JP4687039B2 - Polymer electrolyte fuel cell system - Google Patents

Polymer electrolyte fuel cell system Download PDF

Info

Publication number
JP4687039B2
JP4687039B2 JP2004256118A JP2004256118A JP4687039B2 JP 4687039 B2 JP4687039 B2 JP 4687039B2 JP 2004256118 A JP2004256118 A JP 2004256118A JP 2004256118 A JP2004256118 A JP 2004256118A JP 4687039 B2 JP4687039 B2 JP 4687039B2
Authority
JP
Japan
Prior art keywords
fuel
electrode
oxidant
fuel cell
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004256118A
Other languages
Japanese (ja)
Other versions
JP2006073376A (en
Inventor
和典 土野
貢 高橋
佳明 尾台
和彦 川尻
健男 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004256118A priority Critical patent/JP4687039B2/en
Publication of JP2006073376A publication Critical patent/JP2006073376A/en
Application granted granted Critical
Publication of JP4687039B2 publication Critical patent/JP4687039B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

この発明は、燃料電池の技術分野に属するものであり、特に固体高分子形燃料電池システムの停止方法に関するものである。   The present invention belongs to the technical field of fuel cells, and particularly relates to a method for stopping a polymer electrolyte fuel cell system.

燃料電池を停止した状態で、酸化剤極側に酸素含有ガスが残留していると、酸化剤極が酸素によって酸化劣化することが知られている。これに対して、従来の固体高分子形燃料電池システムでは、燃料電池の停止の際に、酸化剤極側への酸素含有ガスの供給を停止した状態で、燃料電池を発電させて酸化剤極側の酸素を消費する酸素消費処理を行っている。その後、酸化剤極側にパージ用ガスを存在させるパージ処理を行っている(例えば特許文献1)。   It is known that when an oxygen-containing gas remains on the oxidant electrode side with the fuel cell stopped, the oxidant electrode is oxidized and deteriorated by oxygen. In contrast, in the conventional polymer electrolyte fuel cell system, when the fuel cell is stopped, the supply of the oxygen-containing gas to the oxidant electrode side is stopped, and the fuel cell is generated to generate power. Oxygen consumption treatment is performed to consume oxygen on the side. Thereafter, a purge process is performed in which a purge gas is present on the oxidant electrode side (for example, Patent Document 1).

特開2002−93448号公報(5頁2段落目3〜10行、図1)JP 2002-93448 A (5th page, 2nd paragraph, 3 to 10 lines, FIG. 1)

しかしながら、このような固体高分子形燃料電池システムでは、パージ処理のための圧力調整手段や体積収縮を緩和するための圧力調整手段を設ける必要があり、システム構成が複雑化する。また、長期間にわたって停止状態とすると、燃料電池に空気が混入した場合に酸化剤極の酸化劣化を抑制できないという問題点があった。   However, in such a polymer electrolyte fuel cell system, it is necessary to provide a pressure adjusting means for purging and a pressure adjusting means for alleviating volume shrinkage, which complicates the system configuration. Further, if the fuel cell is stopped for a long period of time, there is a problem in that oxidative deterioration of the oxidant electrode cannot be suppressed when air is mixed into the fuel cell.

この発明は、上記のような問題点を解決するためになされたものであり、固体高分子形燃料電池システムの停止の際において、停止後に燃料電池の温度低下に起因する内圧低下や水の凝縮に起因する負圧の発生(体積収縮)による燃料電池への空気混入を防止し、酸化剤極の酸化劣化を抑制することを目的としている。   The present invention has been made to solve the above-described problems. When the solid polymer fuel cell system is stopped, the internal pressure is reduced or the water is condensed due to the temperature drop of the fuel cell after the stop. The purpose of this is to prevent air from being mixed into the fuel cell due to the generation of negative pressure (volume shrinkage) caused by this, and to suppress oxidative deterioration of the oxidizer electrode.

この発明における固体高分子形燃料電池システムは、固体高分子電解質を挟んで対向する燃料極と酸化剤極とを有する燃料電池と、燃料極に燃料ガスを供給するための燃料供給手段と、酸化剤極に酸化剤ガスを供給する酸化剤供給手段と、燃料電池と外部負荷とを接続するための接続部とを備え、当該燃料電池システムの停止手順を制御する制御手段が、燃料電池と外部負荷との接続を切断した後、燃料極と酸化剤極とに接続された内部放電負荷に燃料電池からの電流を流した状態で酸化剤ガスの供給を停止することにより酸化剤極に燃料ガスを発生させ、これに同期して燃料極を燃料ガスの供給によって昇圧することによって、燃料極及び酸化剤極を燃料ガスで昇圧するものである。   A polymer electrolyte fuel cell system according to the present invention includes a fuel cell having a fuel electrode and an oxidant electrode facing each other across a solid polymer electrolyte, fuel supply means for supplying fuel gas to the fuel electrode, An oxidant supply means for supplying an oxidant gas to the agent electrode, and a connection part for connecting the fuel cell and an external load, and a control means for controlling the stopping procedure of the fuel cell system are provided After disconnecting the load, the fuel gas is supplied to the oxidant electrode by stopping the supply of the oxidant gas while the current from the fuel cell is supplied to the internal discharge load connected to the fuel electrode and the oxidant electrode. The fuel electrode and the oxidant electrode are boosted with the fuel gas by increasing the pressure of the fuel electrode by supplying the fuel gas in synchronization with this.

この発明によれば、固体高分子形燃料電池システムの停止の際において、燃料極及び酸化剤極の空間を昇圧した水素雰囲気で密閉停止することにより、停止後の燃料電池の温度低下に起因する内圧低下や水の凝縮に起因する体積収縮が発生したとしても、燃料電池内が負圧になることはない。したがって、燃料電池内への空気の混入を防止でき、酸化剤極の酸化劣化を抑制することができる。   According to the present invention, when the solid polymer fuel cell system is stopped, the space between the fuel electrode and the oxidant electrode is hermetically stopped in a hydrogen atmosphere whose pressure has been increased, resulting in a decrease in the temperature of the fuel cell after the stop. Even if volume shrinkage due to a decrease in internal pressure or condensation of water occurs, the inside of the fuel cell does not become a negative pressure. Therefore, air can be prevented from being mixed into the fuel cell, and oxidative deterioration of the oxidant electrode can be suppressed.

