JPH06251786A - Protecting system for solid polymer electrolyte fuel cell - Google Patents

Protecting system for solid polymer electrolyte fuel cell

Info

Publication number
JPH06251786A
JPH06251786A JP5036337A JP3633793A JPH06251786A JP H06251786 A JPH06251786 A JP H06251786A JP 5036337 A JP5036337 A JP 5036337A JP 3633793 A JP3633793 A JP 3633793A JP H06251786 A JPH06251786 A JP H06251786A
Authority
JP
Japan
Prior art keywords
fuel
carbon monoxide
fuel supply
supply line
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5036337A
Other languages
Japanese (ja)
Inventor
Katsuo Hashizaki
克雄 橋崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5036337A priority Critical patent/JPH06251786A/en
Publication of JPH06251786A publication Critical patent/JPH06251786A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To enable continuous power generation without cutting of fuel supply even if concentration of carbon monoxide becomes an allowable value or more, and dispense with a separate fuel supply system for backup by arranging a bypass line of a fuel supply line and a carbon monoxide removing device interposed in the bypass line. CONSTITUTION:When CO concentration in fuel flowing in a fuel supply line 24 becomes an allowable value or more by a carbon monoxide detector 26, cutoff valves 30 and 31 are opened instantly through a control device unit 32 by a detecting signal of the detector 26, and a cutoff valve 27 is closed, and fuel of the fuel supply line 24 is switched to a bypass line 28. The fuel bypassed/ supplied to the bypass line 28 is introduced to an anode pole 21 through a carbon monoxide removing device 29. Carbon monoxide being a poisoning material of platinum used in a catalyst electrode of the anode pole 21 can protect a fuel cell (particularly, anode pole) since it becomes allowable concentration or less by the removing device 29. Since supply of the fuel to the anode pole 21 is not cut off, continuous operation of a fuel cell becomes possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体高分子電解質燃料
電池の保護システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a protection system for polymer electrolyte fuel cells.

【0002】[0002]

【従来の技術】固体高分子電解質燃料電池の一般的な発
電原理を図2を参照して以下に説明する。
2. Description of the Related Art A general power generation principle of a solid polymer electrolyte fuel cell will be described below with reference to FIG.

【0003】固体高分子電解質燃料電池は、図2に示す
ように例えばスルホン酸基を持つフッ素樹脂系イオン交
換膜のような高分子イオン交換膜からなる電解質1と、
前記電解質1の両側にそれぞれ積層して配置された例え
ば白金からなる触媒電極2、3および多孔質カーボン電
極4、5とからなる電池本体6を備えた構造になってい
る。
As shown in FIG. 2, a solid polymer electrolyte fuel cell comprises an electrolyte 1 composed of a polymer ion exchange membrane, such as a fluororesin ion exchange membrane having a sulfonic acid group.
It has a structure including a battery main body 6 composed of catalyst electrodes 2 and 3 and porous carbon electrodes 4 and 5 made of, for example, platinum and laminated on both sides of the electrolyte 1.

【0004】このような構造の燃料電池において、アノ
ード極側に供給された燃料中の水素は、下記式(1)に
示すように前記触媒電極(アノード極)2上で水素イオ
ン化され、水素イオンは前記電解質1中の水の介在のも
とH+ ・xH2 Oとしてカソード極側へ移動する。触媒
電極(カソード極)3上では、下記式(2)に示すよう
に酸化剤中の酸素および外部回路7を流れてきた電子と
反応して水を生成し、燃料電池外部に排出される。この
時、外部回路7を流れる電子の流れを直流の電気エネル
ギーとして利用する。 (アノード側) H2 →2H+ +2e- …(1) (カソード側) 1/2 O2 +2H+ +2e- →H2 O…(2) (全反応) H2 +1/2 O2 →H2
In the fuel cell having such a structure, hydrogen in the fuel supplied to the anode side is hydrogen-ionized on the catalyst electrode (anode electrode) 2 as shown in the following formula (1), and hydrogen ion is obtained. Is H + due to the presence of water in the electrolyte 1. ・ Move to the cathode side as xH 2 O. On the catalyst electrode (cathode electrode) 3, as shown in the following formula (2), water in the oxidant reacts with oxygen and electrons flowing through the external circuit 7 to generate water, which is discharged to the outside of the fuel cell. At this time, the flow of electrons flowing through the external circuit 7 is used as DC electric energy. (Anode side) H 2 → 2H + + 2e - … (1) (Cathode side) 1/2 O 2 + 2H + + 2e - → H 2 O… (2) (all reactions) H 2 +1/2 O 2 → H 2 O

