JPS59105275A - Fuel cell power generating system - Google Patents

Fuel cell power generating system

Info

Publication number
JPS59105275A
JPS59105275A JP57214244A JP21424482A JPS59105275A JP S59105275 A JPS59105275 A JP S59105275A JP 57214244 A JP57214244 A JP 57214244A JP 21424482 A JP21424482 A JP 21424482A JP S59105275 A JPS59105275 A JP S59105275A
Authority
JP
Japan
Prior art keywords
flow path
gas
fuel cell
temperature shift
shift converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57214244A
Other languages
Japanese (ja)
Other versions
JPH0354433B2 (en
Inventor
Masatsugu Yoshimori
吉森 正嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57214244A priority Critical patent/JPS59105275A/en
Publication of JPS59105275A publication Critical patent/JPS59105275A/en
Publication of JPH0354433B2 publication Critical patent/JPH0354433B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To protect a low temperature shift converter or a fuel cell by arranging an analyzer detecting carbon monoxide concentration in the downstream of a high temperature shift converter and converting the passage of fuel gas to by-pass passage with a signal of the analyzer. CONSTITUTION:Mixed gas A is supplied to a reformer 2 to form gas B containing hydrogen and carbon monoxide and gas B is supplied to a high temperature shift converter 4 and concentration of residual carbon monoxide is remarkably reduced through a low temperature shift converter 4', then gas is supplied to a fuel electrode 1. A by-pass passage E is set in the downstream of the high temperature shift converter 4, and valves 6 and 7 are controlled with an analyzer 5 which detects the amount of residual carbon monoxide to convert the passage to the cell 1 and the by-pass passage E. Even when the reformer 2 or the high temperature shift converter 4 are unstablly operated in an unsteady stage such as starting or stop, performance deterioration or breakage of the low temperature shift converter 4' or cell 1 is effectively prevented.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、燃料電池運転時に低温シフトコンバータと
燃料電池とを保護する機構を設けた燃料電池発電システ
ムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel cell power generation system provided with a mechanism for protecting a low temperature shift converter and a fuel cell during fuel cell operation.

〔発明の技術的背景〕[Technical background of the invention]

第1図は従来の燃料電池発電システムの4fr成図を示
したものである。
FIG. 1 shows a 4fr diagram of a conventional fuel cell power generation system.

燃料電池1には燃料ガスとして水素が供給されるが、こ
の燃料ガスは改質器2および高温シフトコンバータ4、
低温シフトコンバータ4”k介して供給されるようにな
っている。改質器2には燃料ガスと水蒸気とを主成分と
する混合ガスAが供給され、ここで水素と一酸化炭素等
を含むガスBへと改質されて高温シフトコンバータ4へ
送られる。
Hydrogen is supplied to the fuel cell 1 as a fuel gas, and this fuel gas is passed through a reformer 2, a high temperature shift converter 4,
It is supplied through a low-temperature shift converter 4''k.A mixed gas A whose main components are fuel gas and water vapor is supplied to the reformer 2, which also contains hydrogen, carbon monoxide, etc. It is reformed into gas B and sent to the high temperature shift converter 4.

高温シフトコンノ々−夕4では、改質ガスB中に含まれ
る一酸化炭素の大部分を二酸化炭素と水素とに変換して
、この改質ガスBよりもさらに水素の含有廿の多い水素
リッチガスB′として低温シントコンパータ4′へ送る
。この低温シフトコンノ々−タ4′では、水素リッチガ
スB′中の残存−酸化炭素が二酸化炭素と水素とに変換
されるため、残留−酸化炭素の濃度は数パーセント以下
に低減する。このようにして低温シフトコンバータ4′
を出た燃料ガスCは、燃料電池1へと供給され、ここで
別途経路Xから供給された空気と接触して発電がおこな
われる。空気は経路Xから燃料電池1を軽て経路Yへと
排出される。
In high-temperature shift converter 4, most of the carbon monoxide contained in reformed gas B is converted into carbon dioxide and hydrogen to produce hydrogen-rich gas B, which contains even more hydrogen than reformed gas B. ' is sent to the low-temperature sint converter 4'. In this low-temperature shift converter 4', residual carbon oxide in the hydrogen-rich gas B' is converted into carbon dioxide and hydrogen, so that the concentration of residual carbon oxide is reduced to several percent or less. In this way, the low temperature shift converter 4'
The fuel gas C that has exited the fuel cell 1 is supplied to the fuel cell 1, where it comes into contact with air separately supplied from a route X to generate electricity. Air passes through the fuel cell 1 from path X and is discharged to path Y.