実施の形態1.
図1は、本発明の実施の形態1による固体高分子形燃料電池システム(以下、燃料電池システムという)の概略図である。燃料電池システムは、固体高分子電解質を挟んで対向する燃料極2と酸化剤極9とを有する燃料電池(出力を高めるために単セルを複数積層したスタックが一般的)1、燃料極2に燃料ガスを供給するための燃料供給手段(改質器)3、燃料流路4、燃料入口開閉弁5、燃料排出流路6、燃料排出開閉弁7、燃料極2の圧力を検知する燃料極圧力検知手段8、酸化剤極9に酸化剤ガスを供給する酸化剤供給手段10、酸化剤供給流路11、酸化剤入口開閉弁12、酸化剤排出流路13、酸化剤排出開閉弁14を備えている。また、燃料電池1にて発電された電力を消費する外部負荷50と当該燃料電池1とを接続するための外部接続部としてのパワーコンディショナ15、外部負荷50とは別に燃料極と酸化剤極とに接続された内部放電負荷16、これら外部負荷50と内部放電負荷16の接続を切り替えるための開閉器17、当該燃料電池システムの運転状況及び停止手順を制御する制御装置27を備えている。図1の破線矢印は、停止手順における制御装置27からも制御指令を示す。なお、燃料電池の冷却水系統や冷却水タンク、改質器3への燃料供給系統、センサなどについては図示を省略した。
Embodiment 1 FIG.
FIG. 1 is a schematic diagram of a polymer electrolyte fuel cell system (hereinafter referred to as a fuel cell system) according to Embodiment 1 of the present invention. The fuel cell system includes a fuel cell having a fuel electrode 2 and an oxidant electrode 9 facing each other across a solid polymer electrolyte (a stack in which a plurality of single cells are stacked in order to increase output) 1 and a fuel electrode 2 Fuel supply means (reformer) 3 for supplying fuel gas, fuel flow path 4, fuel inlet on-off valve 5, fuel discharge flow path 6, fuel discharge on-off valve 7, fuel electrode for detecting the pressure of the fuel electrode 2 An oxidant supply means 10 for supplying an oxidant gas to the oxidant electrode 9, an oxidant supply flow path 11, an oxidant inlet on / off valve 12, an oxidant discharge flow path 13, and an oxidant discharge on / off valve 14. I have. In addition to the external load 50 that consumes the electric power generated by the fuel cell 1 and the power conditioner 15 as an external connection for connecting the fuel cell 1 and the external load 50, the fuel electrode and the oxidant electrode And an internal discharge load 16 connected to each other, a switch 17 for switching the connection between the external load 50 and the internal discharge load 16, and a control device 27 for controlling the operation status and stop procedure of the fuel cell system. A broken line arrow in FIG. 1 indicates a control command from the control device 27 in the stop procedure. Note that illustration of a cooling water system, a cooling water tank, a fuel supply system to the reformer 3, a sensor, and the like is omitted.

燃料電池システムの動作について説明する。燃料電池1は温度を60〜80℃に保たれた状態である。燃料極2には、改質器3からの露点60〜70℃の燃料ガス(水素リッチガス)が燃料流路4を通って供給される。酸化剤極9には、酸化剤供給手段10からの露点70〜80℃の酸化剤ガスとしての空気が酸化剤供給流路11を通って供給される。そして、燃料電池1を外部負荷50と接合することで、発電が行なわれる。発電に使用されなかった空気は、酸化剤排出流路13を経由して排気される。一方、発電に使用されなかった燃料ガスは、燃料排出流路6を経由して改質器3のバーナに供給され燃焼する。   The operation of the fuel cell system will be described. The fuel cell 1 is in a state where the temperature is maintained at 60 to 80 ° C. A fuel gas (hydrogen rich gas) having a dew point of 60 to 70 ° C. from the reformer 3 is supplied to the fuel electrode 2 through the fuel flow path 4. Air as an oxidant gas having a dew point of 70 to 80 ° C. from the oxidant supply means 10 is supplied to the oxidant electrode 9 through the oxidant supply passage 11. Then, power generation is performed by joining the fuel cell 1 to the external load 50. Air that has not been used for power generation is exhausted via the oxidant discharge passage 13. On the other hand, the fuel gas that has not been used for power generation is supplied to the burner of the reformer 3 via the fuel discharge passage 6 and burned.

