping the fuel cell, it operates and outputs an output, and when it exceeds the upper limit, it stops outputting. The gas concentration detector to be stopped and the output voltage from the fuel cell are detected, and when the magnitude thereof falls below the lower limit value of the specified voltage for stopping the fuel cell, it operates and sends out the output, and when the voltage exceeds the upper limit value, it operates. The fuel gas supply flow rate control valve is moved in the opening direction on the condition that the voltage detector that stops output output, the gas concentration detector, and the voltage detector are both operating to output output. 1. A fuel cell device comprising: means for controlling
JP61089415A 1986-04-18 1986-04-18 Fuel cell device Pending JPS62246266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61089415A JPS62246266A (en) 1986-04-18 1986-04-18 Fuel cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61089415A JPS62246266A (en) 1986-04-18 1986-04-18 Fuel cell device

Publications (1)

Publication Number Publication Date
JPS62246266A true JPS62246266A (en) 1987-10-27

Family

ID=13970017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61089415A Pending JPS62246266A (en) 1986-04-18 1986-04-18 Fuel cell device

Country Status (1)

Country Link
JP (1) JPS62246266A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120414A (en) * 2004-10-20 2006-05-11 Nissan Motor Co Ltd Stopping/keeping method of fuel cell system
EP2215678A1 (en) * 2007-10-31 2010-08-11 Fuelcell Energy, Inc. Flow control assembly for use with fuel cell systems operating on fuels with varying fuel composition
JP2013171786A (en) * 2012-02-22 2013-09-02 Toyota Motor Corp Fuel cell system
CN112522727A (en) * 2020-12-02 2021-03-19 上海毅镤新能源科技有限公司 Hydrogen production plant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120414A (en) * 2004-10-20 2006-05-11 Nissan Motor Co Ltd Stopping/keeping method of fuel cell system
EP2215678A1 (en) * 2007-10-31 2010-08-11 Fuelcell Energy, Inc. Flow control assembly for use with fuel cell systems operating on fuels with varying fuel composition
EP2215678A4 (en) * 2007-10-31 2012-03-21 Fuelcell Energy Inc Flow control assembly for use with fuel cell systems operating on fuels with varying fuel composition
JP2013171786A (en) * 2012-02-22 2013-09-02 Toyota Motor Corp Fuel cell system
CN112522727A (en) * 2020-12-02 2021-03-19 上海毅镤新能源科技有限公司 Hydrogen production plant

Similar Documents

Publication Publication Date Title
CN100505405C (en) Fuel cell system and method of shutting down the same
US6096448A (en) Method and apparatus for operating an electrochemical fuel cell with periodic fuel starvation at the anode
JP4873952B2 (en) Fuel cell system
JPH025366A (en) Fuel cell and its operating method
US6504339B2 (en) Technique and apparatus to control the charging of a battery using a fuel cell
GB2268322A (en) A hydrocarbon fuelled fuel cell power system
JPH07240220A (en) Fuel cell system
JPH0763020B2 (en) Fuel cell start / stop device
US6815104B2 (en) Method for controlling flow rate of oxidizer in fuel cell system
JPS62246266A (en) Fuel cell device
JPH01128362A (en) Operating method for fuel cell
JP2752987B2 (en) Phosphoric acid fuel cell power plant
JP2005267910A (en) Fuel cell system, and control method of the same
JPS61116764A (en) Fuel cell system
JPH088521Y2 (en) Fuel cell differential pressure control device
JPH08190929A (en) Fuel cell power generating plant
JP2005267898A (en) Fuel cell system
JPS62160667A (en) Fuel cell power generation system
JPH04115467A (en) Phosphate type fuel cell generating plant
JPS60207255A (en) Fuel cell control system
JPH03163762A (en) Fuel cell stopping method
JPS60154471A (en) Air and fuel control system of fuel cell
JPH07282826A (en) Differential pressure control method for fuel cell and device
JPS62259354A (en) Fuel cell power generating system
JPH06251786A (en) Protecting system for solid polymer electrolyte fuel cell