【0005】前述した燃料電池の運転作動温度は、常温
から約120℃前後と低温であるため、前記触媒電極
(アノード極)2への供給燃料中に含まれる一酸化炭素
(CO)濃度は通常10ppm程度以下に抑えられる。
これ以上の濃度の一酸化炭素を含む燃料を前記アノード
極2に供給すると、前記アノード極を構成する触媒電極
2中の白金が被毒され、触媒としての作用を失う、つま
り電池反応が行われなくなる。
Since the operating temperature of the above-mentioned fuel cell is as low as about 120 ° C. from room temperature, the concentration of carbon monoxide (CO) contained in the fuel supplied to the catalyst electrode (anode electrode) 2 is usually It can be suppressed to about 10 ppm or less.
When a fuel containing carbon monoxide having a higher concentration than this is supplied to the anode 2, the platinum in the catalyst electrode 2 forming the anode is poisoned and loses its function as a catalyst, that is, a cell reaction is performed. Disappear.

【0006】このようなことから、従来、図3に示す固
体高分子電解質燃料電池の保護システムが知られてい
る。すなわち、アノード極11とカソード極12の間に
は、イオン交換膜からなるで電解質13が介装されてい
る。燃料供給ライン14は、前記アノード極11に連結
されている。酸化剤供給ライン15は、前記カソード極
12に連結されている。一酸化炭素検知器16は、前記
燃料供給ライン14の途中に設けられ、かつ制御装置ユ
ニット17に接続されている。遮断弁18は、前記検知
器16より下流側に位置する前記燃料供給ライン14に
設けられ、かつ前記制御装置ユニット17からの信号に
より開閉されるようになっている。
From the above, the protection system of the solid polymer electrolyte fuel cell shown in FIG. 3 is conventionally known. That is, an electrolyte 13 made of an ion exchange membrane is interposed between the anode 11 and the cathode 12. The fuel supply line 14 is connected to the anode 11. The oxidant supply line 15 is connected to the cathode 12. The carbon monoxide detector 16 is provided in the middle of the fuel supply line 14 and is connected to the controller unit 17. The shutoff valve 18 is provided on the fuel supply line 14 located on the downstream side of the detector 16, and is opened / closed by a signal from the control device unit 17.

【0007】前述した従来の固体高分子電解質燃料電池
の保護システムにおいて、前記燃料供給ライン14の設
けられた前記一酸化炭素検知器16により前記燃料供給
ライン14を流れる燃料中の一酸化炭素濃度が許容値以
上になると前記検知器16の検知信号により前記制御装
置ユニット17を介して瞬時に前記遮断弁18を作動さ
せ、燃料の前記アノード極11への供給を遮断する。
In the conventional solid polyelectrolyte fuel cell protection system described above, the carbon monoxide concentration in the fuel flowing through the fuel supply line 14 is determined by the carbon monoxide detector 16 provided in the fuel supply line 14. When the value exceeds the allowable value, the shutoff valve 18 is instantly operated via the control unit 17 by the detection signal of the detector 16 to shut off the supply of fuel to the anode 11.

【0008】[0008]

【発明が解決しようとする課題】前述した図3に示す従
来の固体高分子電解質燃料電池の保護システムは次のよ
うな問題があった。
The conventional protection system for a solid polymer electrolyte fuel cell shown in FIG. 3 has the following problems.