続いて、この実施の形態における燃料電池システムの停止手順について説明する。図2は、停止手順のフロー図であり、この停止手順は、制御装置27からの制御指令に基づいて行なわれる。まず、開閉器17の接続を外部負荷50から内部放電負荷16へ切り替えて、酸化剤供給手段10を停止すると共に酸化剤入口開閉弁12と酸化剤排出開閉弁14を閉止する。これにより、酸化剤利用率は無限大に増加し、酸化剤極9内及び開閉弁12、14までの配管内にある空気中の酸素は消費される。このとき、水を生成するために湿潤した窒素雰囲気となり、燃料電池1の電圧は酸素の拡散律速による濃度分極の増大により0.1V以下にまで低下する。さらに、酸化剤極9内が電池反応に不活性な窒素雰囲気となるので、水素/水素の濃淡電池が形成されて酸化剤極9側に水素が発生する。これと同期して、燃料極排出開閉弁7を閉止し、燃料極圧力検知手段8で圧力を検知しながら、燃料極2側を所定の圧力まで昇圧する。このように、燃料電池1の燃料極2と酸化剤極9の両極が水素リッチガスで昇圧されることになる。   Next, the stop procedure of the fuel cell system in this embodiment will be described. FIG. 2 is a flowchart of the stop procedure, and this stop procedure is performed based on a control command from the control device 27. First, the connection of the switch 17 is switched from the external load 50 to the internal discharge load 16 to stop the oxidant supply means 10 and close the oxidant inlet open / close valve 12 and the oxidant discharge open / close valve 14. As a result, the oxidant utilization rate increases infinitely, and oxygen in the air in the oxidant electrode 9 and the pipes to the on-off valves 12 and 14 is consumed. At this time, a wet nitrogen atmosphere is generated to generate water, and the voltage of the fuel cell 1 is reduced to 0.1 V or less due to an increase in concentration polarization due to the diffusion-limited oxygen. Further, since the inside of the oxidant electrode 9 becomes a nitrogen atmosphere inert to the battery reaction, a hydrogen / hydrogen concentration cell is formed, and hydrogen is generated on the oxidant electrode 9 side. In synchronization with this, the fuel electrode discharge opening / closing valve 7 is closed, and the pressure of the fuel electrode 2 is increased to a predetermined pressure while the pressure is detected by the fuel electrode pressure detecting means 8. Thus, both the fuel electrode 2 and the oxidant electrode 9 of the fuel cell 1 are boosted with the hydrogen-rich gas.

まず、酸化剤極9の昇圧について説明する。図3は、水素/水素の濃淡電池での水素発生に伴う酸化剤極9の圧力上昇を測定した結果であり、酸化剤極9が窒素雰囲気(ゲージ圧力0kPaとする)となってからの圧力変化を示している。このとき、燃料極2側圧力は所定の一定圧力(ゲージ圧力0.5kPaとする)で昇圧されている。図3より、酸化剤極9側圧力は、数秒のタイムラグで燃料極2側圧力に追いつくように圧力上昇することがわかる。さらにその後も水素は発生するので、酸化剤極9側が一段と高圧になる。   First, boosting of the oxidizer electrode 9 will be described. FIG. 3 shows the result of measuring the pressure increase of the oxidant electrode 9 due to hydrogen generation in the hydrogen / hydrogen concentration cell. The pressure after the oxidant electrode 9 becomes a nitrogen atmosphere (with a gauge pressure of 0 kPa). It shows a change. At this time, the pressure on the fuel electrode 2 side is increased at a predetermined constant pressure (the gauge pressure is 0.5 kPa). From FIG. 3, it can be seen that the pressure on the oxidant electrode 9 side rises to catch up with the pressure on the fuel electrode 2 side with a time lag of several seconds. Furthermore, since hydrogen is generated thereafter, the pressure on the oxidizer electrode 9 side becomes higher.

次に、燃料極2の昇圧方法、所定の昇圧圧力について説明する。通常、定常運転での改質器3へ供給する原料(例えば、都市ガスと水など)はゲージ圧10kPa〜20kPaで供給される。この原料供給圧力の範囲は、改質器3や燃料電池1等の圧力損失に依存するもので、特に改質器3内での水の蒸発による圧力損失のしめる割合は大きい。また、原料の供給可能圧力は、定常運転状態より余裕を持った設計がなされているのが一般的であり、比較的容易に原料供給圧力を上昇させることができる。燃料極排出開閉弁7を閉止すると、改質器3内の圧力と燃料極2の圧力は、この原料供給圧力まで上昇し、原料供給圧力を調整することで、昇圧圧力の調整が可能である。さらに、改質器3内の水の蒸発によって、原料の供給圧力と比較して改質器3内部の圧力は一段と加圧され、通常供給圧力の数倍まで加圧可能である。   Next, a method for boosting the fuel electrode 2 and a predetermined boost pressure will be described. Usually, the raw material (for example, city gas and water) supplied to the reformer 3 in steady operation is supplied at a gauge pressure of 10 kPa to 20 kPa. The range of the raw material supply pressure depends on the pressure loss of the reformer 3, the fuel cell 1, etc., and the ratio of the pressure loss due to the evaporation of water in the reformer 3 is particularly large. Moreover, the supply pressure of the raw material is generally designed with a margin more than the steady operation state, and the raw material supply pressure can be increased relatively easily. When the fuel electrode discharge opening / closing valve 7 is closed, the pressure in the reformer 3 and the pressure of the fuel electrode 2 rise to this raw material supply pressure, and the pressure increase pressure can be adjusted by adjusting the raw material supply pressure. . Furthermore, by evaporating water in the reformer 3, the pressure inside the reformer 3 is further increased compared to the supply pressure of the raw material, and can be increased to several times the normal supply pressure.

昇圧する所定の圧力とは、停止後の燃料電池1の温度低下と水分の凝縮による体積収縮を見越した圧力である。定常運転における燃料電池の温度75℃から停止後の保管温度25℃(大気圧101.3kPa)への温度低下を例に説明する。ボイル−シャルルの法則により、75℃における圧力は、(75℃+273℃)/(25℃+273℃)×101.3kPa=118.3kPaである。よって、75℃から25℃まで温度低下すると、17kPa(=118.3kPa−101.3kPa)のガス成分としての圧力降下が発生する。さらに、燃料電池1内の露点75℃(蒸気圧38.6kPa)から露点25℃(蒸気圧3.2kPa)まで温度低下するため、38.6kPa−3.2kPa=35.4kPaの水分の凝縮に伴う圧力降下が発生する。すなわち、この実施の形態では、17kPa+35.4kPa=52.4kPaの圧力降下が発生するから、燃料ガスによって52.4kPa以上の圧力の昇圧が必要となる。また、昇圧された燃料ガスの微少な漏れを考慮する場合は、さらにこの微少漏れ量を加味した昇圧を行なえばよい。   The predetermined pressure to be increased is a pressure in anticipation of volumetric shrinkage due to temperature decrease and moisture condensation of the fuel cell 1 after stopping. A temperature drop from 75 ° C. of the fuel cell in steady operation to 25 ° C. storage temperature (atmospheric pressure 101.3 kPa) after stopping will be described as an example. According to Boyle-Charles' law, the pressure at 75 ° C. is (75 ° C. + 273 ° C.) / (25 ° C. + 273 ° C.) × 101.3 kPa = 18.3 kPa. Therefore, when the temperature is lowered from 75 ° C. to 25 ° C., a pressure drop as a gas component of 17 kPa (= 118.3 kPa−101.3 kPa) occurs. Further, since the temperature is lowered from the dew point 75 ° C. (vapor pressure 38.6 kPa) in the fuel cell 1 to the dew point 25 ° C. (vapor pressure 3.2 kPa), 38.6 kPa−3.2 kPa = 35.4 kPa of water is condensed. A concomitant pressure drop occurs. That is, in this embodiment, since a pressure drop of 17 kPa + 35.4 kPa = 52.4 kPa occurs, a pressure increase of 52.4 kPa or more is required by the fuel gas. In addition, when considering a slight leak of the boosted fuel gas, the boost may be performed in consideration of the minute leak amount.