一方、発電に使われた燃料ガスは燃料電池1から排出さ
れて、経路りを通って改質器バーナ3へと供給され、こ
こで別途経路2から供給された空気と混合されて燃焼し
、前記混合ガスAの改質に必要な熱を改質器2へと供給
する0 なお低温シフトコンノ々−夕4′から排出される燃料ガ
スC中の一酸化炭素濃度を数パーセント以下に下げる理
由は、−酸化炭素が下流にある燃料電池1の電極触媒を
被毒させ、触媒活性を低下させるのを防ぐためである。
On the other hand, the fuel gas used for power generation is discharged from the fuel cell 1 and supplied to the reformer burner 3 through a route, where it is mixed with air separately supplied from a route 2 and combusted. The heat necessary for reforming the mixed gas A is supplied to the reformer 2.The reason for reducing the carbon monoxide concentration in the fuel gas C discharged from the low temperature shift converter 4' to below a few percent is to , - This is to prevent carbon oxide from poisoning the downstream electrode catalyst of the fuel cell 1 and reducing the catalytic activity.

高温シフトコンバータ4と低温シフトコンバータ4′内
では共に、CO+H20#CO2+H2の反応がおこシ
、−酸化炭素と水蒸気とから二酸化炭素と水素とが生成
されて、その際反応熱が発生する。
In both the high-temperature shift converter 4 and the low-temperature shift converter 4', a reaction of CO+H20#CO2+H2 occurs, and carbon dioxide and hydrogen are generated from the carbon oxide and water vapor, and reaction heat is generated at this time.

また高温シフトコンバータ4と低温シフトコンバータ4
′には上記の反応を速やかにおこなわせるための反応触
媒が充填されておシ、高温シフトコンバータ4には活性
は低いが安価で大量処理に適した触媒が、低温シフトコ
ンノ々−夕4′には高価だが活性が高く少量処理に適し
た触媒がそれぞれ用いられている。
Also, high temperature shift converter 4 and low temperature shift converter 4
The high temperature shift converter 4 is filled with a reaction catalyst to quickly carry out the above reaction, and the low temperature shift converter 4 is filled with a catalyst that has low activity but is inexpensive and suitable for large-scale processing. Although expensive, catalysts with high activity and suitable for small-scale processing are used.

〔背景技術の問題点〕[Problems with background technology]

このような従来の燃料電池発電システムにおいて、起動
、停止および異常時等に改質器2や高温シフトコンバー
タ4の反応条件が安定しないため、低温シフトコンバー
タ4′の一酸化炭素処理能力を超える量の一酸化炭素を
含む燃料ガスが低温シフトコンバータ4′へ供給される
と、低温シフトコンノ々−夕4′は高活性な触媒を用い
ているため反応が急激に進行し、急な発熱がおきて触媒
に損傷を与えたり、極端な場合には低温シフトコンノ々
−タ4′自体を破壊してしまうことがある。
In such a conventional fuel cell power generation system, the reaction conditions of the reformer 2 and the high temperature shift converter 4 are not stable during startup, shutdown, abnormality, etc., so that the amount of carbon monoxide exceeding the carbon monoxide processing capacity of the low temperature shift converter 4' is unstable. When fuel gas containing carbon monoxide is supplied to the low temperature shift converter 4', the reaction proceeds rapidly because the low temperature shift converter 4' uses a highly active catalyst, causing sudden heat generation. This may damage the catalyst or, in extreme cases, destroy the low temperature shift converter 4' itself.

このような事態を防止するために、従来の燃料電池発電
システムでは、改質器2へ供給する燃料ガスと水蒸気と
の混合ガスAを減少させて、低温シフトコンバータ4′
へ供給される一酸化炭素の量を減らすか、低温シントコ
ンパータ4′自体を冷却するかの方法しか無かった。
In order to prevent such a situation, in the conventional fuel cell power generation system, the mixed gas A of fuel gas and water vapor supplied to the reformer 2 is reduced, and the low temperature shift converter 4'
The only options available were to reduce the amount of carbon monoxide supplied to the cryogenic sink converter 4' or to cool the low-temperature sint converter 4' itself.