【0009】(1)一酸化炭素検知器16が許容濃度以
上の一酸化炭素を検知した段階で燃料供給が前記遮断弁
18により遮断されるため、燃料電池の発電を停止しな
ければならない。 (2)前述したように燃料供給が遮断された場合には、
図3に示すようにバックアップとして別の燃料供給系統
19を付設する必要がある。
(1) Since the fuel supply is shut off by the shutoff valve 18 at the stage when the carbon monoxide detector 16 detects carbon monoxide above the allowable concentration, the power generation of the fuel cell must be stopped. (2) If the fuel supply is cut off as described above,
As shown in FIG. 3, it is necessary to attach another fuel supply system 19 as a backup.

【0010】本発明の目的は、一酸化炭素濃度が許容値
以上になっても燃料供給が遮断されずに継続的な発電を
行うことが可能で、かつバックアップ用の別の燃料供給
系統を省略することが可能な固体高分子電解質燃料電池
の保護システムを提供しようとするものである。
An object of the present invention is to enable continuous power generation without interrupting the fuel supply even if the concentration of carbon monoxide exceeds a permissible value, and omit a separate fuel supply system for backup. It is an object of the present invention to provide a protection system for a solid polymer electrolyte fuel cell capable of achieving the above.

【0011】[0011]

【課題を解決するための手段】本発明は、固体高分子電
解質燃料電池に燃料を供給する燃料供給ラインと、前記
燃料供給ラインの途中に配置された一酸化炭素検知器
と、前記燃料供給ラインに配置され、前記検知器で規定
値以上の一酸化炭素ガスを検知した時に前記燃料供給ラ
インを遮断する遮断手段と、前記遮断手段の上下流側の
前記燃料供給ラインに両端が連結されたバイパスライン
と、前記バイパスラインに介装された一酸化炭素除去装
置とを具備したことを特徴とするものである。
The present invention is directed to a fuel supply line for supplying fuel to a solid polymer electrolyte fuel cell, a carbon monoxide detector disposed in the middle of the fuel supply line, and the fuel supply line. And a bypass having both ends connected to the fuel supply line on the upstream and downstream sides of the shut-off means, the shut-off means shuts off the fuel supply line when the detector detects a carbon monoxide gas of a specified value or more. It is characterized by comprising a line and a carbon monoxide removing device interposed in the bypass line.

【0012】[0012]

【作用】本発明によれば、燃料電池ヘの燃料供給ライン
の途中に配置された一酸化炭素(CO)検知器により許
容濃度以上の一酸化炭素が検知された時、前記燃料供給
ラインに配置された遮断手段により前記供給ラインを遮
断することにより、前記遮断手段の上下流側の前記燃料
供給ラインに両端が連結されたバイパスラインに燃料が
迂回供給される。前記バイパスラインには、一酸化炭素
除去装置が介装されているため、前記バイパスラインに
迂回供給された前記燃料は前記除去装置で一酸化炭素が
除去されて一酸化炭素濃度が許容値以下になって前記燃
料電池に供給される。したがって、燃料電池への燃料供
給が遮断されないため、継続的な発電を行うことができ
る。
According to the present invention, when the carbon monoxide (CO) detector arranged in the middle of the fuel supply line to the fuel cell detects carbon monoxide having a concentration higher than the allowable concentration, the carbon monoxide is arranged in the fuel supply line. By shutting off the supply line by the shut-off means, the fuel is bypass-supplied to the bypass line whose both ends are connected to the fuel supply line upstream and downstream of the shut-off means. Since the carbon monoxide removing device is provided in the bypass line, the fuel bypass-supplied to the bypass line has carbon monoxide removed by the removing device so that the carbon monoxide concentration becomes equal to or lower than the allowable value. And is supplied to the fuel cell. Therefore, the fuel supply to the fuel cell is not interrupted, and continuous power generation can be performed.

【0013】[0013]

【実施例】以下、本発明の実施例を図1を参照して詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to FIG.