所定の圧力まで昇圧が終わると、改質器3を停止すると共に燃料極入口開閉弁5を閉止する。これにより、燃料電池1の燃料極2、酸化剤極9は水素リッチなガスで昇圧された状態で密閉され、燃料電池システムの運転を終了する。燃料電池システムが長期にわたって運転されない場合は、燃料極2と酸化剤極9に水素リッチガスを満たした状態で燃料電池1が保管されることになる。   When the pressure is increased to a predetermined pressure, the reformer 3 is stopped and the fuel electrode inlet opening / closing valve 5 is closed. As a result, the fuel electrode 2 and the oxidant electrode 9 of the fuel cell 1 are sealed in a state where the pressure is increased by the hydrogen-rich gas, and the operation of the fuel cell system is completed. When the fuel cell system is not operated for a long time, the fuel cell 1 is stored in a state where the fuel electrode 2 and the oxidant electrode 9 are filled with the hydrogen-rich gas.

このように、燃料極2及び酸化剤極9の空間を昇圧した水素雰囲気で密閉停止することにより、停止後の燃料電池1の温度低下や水分の凝縮に起因する体積収縮が発生したとしても、燃料電池1内が負圧になることはない。したがって、燃料電池1内への空気の混入を防止でき、酸化剤極9の酸化劣化を抑制することができる。また、燃料電池1を昇圧するための燃料極と酸化剤極の間の圧力差を低減する複雑な制御手段や機構を必要とせず、体積収縮を緩和するための圧力調整手段なども必要としない。なおかつ、昇圧密閉することから、開閉弁(通常、電磁弁など)の閉止性、信頼性を向上できる。   Thus, even if volume shrinkage due to a temperature drop or moisture condensation of the fuel cell 1 after the stop occurs by shutting the space between the fuel electrode 2 and the oxidant electrode 9 in a pressurized hydrogen atmosphere, There is no negative pressure in the fuel cell 1. Therefore, air can be prevented from being mixed into the fuel cell 1 and oxidative deterioration of the oxidant electrode 9 can be suppressed. Further, no complicated control means or mechanism for reducing the pressure difference between the fuel electrode and the oxidant electrode for boosting the fuel cell 1 is required, and no pressure adjustment means for reducing volume shrinkage is required. . In addition, since the pressure boosting is performed, the closing and reliability of the on-off valve (usually a solenoid valve or the like) can be improved.

実施の形態2.
図4は、実施の形態2による燃料電池システムの概略図である。この実施の形態は、実施の形態1の変形例として燃料極側と酸化剤極側を空間的に連結し、その際に酸化剤極の一酸化炭素による被毒を防止するための工夫が施されたものである。
Embodiment 2. FIG.
FIG. 4 is a schematic diagram of a fuel cell system according to the second embodiment. In this embodiment, as a modification of the first embodiment, the fuel electrode side and the oxidant electrode side are spatially connected, and at that time, a device for preventing poisoning of the oxidant electrode by carbon monoxide is applied. It has been done.

図4において、燃料流路4と酸化剤供給流路11を連結した連結管18、連結管18を遮断するための連結遮断開閉弁19、酸化剤極9から燃料極2方向への流れを持つ逆止弁20を備えている。ここで、燃料極2側と酸化剤極9側を単に空間的に連結すると、改質器3からの改質ガス中に含まれる微量な一酸化炭素が酸化剤9極にも流通することとなる。通常、燃料極2側は一酸化炭素被毒に耐性のある触媒が用いられるが、酸化剤極9側は一酸化炭素による被毒を考慮する必要はない。しかしながら、燃料極2側と酸化剤極9側を連結する場合においては、酸化剤極9側の触媒にも一酸化炭素被毒の耐性を持つものが必要になるが、これはまだ実用化されていない。そこで、この実施の形態では、燃料極2から酸化剤極9への一酸化炭素の流通を防止するため、逆止弁20が設けられている。   In FIG. 4, a connecting pipe 18 connecting the fuel flow path 4 and the oxidant supply flow path 11, a connection cutoff on-off valve 19 for cutting off the connecting pipe 18, and a flow from the oxidant electrode 9 toward the fuel electrode 2. A check valve 20 is provided. Here, when the fuel electrode 2 side and the oxidant electrode 9 side are simply spatially connected, a trace amount of carbon monoxide contained in the reformed gas from the reformer 3 also flows to the oxidant 9 electrode. Become. Normally, a catalyst that is resistant to carbon monoxide poisoning is used on the fuel electrode 2 side, but it is not necessary to consider poisoning with carbon monoxide on the oxidant electrode 9 side. However, in the case of connecting the fuel electrode 2 side and the oxidant electrode 9 side, the catalyst on the oxidant electrode 9 side needs to be resistant to carbon monoxide poisoning, but this is still in practical use. Not. Therefore, in this embodiment, a check valve 20 is provided to prevent the flow of carbon monoxide from the fuel electrode 2 to the oxidant electrode 9.