このような方法は本質的に低温シフトコンノ々−タ4′
とこれに続く燃料電池1の保朽を十分に果すことができ
ないという欠点を有していた。
Such a method is essentially a low temperature shift converter 4'
This has the disadvantage that the fuel cell 1 cannot be maintained sufficiently.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、低温シフトコンバータや燃料電池を
構成する触媒の性能低下の原因となる一酸化炭素の濃度
が増加した場合でも、低温シフトコンバータと燃料電池
とを有効に保画することのできる燃料電池発電システム
を提供するにある。
An object of the present invention is to effectively maintain the relationship between a low temperature shift converter and a fuel cell even when the concentration of carbon monoxide, which causes a decrease in the performance of a catalyst constituting a low temperature shift converter and a fuel cell, increases. Our goal is to provide fuel cell power generation systems.

〔発明の概要〕[Summary of the invention]

この発明では上記目的を達成するために、改質器を介し
て供給される燃料ガス中の一酸化炭素の大部分を二酸化
炭素に変換する高温シフトコンバータと、この高温コン
ノ々−夕から構成される装置燃料ガス中の残存−酸化炭
素を二酸化炭素に変換して許容値以下の一酸化炭素を含
む水素リッチガスとして燃料電池に供給する低温シフト
コンバータと、前記高温シフトコンバータのガス排出口
と前記低温シフトコンバータのガス流入口とを結ぶ連結
流路とを有してなる燃料電池発電システムにおいて、前
記残存−酸化炭素の量を検出するガス分析計と、前記連
結流路を分岐するバイパス流路と、前記連結流路を流れ
る前記燃料ガスを前記バイパス流路に切換えて流すガス
切換え手段とを設け、前記残存−酸化炭素の量が一定の
値を超えた時に前記ガス分析計の出力信号に応答して前
記ガス切換え手段を動作させ前記燃料ガスを前記バイパ
ス流路に流すようにした事を特徴とする。
In order to achieve the above object, this invention comprises a high-temperature shift converter that converts most of the carbon monoxide in the fuel gas supplied through the reformer into carbon dioxide, and this high-temperature converter. a low-temperature shift converter that converts residual carbon oxide in the fuel gas into carbon dioxide and supplies it to the fuel cell as a hydrogen-rich gas containing carbon monoxide below a permissible value; a gas outlet of the high-temperature shift converter; A fuel cell power generation system comprising a connecting flow path connecting a gas inlet of a shift converter, a gas analyzer for detecting the amount of residual carbon oxide, and a bypass flow path branching off the connecting flow path. , gas switching means for switching the fuel gas flowing through the connecting flow path to the bypass flow path, and responding to the output signal of the gas analyzer when the amount of the residual carbon oxide exceeds a certain value. The gas switching means is operated to cause the fuel gas to flow into the bypass flow path.

〔発明の実施例〕[Embodiments of the invention]

以下この発明を実施例に基づいて詳細に説明する。 The present invention will be described in detail below based on examples.

第2図はこの発明の一実施例を示す燃料電池発電システ
ムの構成図である。なお以下の図面において第1図に示
したと同一部分には同一符号を付してその説明を省略す
る。
FIG. 2 is a configuration diagram of a fuel cell power generation system showing an embodiment of the present invention. In the following drawings, the same parts as shown in FIG. 1 are given the same reference numerals, and their explanations will be omitted.

従来の発電システムでは、高温シフトコンバータ4と低
温シフトコンノ々−夕4′とを結ぶ連結流路には何ら付
す物を設置していなかったが32図に示した実施例では
、この連結流路を分岐するパイ・qス流路Eと、この連
結流路内にあって高温シフトコンバータ4からの排出ガ
ス中の残存−敵化炭素の量を検出するガス分析計5を設
け、さらにこの連結流路とバイパス流路Eとを切り換え
るだめの弁6および弁7を設けている。
In the conventional power generation system, nothing was installed in the connecting flow path connecting the high temperature shift converter 4 and the low temperature shift converter 4', but in the embodiment shown in Fig. 32, this connecting flow path was installed. A bifurcated pi-q gas flow path E and a gas analyzer 5 located in this connecting flow path to detect the amount of residual carbon in the exhaust gas from the high temperature shift converter 4 are provided. A valve 6 and a valve 7 are provided to switch between the flow path and the bypass flow path E.