【0014】図1は、固体高分子電解質燃料電池の保護
システムを示す概略図である。アノード極21とカソー
ド極22の間には、イオン交換膜からなるで電解質23
が介装されている。燃料供給ライン24は、前記アノー
ド極21に連結されている。酸化剤供給ライン25は、
前記カソード極22に連結されている。
FIG. 1 is a schematic diagram showing a protection system for a solid polymer electrolyte fuel cell. Between the anode electrode 21 and the cathode electrode 22, an electrolyte is formed by an ion exchange membrane.
Is installed. The fuel supply line 24 is connected to the anode 21. The oxidant supply line 25 is
It is connected to the cathode 22.

【0015】一酸化炭素検知器26は、前記燃料供給ラ
イン24の途中に設けられている。第1遮断弁27は、
前記検知器26より下流側に位置する前記燃料供給ライ
ン24に設けられている。バイパスライン28の一端
は、前記第1遮断弁27の上流側の前記燃料供給ライン
24に、その他端は前記第1遮断弁27の下流側の前記
燃料供給ライン24にそれぞれ連結されている。一酸化
炭素除去装置29は、前記バイパスライン28に介装さ
れている。第2、第3の遮断弁30、31は、前記除去
装置29の上流および下流側の前記パイパスライン28
に介装されている。制御装置ユニット32は、前記検知
器26からの検知信号に基づいて前記第1〜第3の遮断
弁27、30、31を開閉するものである。すなわち、
前記制御装置ユニット32は前記検知器26から一酸化
炭素の許容値以上の検知信号が入力されると、前記第
2、第3の遮断弁30、31を開き、同時に前記第1遮
断弁27を閉じて前記燃料供給ライン24の燃料を前記
バイパスライン28に切換る作用を有する。
The carbon monoxide detector 26 is provided in the middle of the fuel supply line 24. The first shutoff valve 27 is
The fuel supply line 24 is provided downstream of the detector 26. One end of the bypass line 28 is connected to the fuel supply line 24 on the upstream side of the first cutoff valve 27, and the other end is connected to the fuel supply line 24 on the downstream side of the first cutoff valve 27. The carbon monoxide removing device 29 is interposed in the bypass line 28. The second and third shutoff valves 30 and 31 are provided on the bypass line 28 upstream and downstream of the removing device 29.
Is installed in the. The controller unit 32 opens and closes the first to third cutoff valves 27, 30, 31 based on the detection signal from the detector 26. That is,
The control unit 32 opens the second and third shutoff valves 30 and 31 when a detection signal equal to or more than the allowable value of carbon monoxide is input from the detector 26, and simultaneously opens the first shutoff valve 27. It has the function of closing and switching the fuel in the fuel supply line 24 to the bypass line 28.

【0016】このような構成によれば、燃料を燃料供給
ライン24を通してアノード極21に、酸化剤を酸化剤
供給ライン25を通してカソード極22にそれぞれ供給
することにより発電が行われる。
According to this structure, power is generated by supplying fuel to the anode 21 through the fuel supply line 24 and supplying oxidant to the cathode 22 through the oxidant supply line 25.

【0017】一方、前記燃料供給ライン24に設けられ
た前記一酸化炭素検知器26により前記燃料供給ライン
24を流れる燃料中のCO濃度が許容値以上になると、
前記検知器26の検知信号により前記制御装置ユニット
32を介して瞬時に前記第2、第3の遮断弁30、31
を開き、前記第1遮断弁27を閉じて前記燃料供給ライ
ン24の燃料を前記バイパスライン28に切換る。前記
バイパスライン28に迂回供給された前記燃料は、前記
バイパスライン28に介在された前記一酸化炭素除去装
置29を通して前記アノード極21に導入される。前記
アノード極21の触媒電極に用いられる白金の被毒物質
である一酸化炭素は、前記除去装置29で許容濃度が以
下になっているため、燃料電池(特にアノード極21)
を保護することができる。また、前記アノード極21へ
の燃料の供給が遮断されないため、燃料電池の継続的な
運転が可能になる。
On the other hand, when the CO concentration in the fuel flowing through the fuel supply line 24 becomes higher than the allowable value by the carbon monoxide detector 26 provided in the fuel supply line 24,
By the detection signal of the detector 26, the second and third shutoff valves 30, 31 are instantaneously passed through the control device unit 32.
Open and close the first shutoff valve 27 to switch the fuel in the fuel supply line 24 to the bypass line 28. The fuel bypass-supplied to the bypass line 28 is introduced into the anode 21 through the carbon monoxide removing device 29 interposed in the bypass line 28. Carbon monoxide, which is a poisoning substance of platinum used for the catalyst electrode of the anode 21, has a permissible concentration below that of the removal device 29, so that the fuel cell (especially the anode 21)
Can be protected. Further, since the fuel supply to the anode 21 is not interrupted, the fuel cell can be continuously operated.