この実施の形態における燃料電池システムの停止手順について説明する。システム運転中、連結遮断開閉弁19は閉止し、燃料極2と酸化剤極9は遮断されている。水素/水素の濃淡電池が形成され水素が発生するまでは、実施の形態1と同様である。水素が発生するのと同期して、燃料極排出開閉弁7を閉止、連通遮断開閉弁19を開とする。燃料極圧力検知手段8で圧力を検知しながら、燃料極側を所定の圧力まで昇圧する。   A stop procedure of the fuel cell system in this embodiment will be described. During the system operation, the connection cutoff valve 19 is closed, and the fuel electrode 2 and the oxidant electrode 9 are shut off. The process is the same as in Embodiment 1 until a hydrogen / hydrogen concentration cell is formed and hydrogen is generated. In synchronism with the generation of hydrogen, the fuel electrode discharge on / off valve 7 is closed and the communication cutoff on / off valve 19 is opened. While the pressure is detected by the fuel electrode pressure detecting means 8, the pressure on the fuel electrode side is increased to a predetermined pressure.

図3の水素/水素の濃淡電池での酸化剤極9の圧力上昇からわかるように、燃料極2側圧力は所定の圧力(ゲージ圧力0.5kPa)で一定とすると、酸化剤極9側圧力は数秒のタイムラグで燃料極2側圧力に追いつくように圧力上昇し、さらに燃料極2側圧力以上に上昇する。連通遮断開閉弁19を開とすることで、逆止弁20を経由して、酸素極9側から燃料極2へ純水素と窒素が流通し、酸化剤極9と燃料極2の圧力差を低減しながら、水素/水素の濃淡電池による圧力上昇を昇圧に利用する。所定の圧力まで昇圧が終わると、改質器3を停止すると共に燃料極入口開閉弁5を閉止する。これにより、燃料電池1の燃料極2、酸化剤極9は水素リッチなガスで昇圧された状態で密閉され、燃料電池システムの運転を終了する。燃料電池システムが長期にわたって運転されない場合は、燃料極2と酸化剤極9に水素リッチガスを満たした状態で燃料電池1が保管されることになる。   As can be seen from the increase in the pressure of the oxidant electrode 9 in the hydrogen / hydrogen concentration cell of FIG. 3, when the fuel electrode 2 side pressure is constant at a predetermined pressure (gauge pressure 0.5 kPa), the oxidant electrode 9 side pressure Rises to catch up with the fuel electrode 2 side pressure with a time lag of several seconds, and further rises above the fuel electrode 2 side pressure. By opening the communication cutoff on-off valve 19, pure hydrogen and nitrogen flow from the oxygen electrode 9 side to the fuel electrode 2 through the check valve 20, and the pressure difference between the oxidant electrode 9 and the fuel electrode 2 is reduced. While increasing, the pressure increase due to the hydrogen / hydrogen concentration cell is used for boosting. When the pressure is increased to a predetermined pressure, the reformer 3 is stopped and the fuel electrode inlet opening / closing valve 5 is closed. As a result, the fuel electrode 2 and the oxidant electrode 9 of the fuel cell 1 are sealed in a state where the pressure is increased by the hydrogen-rich gas, and the operation of the fuel cell system is completed. When the fuel cell system is not operated for a long time, the fuel cell 1 is stored in a state where the fuel electrode 2 and the oxidant electrode 9 are filled with the hydrogen-rich gas.

このように、酸化剤極9から燃料極2方向への流れを持つ逆止弁20を備えたので、水素/水素の濃淡電池による昇圧を利用でき、昇圧による酸化剤極9と燃料極2の圧力差を低減でき、なおかつ、酸化剤極9は純水素により昇圧されるので、酸化剤極9の改質ガス中の一酸化炭素による被毒が防がれ、燃料極2、酸化剤極9の空間を昇圧した水素雰囲気で密閉停止することにより、停止後の燃料電池1の温度低下や水分の凝縮に起因する体積収縮が発生したとしても、燃料電池1内が負圧になることはない。したがって、燃料電池1内への空気の混入を防止でき、酸化剤極9の酸化劣化を抑制することができる。   Thus, since the check valve 20 having a flow from the oxidant electrode 9 toward the fuel electrode 2 is provided, the pressure increase by the hydrogen / hydrogen concentration cell can be used, and the oxidant electrode 9 and the fuel electrode 2 by the pressure increase can be used. Since the pressure difference can be reduced and the oxidant electrode 9 is pressurized with pure hydrogen, poisoning due to carbon monoxide in the reformed gas of the oxidant electrode 9 is prevented, and the fuel electrode 2 and the oxidant electrode 9 are prevented. Even if volume shrinkage due to a decrease in temperature of the fuel cell 1 or condensation of moisture occurs after the stop, the inside of the fuel cell 1 does not become negative pressure. . Therefore, air can be prevented from being mixed into the fuel cell 1 and oxidative deterioration of the oxidant electrode 9 can be suppressed.