このように構成することにより、高温シフトコンバータ
4の下流に設置されたガス分析計5の信号に応じて、燃
料ガスを常時は弁6を開放し、弁7を閉じることによっ
て低温シフトコンバータ4′に供給するが、異常時には
ガス分析計5の出力信号に応答して弁6を閉じ弁7を開
いてバイパス流路Eに燃料ガスをバイパスするように動
作させる。
With this configuration, according to the signal from the gas analyzer 5 installed downstream of the high-temperature shift converter 4, the fuel gas is normally supplied to the low-temperature shift converter 4' by opening the valve 6 and closing the valve 7. However, in the event of an abnormality, the valve 6 is closed in response to the output signal of the gas analyzer 5, and the valve 7 is opened to bypass the fuel gas to the bypass passage E.

この弁6および弁7の開閉動作は連動しており、一方が
開いている時には他方が閉じている関係を保って動作す
る。この弁6および弁7の開閉信号はガス分析計5が燃
料ガスB′中の一酸化炭素の量を検出してこの検出値が
一定の値を超えた時に発せられる。ここで一定の値とは
低温シフトコンノ々−タ4′や燃料電池1の特性を維持
する上で望ましくない値の一酸化炭素濃度である。
The opening and closing operations of the valves 6 and 7 are linked, and when one is open, the other is closed. The opening/closing signals for the valves 6 and 7 are generated when the gas analyzer 5 detects the amount of carbon monoxide in the fuel gas B' and this detected value exceeds a certain value. Here, the constant value is a carbon monoxide concentration that is undesirable in maintaining the characteristics of the low temperature shift converter 4' and the fuel cell 1.

第3図はこの発明の他の実施例を示した構成図である。FIG. 3 is a block diagram showing another embodiment of the present invention.

バイパス流路E内に構造体8を挿入した点が第2図の実
施例と異る。この構造体8は所定の流路体積と流路抵抗
とを有するようなイj可造になっておシ、この流路体積
と流路抵抗とは、低温シフトコンバータ4′と燃料電池
1とを通って燃料ガスが流れる場合のそれに等しくなる
ように定められている。このような構造体8をノ々イノ
ξス流路E内に介挿することにより、流路切換えに際し
ての圧力変動を極少化することができる0なお構造体8
としてはしは9弁と体積要素を有する容器を組み合せて
構成することができる。
This embodiment differs from the embodiment shown in FIG. 2 in that a structure 8 is inserted into the bypass channel E. This structure 8 has a predetermined flow path volume and flow path resistance. It is set to be equal to that when fuel gas flows through. By inserting such a structure 8 into the flow path E, it is possible to minimize pressure fluctuations when switching the flow path.
The chopsticks can be constructed by combining a container with nine valves and a volume element.

第4図はこの発明のさらに他の実施例を示した構成図で
ある。第2図および第3図で用いた弁6および弁7のか
わりに、連結流路とパイノξス流路との分岐部に三方弁
9を設け、この三方弁9をガス分析計5の出力信号に応
じて切り換えるようにしたもので、その動作は第2図第
3図の場合と同様に、高温シフトコンバータ4から排出
される燃料ガスB′が低温シフトコンバータ4′に流れ
るか、・々イパス流路Eに流れるかを択一的に切り換え
る動作をする。
FIG. 4 is a block diagram showing still another embodiment of the present invention. In place of the valves 6 and 7 used in FIGS. 2 and 3, a three-way valve 9 is provided at the branching point between the connecting flow path and the pinose flow path, and this three-way valve 9 is used as the output of the gas analyzer 5. It is designed to switch in response to a signal, and its operation is similar to the cases shown in FIGS. 2 and 3, depending on whether fuel gas B' discharged from the high temperature shift converter 4 flows to the low temperature shift converter 4' or not. An operation is performed to selectively switch whether the flow is to the path E or not.

〔発明の効果〕〔Effect of the invention〕

以上実施例に基づいて詳細に説明したように、この発明
では高温シフトコンバータから排出される燃料ガス中の
一酸化炭素濃度を検出するガス分析計と、このガス分析
計の出力信号に応答して燃料ガスの流路を燃料電池への
流路からバイパス流路へ切シ換えるガス切シ換え手段を
設けたので、発電システムの起動時、停止時、非定常時
および異常時等における改質器および高温シフトコンバ
ータの不安定動作による燃料ガス中の一酸化炭素濃度の
上昇があっても、これによる低温シフトコンバータや燃
料電池の特性劣化や破壊を防ぐことができるという利点
を有している。
As described above in detail based on the embodiments, the present invention includes a gas analyzer that detects the carbon monoxide concentration in the fuel gas discharged from the high-temperature shift converter, and a A gas switching means is provided to switch the fuel gas flow path from the fuel cell flow path to the bypass flow path, so the reformer can be easily used when the power generation system is started, stopped, unsteady, abnormal, etc. Also, even if the carbon monoxide concentration in the fuel gas increases due to unstable operation of the high temperature shift converter, it has the advantage of being able to prevent characteristic deterioration or destruction of the low temperature shift converter or fuel cell due to this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の燃料電池発電システムの構成を示す図、
第2図、第3図、第4図はそれぞれこの発明の実施例を
示す構成図である。 1・・・燃料電池、2・・・改質器、4・・・高温シフ
トコンバータ、4′・・・低温シフトコンバータ、5・
・・ガス分析計、6・・・弁、7・・・弁、8・・・構
造体。
Figure 1 is a diagram showing the configuration of a conventional fuel cell power generation system.
FIG. 2, FIG. 3, and FIG. 4 are block diagrams showing embodiments of the present invention, respectively. DESCRIPTION OF SYMBOLS 1... Fuel cell, 2... Reformer, 4... High temperature shift converter, 4'... Low temperature shift converter, 5...
...Gas analyzer, 6...Valve, 7...Valve, 8...Structure.

Claims (1)

【特許請求の範囲】 1、改質器を介して供給される燃料ガス中の一酸化炭素
の大部分を二酸化炭素に変換する高温シフトコンバータ
と、この高温コンノ々−夕から供給される前記燃料ガス
中の残存−酸化炭素を二酸化炭素に変換して許容値以下
の一酸化炭素を含む水素リッチガスとして燃料電池に供
給する低温シフトコンバータと、前記高温シフトコンバ
ータのガス排出口と前記低温シフトコンバータのガス流
入口とを結ぶ連結流路とを有してなる燃料電池発電シス
テムにおいて、前記残存−酸化炭素の量を検出するガス
分析計と、前記連結流路を分岐するバイパス流路と、前
記連結流路を流れる前記燃料ガスを前記ノ々イパス流路
に切換えて流すガス切換え手段とを設け、前記残存−酸
化炭素の量が一定の値を超えた時に前記ガス分析計の出
力信号に応答して前記ガス切換え手段を動作させ前記燃
料ガスを前記バイパス流路に流すようにしたことを特徴
とする燃料電池発電システム。 2、特許請求の範囲第1項記載の燃料電池発電システム
において、前記ガス切換え手段が、前記連結流路に設け
られた第1の開閉弁と、前記バイパス流路に設けられか
つ前記第1の開閉弁と連動して動作する第2の開閉弁と
から成ることを特徴とする燃料電池発電システム 3、特許請求の範囲第1項記載の燃料電池発電システム
において、前記ガス切換え手段が、前記連結流路と前記
ノ々イパス流路との分岐部に設けられた三方弁で成るこ
とを特徴とする燃料電池発電システム。 4、特許請求の範囲第1項記載の燃料電池発電システム
において、前記パイ/Rス流路は、その流路中に所望の
流路体積と流路抵抗とを有する宿造体を含む事′fr:
特徴とする燃料電池発電システム0
[Claims] 1. A high-temperature shift converter that converts most of the carbon monoxide in the fuel gas supplied via the reformer into carbon dioxide, and the fuel supplied from the high-temperature converter. a low-temperature shift converter that converts residual carbon oxide in the gas into carbon dioxide and supplies it to the fuel cell as a hydrogen-rich gas containing carbon monoxide below a permissible value; a gas discharge port of the high-temperature shift converter; A fuel cell power generation system comprising a connecting flow path connecting to a gas inlet, a gas analyzer for detecting the amount of residual carbon oxide, a bypass flow path branching the connecting flow path, and the connecting flow path. gas switching means for switching the fuel gas flowing through the flow path to the nonopath flow path, and responding to the output signal of the gas analyzer when the amount of the residual carbon oxide exceeds a certain value. The fuel cell power generation system is characterized in that the fuel gas is caused to flow into the bypass flow path by operating the gas switching means. 2. The fuel cell power generation system according to claim 1, in which the gas switching means includes a first on-off valve provided in the connecting flow path and a first on-off valve provided in the bypass flow path and A fuel cell power generation system 3 characterized in that the fuel cell power generation system comprises a second on-off valve that operates in conjunction with an on-off valve, and a fuel cell power generation system according to claim 1, wherein the gas switching means A fuel cell power generation system comprising a three-way valve provided at a branch point between a flow path and the Nonoi Pass flow path. 4. In the fuel cell power generation system as set forth in claim 1, the Pi/Rs flow path includes a host body having a desired flow path volume and flow path resistance in the flow path. fr:
Characteristic fuel cell power generation system 0
JP57214244A 1982-12-07 1982-12-07 Fuel cell power generating system Granted JPS59105275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57214244A JPS59105275A (en) 1982-12-07 1982-12-07 Fuel cell power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57214244A JPS59105275A (en) 1982-12-07 1982-12-07 Fuel cell power generating system