【0018】[0018]

【発明の効果】以上詳述したように、本発明に係わる固
体高分子電解質燃料電池の保護システムによれば燃料電
池ヘの燃料供給ラインの途中に配置された一酸化炭素
(CO)検知器により許容濃度以上の一酸化炭素が検知
された時、前記燃料供給ラインに配置された遮断手段に
より前記供給ラインを遮断し、燃料を前記遮断手段の上
下流側の前記燃料供給ラインに設けられたバイパスライ
ンに迂回供給し、前記バイパスラインに介装された一酸
化炭素除去装置で一酸化炭素を許容濃度以下にすること
によって (1)触媒電極に用いられる白金の一酸化炭素による被
毒を防止して燃料電池を保護できる、 (2)一酸化炭素濃度が許容値以上になっても、燃料供
給が遮断されないため、燃料電池を継続的に運転するこ
とができる、 (3)バックアップ用として別の燃料供給系統の付設を
省略してシステムを簡素化することができる、 等顕著な効果を奏する。
As described above in detail, according to the solid polymer electrolyte fuel cell protection system of the present invention, the carbon monoxide (CO) detector disposed in the fuel supply line to the fuel cell is used. When carbon monoxide above the permissible concentration is detected, the supply line is shut off by the shut-off means arranged in the fuel supply line, and the fuel is bypassed in the fuel supply line upstream and downstream of the shut-off means. By bypassing the supply to the line and reducing the carbon monoxide concentration to below the permissible concentration by the carbon monoxide removing device interposed in the bypass line, (1) prevention of poisoning by platinum carbon monoxide used for the catalyst electrode (2) The fuel cell can be continuously operated because the fuel supply is not shut off even if the carbon monoxide concentration exceeds the allowable value. (3) Back It is possible to simplify the system by omitting the attached another fuel supply system for the-up brings about an equal remarkable effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1における固体高分子電解質燃
料電池の保護システムを示す概略図。
FIG. 1 is a schematic diagram showing a protection system for a solid polymer electrolyte fuel cell in Example 1 of the present invention.

【図2】固体高分子電解質燃料電池の発電原理を示す概
略図。
FIG. 2 is a schematic diagram showing a power generation principle of a solid polymer electrolyte fuel cell.

【図3】従来の固体高分子電解質燃料電池の保護システ
ムを示す概略図。
FIG. 3 is a schematic diagram showing a conventional protection system for a solid polymer electrolyte fuel cell.

【符号の説明】[Explanation of symbols]