実施の形態3.
図5は、実施の形態3による燃料電池システムの概略図である。この実施の形態は、実施の形態1の変形例として熱交換器や加湿器を設けたものである。図5において、燃料極排出流路6に凝縮水回収用のアノード熱交換器21、酸化剤供給流路11に温度・湿度全熱交換型加湿器22と凝縮水回収用のカソード熱交換器23を備えている。アノード熱交換器21は、燃料電池1から排出された燃料ガスから熱と水分を回収するものであり、とくに水分を除去することで改質器3の燃焼温度の低下を防止できる。温度・湿度全熱交換型加湿器22は、燃料電池1から排出された空気から水分を回収し、その水分で燃料電池1に供給される空気を加湿するものである。この供給空気を加湿すると、燃料極2と酸化剤極9に挟まれた固体高分子電解質に水分が供給され、固体高分子電解質にイオン伝導性が与えられる。カソード熱交換器23は、燃料電池1から排出された空気から熱と水分を回収するものである。このような構成では、燃料極排出開閉弁7をアノード熱交換器21の下流側に備え、酸化剤排出開閉弁14をカソード熱交換器23の下流側に備えている。さらに、酸化剤排出流路13を酸化剤供給流路11に戻すための循環用配管24と循環用ポンプ25と循環遮断弁26を備えている。
Embodiment 3 FIG.
FIG. 5 is a schematic diagram of a fuel cell system according to the third embodiment. In this embodiment, a heat exchanger or a humidifier is provided as a modification of the first embodiment. In FIG. 5, an anode heat exchanger 21 for collecting condensed water is disposed in the fuel electrode discharge passage 6, a temperature / humidity total heat exchange type humidifier 22 and a cathode heat exchanger 23 for collecting condensed water are disposed in the oxidant supply passage 11. It has. The anode heat exchanger 21 recovers heat and moisture from the fuel gas discharged from the fuel cell 1, and in particular, by removing the moisture, it is possible to prevent the combustion temperature of the reformer 3 from being lowered. The temperature / humidity total heat exchange type humidifier 22 collects moisture from the air discharged from the fuel cell 1 and humidifies the air supplied to the fuel cell 1 with the moisture. When the supplied air is humidified, moisture is supplied to the solid polymer electrolyte sandwiched between the fuel electrode 2 and the oxidant electrode 9, and ion conductivity is given to the solid polymer electrolyte. The cathode heat exchanger 23 recovers heat and moisture from the air discharged from the fuel cell 1. In such a configuration, the fuel electrode discharge opening / closing valve 7 is provided on the downstream side of the anode heat exchanger 21, and the oxidant discharge opening / closing valve 14 is provided on the downstream side of the cathode heat exchanger 23. Furthermore, a circulation pipe 24, a circulation pump 25, and a circulation cutoff valve 26 for returning the oxidant discharge flow path 13 to the oxidant supply flow path 11 are provided.

この実施の形態における燃料電池システムの停止手順について説明する。開閉器17の接続を外部負荷50から内部放電負荷16へ切り替えて、酸化剤供給手段10を停止すると共に酸化剤入口開閉弁12と酸化剤排出開閉弁14を閉止し、循環遮断弁26を開として循環用ポンプ25を作動する。これにより、酸化剤利用率は無限大に増加し、酸化剤極9内と温度・湿度全熱交換型加湿器22内とカソード熱交換器23内にある空気中の酸素は消費される。このとき、水を生成するために湿潤した窒素雰囲気となる。その後は、実施の形態1と同様な方法で、燃料極2、酸化剤極9、アノード熱交換器21、温度・湿度全熱交換器方加湿器22、カソード熱交換器23、循環用配管24の全空間を昇圧した水素雰囲気で密閉停止する。   A stop procedure of the fuel cell system in this embodiment will be described. The connection of the switch 17 is switched from the external load 50 to the internal discharge load 16, the oxidant supply means 10 is stopped, the oxidant inlet open / close valve 12 and the oxidant discharge open / close valve 14 are closed, and the circulation shutoff valve 26 is opened. The circulation pump 25 is operated as follows. As a result, the oxidant utilization rate increases infinitely, and oxygen in the air in the oxidant electrode 9, the temperature / humidity total heat exchange type humidifier 22, and the cathode heat exchanger 23 is consumed. At this time, the atmosphere is moistened to generate water. Thereafter, in the same manner as in the first embodiment, the fuel electrode 2, the oxidant electrode 9, the anode heat exchanger 21, the temperature / humidity total heat exchanger humidifier 22, the cathode heat exchanger 23, and the circulation pipe 24 are used. The entire space is closed and sealed in a pressurized hydrogen atmosphere.

このように、アノード熱交換器21、カソード熱交換器23の下流側にそれぞれ排出開閉弁7、14を備えたので、燃料極2、酸化剤極9、アノード熱交換器21、温度・湿度全熱交換器型加湿器22、カソード熱交換器23の全空間を、昇圧した水素雰囲気で密閉停止する。これら熱交換器21、23や加湿器22は、燃料電池1の運転温度より低い温度・露点で運用されており、温度低下や水の凝縮による圧力降下が燃料電池1より少ない。この場合、燃料極2と酸化剤極9の空間だけを昇圧した実施の形態1と比較して、昇圧空間の体積の増大と温度低下や水の凝縮による圧力降下の減少との相乗効果によって、昇圧圧力を大幅に緩和できる。そのため、ガスシール部などからの微量の燃料ガス漏れに対する耐性が向上する。さらに、燃料電池1や配管等の耐圧設計を低く見積もることができ、設計自由度が向上する。   As described above, since the discharge on-off valves 7 and 14 are provided on the downstream side of the anode heat exchanger 21 and the cathode heat exchanger 23, respectively, the fuel electrode 2, the oxidant electrode 9, the anode heat exchanger 21, and all the temperature and humidity. The entire space of the heat exchanger type humidifier 22 and the cathode heat exchanger 23 is hermetically stopped in a pressurized hydrogen atmosphere. The heat exchangers 21 and 23 and the humidifier 22 are operated at a temperature / dew point lower than the operating temperature of the fuel cell 1, and a pressure drop due to a temperature drop or water condensation is less than that of the fuel cell 1. In this case, compared with the first embodiment in which only the space between the fuel electrode 2 and the oxidant electrode 9 is boosted, the synergistic effect of the increase in the volume of the pressurization space and the decrease in pressure drop due to the temperature decrease and water condensation, Boost pressure can be greatly reduced. For this reason, resistance to a small amount of fuel gas leakage from the gas seal portion or the like is improved. Furthermore, the pressure resistance design of the fuel cell 1 and piping can be estimated low, and the degree of freedom in design is improved.