Publications (2)

Publication Number Publication Date
JPS59105275A true JPS59105275A (en) 1984-06-18
JPH0354433B2 JPH0354433B2 (en) 1991-08-20

Family

ID=16652561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57214244A Granted JPS59105275A (en) 1982-12-07 1982-12-07 Fuel cell power generating system

Country Status (1)

Country Link
JP (1) JPS59105275A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6180768A (en) * 1984-09-28 1986-04-24 Hitachi Ltd Fuel cell system
JPS6345766A (en) * 1986-08-13 1988-02-26 Fuji Electric Co Ltd Fuel cell power generating system
JPH05504230A (en) * 1990-01-18 1993-07-01 株式会社東芝 Catalytic reaction equipment used for gas phase reactions
WO2002026620A1 (en) * 2000-09-27 2002-04-04 Matsushita Electric Industrial Co., Ltd. Hydrogen forming device
KR100619777B1 (en) 2005-03-04 2006-09-06 엘지전자 주식회사 Fuel cell having reformer bombe
KR100619776B1 (en) 2005-03-04 2006-09-11 엘지전자 주식회사 Fuel cell having deviece for diluting co and operrating method threrof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6180768A (en) * 1984-09-28 1986-04-24 Hitachi Ltd Fuel cell system
JPS6345766A (en) * 1986-08-13 1988-02-26 Fuji Electric Co Ltd Fuel cell power generating system
JPH05504230A (en) * 1990-01-18 1993-07-01 株式会社東芝 Catalytic reaction equipment used for gas phase reactions
WO2002026620A1 (en) * 2000-09-27 2002-04-04 Matsushita Electric Industrial Co., Ltd. Hydrogen forming device
KR100619777B1 (en) 2005-03-04 2006-09-06 엘지전자 주식회사 Fuel cell having reformer bombe
KR100619776B1 (en) 2005-03-04 2006-09-11 엘지전자 주식회사 Fuel cell having deviece for diluting co and operrating method threrof

Also Published As

Publication number Publication date
JPH0354433B2 (en) 1991-08-20

Similar Documents

Publication Publication Date Title
US5248567A (en) Power generation plant including fuel cell
US6368735B1 (en) Fuel cell power generation system and method for powering an electric vehicle
US5648182A (en) Fuel cell power generation system
US20080268308A1 (en) Fuel Cell Heating Device And Method For Operating Said Fuel Cell Heating Device
US7033687B2 (en) Fuel cell power generation system and method of controlling fuel cell power generation
JP2005509261A (en) Stopping method for a fuel cell fuel processing system
JP2005506659A (en) Method of purging a fuel cell system with an inert gas made from organic fuel
JPS59105275A (en) Fuel cell power generating system
JP4687039B2 (en) Polymer electrolyte fuel cell system
US20100248045A1 (en) Fuel cell system and method for operating the same
JP4024543B2 (en) Fuel cell power generation system
JPH08180895A (en) Fuel cell generating device
JPH0373995B2 (en)
KR20100063994A (en) Connecting apparatus in fuel cell system and fuel cell system having the same
JPH11265723A (en) Fuel cell system
JP2002093449A (en) Fuel cell system
JP2005129462A (en) Fuel cell system
JP2000012061A (en) Fuel cell power generating system
JPH05205759A (en) Fuel cell power plant
JP2007250454A (en) Fuel cell power generating device and its operation stop method
JPH06223856A (en) Fuel cell generator
JPH06251786A (en) Protecting system for solid polymer electrolyte fuel cell
JP2003297402A (en) Fuel cell power generating device
JP2003077502A (en) Fuel cell power plant
JP2001043873A (en) Fuel-cell power generating plant