21…アノード極、22…カソード極、23…電解質、
24…燃料供給ライン、26…一酸化炭素検知器、2
7、30、31…遮断弁、28…バイパスライン、29
…一酸化炭素除去装置、32…制御装置ユニット。
21 ... Anode electrode, 22 ... Cathode electrode, 23 ... Electrolyte,
24 ... Fuel supply line, 26 ... Carbon monoxide detector, 2
7, 30, 31 ... Shut-off valve, 28 ... Bypass line, 29
... Carbon monoxide removing device, 32 ... Control device unit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質燃料電池に燃料を供給
する燃料供給ラインと、前記燃料供給ラインの途中に配
置された一酸化炭素検知器と、前記燃料供給ラインに配
置され、前記検知器で規定値以上の一酸化炭素ガスを検
知した時に前記燃料供給ラインを遮断する遮断手段と、
前記遮断手段の上下流側の前記燃料供給ラインに両端が
連結されたバイパスラインと、前記バイパスラインに介
装された一酸化炭素除去装置とを具備したことを特徴と
する固体高分子電解質燃料電池の保護システム。
1. A fuel supply line for supplying a fuel to a solid polymer electrolyte fuel cell, a carbon monoxide detector disposed in the middle of the fuel supply line, and a fuel supply line disposed in the fuel supply line. A shutoff means for shutting off the fuel supply line when detecting a carbon monoxide gas of a specified value or more,
A solid polymer electrolyte fuel cell comprising: a bypass line having both ends connected to the fuel supply line on the upstream and downstream sides of the shutoff means; and a carbon monoxide removing device interposed in the bypass line. Protection system.
JP5036337A 1993-02-25 1993-02-25 Protecting system for solid polymer electrolyte fuel cell Pending JPH06251786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5036337A JPH06251786A (en) 1993-02-25 1993-02-25 Protecting system for solid polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5036337A JPH06251786A (en) 1993-02-25 1993-02-25 Protecting system for solid polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH06251786A true JPH06251786A (en) 1994-09-09

Family

ID=12467023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5036337A Pending JPH06251786A (en) 1993-02-25 1993-02-25 Protecting system for solid polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH06251786A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180272B1 (en) * 1998-08-20 2001-01-30 Lucent Technologies Inc. System and method for automatically providing fuel to a fuel cell in response to a power failure in a primary power system
US6265092B1 (en) 1997-10-24 2001-07-24 General Motors Corporation Method of controlling injection of oxygen into hydrogen-rich fuel cell feed stream
KR100652591B1 (en) * 2005-03-04 2006-12-01 엘지전자 주식회사 Fuel cell having hydrogen bombe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6265092B1 (en) 1997-10-24 2001-07-24 General Motors Corporation Method of controlling injection of oxygen into hydrogen-rich fuel cell feed stream
US6180272B1 (en) * 1998-08-20 2001-01-30 Lucent Technologies Inc. System and method for automatically providing fuel to a fuel cell in response to a power failure in a primary power system
KR100652591B1 (en) * 2005-03-04 2006-12-01 엘지전자 주식회사 Fuel cell having hydrogen bombe

Similar Documents

Publication Publication Date Title
US6096448A (en) Method and apparatus for operating an electrochemical fuel cell with periodic fuel starvation at the anode
JP3453954B2 (en) Carbon monoxide detector, organic compound detector and lower alcohol detector
EP1194968B1 (en) Method and apparatus for operating an electrochemical fuel cell with periodic reactant starvation
US8039154B2 (en) Fuel cell system, method of starting fuel cell system
JP2660097B2 (en) Fuel cell generator
JP4283928B2 (en) Operation method of fuel cell
JPH06223850A (en) Operation protecting system for solid high polymer electrolyte fuel cell
EP1383192A2 (en) Chemical sensing in fuel cell systems
JP4687039B2 (en) Polymer electrolyte fuel cell system
JPWO2009066437A1 (en) Fuel cell system and operation method thereof
EP1659652B1 (en) Fuel cell system and method for stopping operation of fuel cell system
JPH06251786A (en) Protecting system for solid polymer electrolyte fuel cell
JPH11329472A (en) Fuel cell system
JP4381508B2 (en) Fuel cell system
JPH09180747A (en) Power supply device
JPH01200567A (en) Power generation system of fuel cell
JPH09180744A (en) Phosphoric acid fuel cell power generation device
JP3422509B2 (en) Solid polymer electrolyte fuel cell system
JPH05217593A (en) Fuel cell power generation plant
JPH0354433B2 (en)
JP3515789B2 (en) Fuel cell power plant
JPH07249424A (en) Phosphoric acid fuel cell power generating plant
JPH06223856A (en) Fuel cell generator
JP4282967B2 (en) Fuel cell hydrogen shut-off device
JPS62246266A (en) Fuel cell device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031125