また、実施の形態3では、熱交換器21、23や加湿器22を昇圧空間として利用する場合について示したが、密閉空間に昇圧空間用のバッファを設けても同様な効果が得られる。また、この実施の形態3で示した熱交換21、23や加湿器22を設けることは、実施の形態2の変形例として実施してもよい。   In the third embodiment, the case where the heat exchangers 21 and 23 and the humidifier 22 are used as the boosting space has been described. However, the same effect can be obtained by providing a buffer for the boosting space in the sealed space. Further, providing the heat exchanges 21 and 23 and the humidifier 22 shown in the third embodiment may be implemented as a modification of the second embodiment.

実施の形態1を説明するための固体高分子形燃料電池システムの概略図である。1 is a schematic view of a polymer electrolyte fuel cell system for explaining Embodiment 1. FIG. 実施の形態1を説明するための固体高分子形燃料電池システムの停止手順のフロー図である。FIG. 3 is a flowchart of a stopping procedure of the polymer electrolyte fuel cell system for explaining the first embodiment. 実施の形態1を説明するための水素/水素の濃淡電池での酸化剤極の圧力上昇特性グラフである。3 is a graph showing a pressure increase characteristic of an oxidizer electrode in a hydrogen / hydrogen concentration cell for illustrating the first embodiment. 実施の形態2を説明するための固体高分子形燃料電池システムの概略図である。FIG. 3 is a schematic view of a polymer electrolyte fuel cell system for explaining Embodiment 2. 実施の形態3を説明するための固体高分子形燃料電池システムの概略図である。6 is a schematic view of a polymer electrolyte fuel cell system for explaining Embodiment 3. FIG.

符号の説明Explanation of symbols

1 燃料電池、2 燃料極、3 燃料供給手段、4 燃料流路、5 燃料入口開閉弁、6 燃料排出流路、7 燃料排出開閉弁、8 燃料極圧力検知手段、9 酸化剤極、10 酸化剤供給手段、11 酸化剤供給流路、12 酸化剤入口開閉弁、13 酸化剤排出流路、14 酸化剤排出開閉弁、15 外部接続部、16 内部放電負荷、17 切り替え開閉器、18 連通管、19 連通遮断開閉弁、20 逆止弁、21 アノード熱交換器、22 温度・湿度全熱交換型加湿器、23 カソード熱交換器、24 循環用配管、25 循環用ホンプ、26 循環遮断弁、50 外部負荷。

DESCRIPTION OF SYMBOLS 1 Fuel cell, 2 Fuel electrode, 3 Fuel supply means, 4 Fuel flow path, 5 Fuel inlet on-off valve, 6 Fuel discharge flow path, 7 Fuel discharge on-off valve, 8 Fuel electrode pressure detection means, 9 Oxidant electrode, 10 Oxidation Agent supply means, 11 Oxidant supply flow path, 12 Oxidant inlet on / off valve, 13 Oxidant discharge flow path, 14 Oxidant discharge on / off valve, 15 External connection, 16 Internal discharge load, 17 Switching switch, 18 Communication pipe 19 open / close valve, 20 check valve, 21 anode heat exchanger, 22 temperature / humidity total heat exchange type humidifier, 23 cathode heat exchanger, 24 circulation pipe, 25 circulation pump, 26 circulation cutoff valve, 50 External load.

Claims (2)

固体高分子電解質を挟んで対向する燃料極と酸化剤極とを有する燃料電池と、前記燃料極に燃料ガスを供給するための燃料供給手段と、前記酸化剤極に酸化剤ガスを供給する酸化剤供給手段と、前記燃料電池と外部負荷とを接続するための外部接続部とを備える燃料電池システムにおいて、前記燃料電池システムの停止手順を制御する制御手段は、前記燃料電池と前記外部負荷との接続を切断した後、前記燃料極と前記酸化剤極とに接続された内部放電負荷に前記燃料電池からの電流を流した状態で前記酸化剤ガスの供給を停止することにより前記酸化剤極に前記燃料ガスを発生させ、これに同期して前記酸化剤極から前記燃料極の方向へのみ流通可能な連通部を経由する前記燃料ガスで前記燃料極を昇圧することによって、前記燃料極及び前記酸化剤極を昇圧した燃料ガス雰囲気に保持することを特徴とする固体高分子形燃料電池システム。   A fuel cell having a fuel electrode and an oxidant electrode facing each other with a solid polymer electrolyte interposed therebetween, fuel supply means for supplying a fuel gas to the fuel electrode, and an oxidation for supplying an oxidant gas to the oxidant electrode In the fuel cell system comprising an agent supply means and an external connection part for connecting the fuel cell and an external load, the control means for controlling the stopping procedure of the fuel cell system includes the fuel cell and the external load. The oxidant electrode is stopped by stopping the supply of the oxidant gas in a state in which a current from the fuel cell is supplied to the internal discharge load connected to the fuel electrode and the oxidant electrode. Generating the fuel gas and boosting the fuel electrode with the fuel gas passing through the communication portion that can flow only in the direction from the oxidant electrode to the fuel electrode in synchronization with the fuel gas, and Polymer electrolyte fuel cell system characterized by holding the serial oxidant electrode to the fuel gas atmosphere that is pressurized. 燃料極の燃料ガス排出側に接続された熱交換器と、酸化剤極の酸化剤ガス供給側及び酸化剤ガス排出側に接続された熱交換型加湿器と、前記熱交換型加湿器を介して前記酸化剤極の前記酸化剤ガス排出側に接続された熱交換器とを備えたことを特徴とする請求項1に記載の固体高分子形燃料電池システム。 A heat exchanger connected to the fuel gas discharge side of the fuel electrode, a heat exchange type humidifier connected to the oxidant gas supply side and the oxidant gas discharge side of the oxidant electrode, and the heat exchange type humidifier. The solid polymer fuel cell system according to claim 1, further comprising a heat exchanger connected to the oxidant gas discharge side of the oxidant electrode.
JP2004256118A 2004-09-02 2004-09-02 Polymer electrolyte fuel cell system Expired - Fee Related JP4687039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004256118A JP4687039B2 (en) 2004-09-02 2004-09-02 Polymer electrolyte fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004256118A JP4687039B2 (en) 2004-09-02 2004-09-02 Polymer electrolyte fuel cell system

Publications (2)

Publication Number Publication Date
JP2006073376A JP2006073376A (en) 2006-03-16
JP4687039B2 true JP4687039B2 (en) 2011-05-25

Family

ID=36153767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004256118A Expired - Fee Related JP4687039B2 (en) 2004-09-02 2004-09-02 Polymer electrolyte fuel cell system

Country Status (1)

Country Link
JP (1) JP4687039B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010188A (en) * 2006-06-27 2008-01-17 Nissan Motor Co Ltd Fuel cell system
JP5515193B2 (en) * 2006-06-27 2014-06-11 日産自動車株式会社 Fuel cell system
JP2008071642A (en) * 2006-09-14 2008-03-27 Toshiba Fuel Cell Power Systems Corp Solid polymer electrolyte fuel cell system and its operation method
JP5406426B2 (en) * 2006-09-28 2014-02-05 アイシン精機株式会社 Fuel cell system
JP5298500B2 (en) * 2006-11-06 2013-09-25 富士電機株式会社 Method for stopping fuel cell power generator and fuel cell power generator
JP4956226B2 (en) * 2007-02-27 2012-06-20 東芝燃料電池システム株式会社 Method and program for stopping storage of fuel cell power generation system and fuel cell power generation system
JP5169056B2 (en) 2007-07-31 2013-03-27 日産自動車株式会社 Fuel cell system and its operation stop method
JP2011150794A (en) * 2010-01-19 2011-08-04 Toyota Motor Corp Fuel cell system, and control method therefor
US8986901B2 (en) 2010-02-26 2015-03-24 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP5580641B2 (en) * 2010-03-31 2014-08-27 Jx日鉱日石エネルギー株式会社 Fuel cell system and method for stopping the same
JP5383737B2 (en) * 2011-04-08 2014-01-08 本田技研工業株式会社 Fuel cell system and power generation stopping method thereof
JP6037851B2 (en) * 2013-01-25 2016-12-07 本田技研工業株式会社 Control method of fuel cell system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200567A (en) * 1988-02-05 1989-08-11 Hitachi Ltd Power generation system of fuel cell
JPH0287480A (en) * 1988-09-26 1990-03-28 Fuji Electric Co Ltd Operation stopping method of fuel cell power generation device
JPH0381970A (en) * 1989-05-19 1991-04-08 Fuji Electric Co Ltd Power generation stopping method for fuel cell
JPH06333586A (en) * 1993-05-20 1994-12-02 Sanyo Electric Co Ltd Method for stopping fuel cell
JP2000260454A (en) * 1999-03-04 2000-09-22 Osaka Gas Co Ltd Operation method for fuel cell
JP2002042842A (en) * 2000-07-27 2002-02-08 Matsushita Electric Ind Co Ltd Solid polymer electrolyte type fuel cell system
US20040001980A1 (en) * 2002-06-26 2004-01-01 Balliet Ryan J. System and method for shutting down a fuel cell power plant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200567A (en) * 1988-02-05 1989-08-11 Hitachi Ltd Power generation system of fuel cell
JPH0287480A (en) * 1988-09-26 1990-03-28 Fuji Electric Co Ltd Operation stopping method of fuel cell power generation device
JPH0381970A (en) * 1989-05-19 1991-04-08 Fuji Electric Co Ltd Power generation stopping method for fuel cell
JPH06333586A (en) * 1993-05-20 1994-12-02 Sanyo Electric Co Ltd Method for stopping fuel cell
JP2000260454A (en) * 1999-03-04 2000-09-22 Osaka Gas Co Ltd Operation method for fuel cell
JP2002042842A (en) * 2000-07-27 2002-02-08 Matsushita Electric Ind Co Ltd Solid polymer electrolyte type fuel cell system
US20040001980A1 (en) * 2002-06-26 2004-01-01 Balliet Ryan J. System and method for shutting down a fuel cell power plant

Also Published As

Publication number Publication date
JP2006073376A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
JP4468994B2 (en) Fuel cell system
US8492046B2 (en) Method of mitigating fuel cell degradation due to startup and shutdown via hydrogen/nitrogen storage
JP4644064B2 (en) Fuel cell system
US8039154B2 (en) Fuel cell system, method of starting fuel cell system
US7691510B2 (en) Fuel cell system with differential pressure control
US7678477B2 (en) Method of operating a fuel cell stack
JP4072707B2 (en) Solid polymer electrolyte fuel cell power generator and its operation method
JP4599461B2 (en) Fuel cell system
JP4687039B2 (en) Polymer electrolyte fuel cell system
JPH1167254A (en) Fuel cell power generating plant and its start/stop operation method
JP5092418B2 (en) Fuel cell system
US20100248045A1 (en) Fuel cell system and method for operating the same
JP4661055B2 (en) Fuel cell system and operation method
JP5564315B2 (en) Fuel cell system
JP4593119B2 (en) Fuel cell power generator
JP2007053015A (en) Fuel cell system
JP2005093374A (en) Fuel cell power generating system, and method of stopping the same
JP2005190865A (en) Low temperature type fuel cell system
JP2005108698A (en) Fuel cell system
JP4772293B2 (en) Fuel cell system
JP2009134977A (en) Fuel cell system
JP2013033673A (en) Fuel cell system and residual gas purging method therefor
JP2010129454A (en) Fuel cell unit
JP2007035359A (en) Fuel cell system
JP2021190285A (en) Solid oxide type fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees