JPS6397214A - Method for separating and recovering high-purity co2 from co2-containing gas - Google Patents

Method for separating and recovering high-purity co2 from co2-containing gas

Info

Publication number
JPS6397214A
JPS6397214A JP61245103A JP24510386A JPS6397214A JP S6397214 A JPS6397214 A JP S6397214A JP 61245103 A JP61245103 A JP 61245103A JP 24510386 A JP24510386 A JP 24510386A JP S6397214 A JPS6397214 A JP S6397214A
Authority
JP
Japan
Prior art keywords
adsorption
gas
adsorption tower
pressure
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61245103A
Other languages
Japanese (ja)
Inventor
Muneharu Kishida
岸田 宗治
Sawako Yokoi
横井 佐和子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP61245103A priority Critical patent/JPS6397214A/en
Publication of JPS6397214A publication Critical patent/JPS6397214A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To increase the recovery rate of the product by introducing a gas contg. CO2, moisture, and S components into an adsorption tower, carrying out low evacuation and high evacuation to recover CO2, and desorbing the moisture and S components with a gas passing through the adsorption tower. CONSTITUTION:The gas contg. CO2, moisture, and S components such as blast furnace gas is introduced into an adsorption tower 1A through a compressor 2 and pressurized to adsorb CO2. After the adsorption stage is finished, the pressure of the tower is reduced to the atmospheric pressure to exhaust the gaseous impurities in the tower, and then the pressure is reduced to 700Torr by a pressure reducing machine 3 to discharge the gaseous CO2 contg. impurities. The pressure in the adsorption tower is then further reduced by the pressure reducing machine 3 to desorb CO2, and the CO2 is recovered as the gaseous product. The adsorption tower passing gas discharged by the adsorption stage in another tower 1C is introduced into the adsorption tower 1A to desorb the moisture and S components, and the inside of the tower is simultaneously pressurized. These stags are repeated in the respective towers, and CO2 is continuously recovered.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は製鉄所で大量に副生ずる高炉ガス(以下BFG
という)や転炉ガス(以下LDGという)等CO2含有
ガスに圧力スイング法(以下PSA法という)を適用し
てCO2を高純度で分離回収する方法に関するものであ
る。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is directed to blast furnace gas (hereinafter referred to as BFG), which is produced in large quantities as a by-product in steel plants.
The present invention relates to a method for separating and recovering CO2 with high purity by applying a pressure swing method (hereinafter referred to as PSA method) to CO2-containing gas such as converter gas (hereinafter referred to as LDG) and converter gas (hereinafter referred to as LDG).

[従来の技術] CO2の主な用途としては溶接シールド用、清涼飲料用
、ドライアイス用および底吹転炉用等がある。従来これ
らに用いられているCO2源はアンモニア合成の際の副
生ガス、及び石油精製の際のオフガスから回収されるも
のが主であり、両者を合せると工業上生産されているC
O2の80%以上を占めることになる。そしてその回収
方法としてはアルカノールアミン法、熱炭酸カリ法、カ
タカープ法等の液吸収法が利用されている。
[Prior Art] Main uses of CO2 include welding shields, soft drinks, dry ice, and bottom blowing converters. Conventionally, the CO2 sources used in these systems are mainly those recovered from by-product gas during ammonia synthesis and off-gas during oil refining, and when these two are combined, industrially produced CO2
This accounts for over 80% of O2. Liquid absorption methods such as the alkanolamine method, the hot potassium carbonate method, and the Katakarp method are used as recovery methods.

[発明が解決しようとする問題点コ しかしながら前記したこれらの方法はいずれも液吸収法
であり、設備費が高くつくこと、吸収液の再生や循環に
多大な蒸気や電力を必要としランニングコストが高くつ
くこと、また液体であるため取扱いが煩雑となる等問題
を有していた。
[Problems to be solved by the invention] However, all of the above-mentioned methods are liquid absorption methods, which require high equipment costs and require a large amount of steam and electricity to regenerate and circulate the absorption liquid, resulting in high running costs. It has had problems such as being expensive and being complicated to handle because it is a liquid.

さらに近年アンモニア合成プラントおよび石油精製プラ
ントは産業構造の変化に伴って縮小される傾向にあり、
新しいCO2源の確保が必要となってきた。こうして着
目されたのが製鉄所から大量に副生されるBFGやLD
Gであり、これ等のCO2含有ガスから高純度でCO2
を分離回収できれば工業上大いに有益である。
Furthermore, in recent years, ammonia synthesis plants and oil refinery plants have tended to be downsized due to changes in the industrial structure.
It has become necessary to secure new CO2 sources. In this way, attention was focused on BFG and LD, which are produced in large quantities by steel mills.
G, and CO2 can be extracted with high purity from these CO2-containing gases.
It would be of great industrial benefit if it could be separated and recovered.

本発明はこのような環境下で検討されたものであって本
発明の目的はPSA法を利用して、CO2含有ガス中の
CO2を高純度で安価に分離回収することのできるCO
2含有ガスからのCO2の分離回収方法を提供すること
にある。
The present invention was studied under such an environment, and the purpose of the present invention is to create a CO2 system that can separate and recover CO2 in CO2-containing gas with high purity and at low cost by using the PSA method.
An object of the present invention is to provide a method for separating and recovering CO2 from a gas containing CO2.

[問題点を解決するための手段] 上記問題点を解決することのできた本発明とは吸着塔を
2基以上並列させた圧力スイング吸着装置にCO2含有
ガスを導入してCO2含有ガス中のCO2を回収するに
当たり、湿分およびS分を含有した状態のCO2含有ガ
スを加圧下にCO2吸着塔内に導入した後、該吸着塔内
を減圧して該吸着塔内の死空間に充満している不純ガス
成分を排気し、さらに軽度に真空引きして吸着剤に吸着
されている不純物含有CO2を脱着させて更に高真空に
真空引きして高純度のCO2を回収すると共に前記吸着
塔内に一部残留している湿分およびS分を他の吸着塔の
吸着サイクルにおける吸着塔通過ガスによって脱着し、
吸着剤を再生するとともにCO2の回収率を向上させる
ことを構成要旨とするものである。
[Means for Solving the Problems] The present invention that can solve the above problems is to introduce CO2-containing gas into a pressure swing adsorption device in which two or more adsorption towers are arranged in parallel. To recover CO2, a CO2-containing gas containing moisture and S is introduced into a CO2 adsorption tower under pressure, and then the pressure inside the adsorption tower is reduced to fill the dead space within the adsorption tower. The impurity gas components contained in the gas are evacuated, and the impurity-containing CO2 adsorbed by the adsorbent is further evacuated by a slight vacuum, and the impurity-containing CO2 adsorbed by the adsorbent is desorbed. Partially remaining moisture and S content are desorbed by the gas passing through the adsorption tower in the adsorption cycle of another adsorption tower,
The main purpose of this system is to regenerate the adsorbent and improve the CO2 recovery rate.

[作用コ 以下、CO2含有ガスの代表例としてBFGの場合で説
明する。
[Effects] Below, the case of BFG will be explained as a representative example of CO2-containing gas.

本発明方法を実施するための主要部は、第1図(a)〜
(e)に示すように■BFGを圧縮して吸着塔1に導入
するための圧縮機2、■CO2を選択吸着する吸着剤の
充填された吸着塔1(第1図では3 (IA、IB、I
C)塔であるが、2塔以上を並列配置したものは全て本
発明に含まれる)、及び■選択眼着されたCO2を減圧
脱着するための減圧機3より構成されこれらが配管によ
って接続される。
The main parts for carrying out the method of the present invention are shown in FIGS.
As shown in (e), ■ A compressor 2 compresses BFG and introduces it into the adsorption tower 1, ■ An adsorption tower 1 filled with an adsorbent that selectively adsorbs CO2 (3 in Fig. 1 (IA, IB , I
(C) towers, but all towers in which two or more towers are arranged in parallel are included in the present invention); and (2) a pressure reducing machine 3 for depressurizing and desorbing CO2 that has been selectively deposited, and these are connected by piping. Ru.

吸着塔1内に充填される吸着剤は、10八以上の細孔径
を有し、且つ細孔容積の大きいものが望ましい。このよ
うな例として、X型ゼオライトNaXが挙げられる。こ
のゼオライトNaXは第2図に示した等部下の吸脱着圧
と吸脱着量の関係図から明らかである様に、CO2の吸
着量が多い反面CO、N2.H2の吸着量が少なく、ま
た脱着が吸着より容易であり、圧力スイングに好適な吸
着剤であることが分かる。またBFGの主成分は第1表
に示すとおりであり、その他に湿分(H20)と微量の
S分が含まれているがCO2回収用資源として有用であ
ることが分かる。
The adsorbent filled in the adsorption tower 1 preferably has a pore diameter of 108 or more and a large pore volume. An example of this is type X zeolite NaX. As is clear from the relationship between adsorption and desorption pressure and adsorption and desorption amount shown in Figure 2, this zeolite NaX has a large adsorption amount of CO2, but on the other hand, it has a high adsorption amount of CO2 and N2. It can be seen that the amount of H2 adsorbed is small, and desorption is easier than adsorption, making it a suitable adsorbent for pressure swings. The main components of BFG are as shown in Table 1, and it also contains moisture (H20) and a trace amount of S, but it is understood that it is useful as a resource for CO2 recovery.

第   1   表 以下第1図(a)〜(e)を参照しつつ本発明方法を構
成するプロセスについて具体的に述べる。
Table 1 Below, the processes constituting the method of the present invention will be specifically described with reference to FIGS. 1(a) to (e).

(1)吸着工程;原料BFGを圧縮機2にて圧縮し、ア
フタークーラー4で温度を調整した後吸着塔IA内に導
入し所定圧力まで昇圧する。この際吸着塔IAのガス排
出部から排出されてくる通過排ガス中のCO□濃度を測
定しておき、吸着塔IAのガス入口部における原料BF
G中のCO3濃度と同じになるまでBFGを導入し吸着
剤にCO2を吸着させる[第1図(a)太線原料BFG
から吸着塔IAまでコ。
(1) Adsorption step: Raw material BFG is compressed by the compressor 2, and after adjusting the temperature by the aftercooler 4, it is introduced into the adsorption tower IA and the pressure is increased to a predetermined pressure. At this time, the CO□ concentration in the passing exhaust gas discharged from the gas discharge part of the adsorption tower IA is measured, and the
BFG is introduced until the concentration of CO3 in G and the adsorbent adsorbs CO2 [Figure 1 (a) thick line raw material BFG
from adsorption tower IA.

吸着圧力は第2図(吸脱着平衡分圧と吸脱着量との関係
図)に示す吸脱着等温線から明らかなように高いほどC
O2分圧が高くなりCO2の吸着量は増加するが、吸着
圧力を高くすることはガス圧縮のためのエネルギーコス
トが高くなるので吸着圧はCO2吸脱着等混線と吸着量
から判断して(1,5〜2 kg/c+n2・Gが望ま
しい。
The higher the adsorption pressure is, the more C
As the O2 partial pressure increases, the adsorption amount of CO2 increases, but increasing the adsorption pressure increases the energy cost for gas compression, so the adsorption pressure is determined from the crosstalk such as CO2 adsorption and desorption and the adsorption amount (1 , 5 to 2 kg/c+n2·G is desirable.

吸着塔通過ガスは他塔の昇圧再生工程(後述する)を経
てレストガスとして排気(回収)される[第1図(a)
太線吸着塔IAからIBを経てレストガスまで]。
The gas passing through the adsorption tower is exhausted (recovered) as rest gas through a pressure raising regeneration process (described later) in other towers [Figure 1 (a)
thick line from adsorption tower IA to rest gas via IB].

(2)減圧工程:@、着工程終了後、大気圧まで減圧し
て吸着塔IA内の死空間に充満している不純ガス成分を
吸着塔IAから排気する[第1図(b)太線]。
(2) Pressure reduction step: After the completion of the deposition step, the pressure is reduced to atmospheric pressure and the impure gas components filling the dead space in the adsorption tower IA are exhausted from the adsorption tower IA [Figure 1 (b) thick line] .

(3)初期真空脱着工程:減圧工程終了後減圧機3にて
7CO torrまで減圧するが、この初期真空脱着に
よって脱着されるガス(CO2を多量に含み不純物とし
てN2.CO、H2,、S分等を含むガス)は、吸着塔
IA内から排出される[第1図(c)太線コ。
(3) Initial vacuum desorption process: After the completion of the depressurization process, the pressure is reduced to 7CO torr using the pressure reducer 3, but the gas (containing a large amount of CO2 and containing N2, CO, H2, and S as impurities) is desorbed by this initial vacuum desorption. etc.) is discharged from the adsorption tower IA [Fig. 1(c) thick line C].

(4)真空脱着工程−減圧機3にて吸着塔内をさらに減
圧して吸着剤に吸着しているCO2を脱着させ製品とし
て回収する。この際の真空度は30〜2CO torr
が望ましい[第1図(d)の太線]。
(4) Vacuum desorption step - The pressure inside the adsorption tower is further reduced by the pressure reducer 3 to desorb the CO2 adsorbed on the adsorbent and recover it as a product. The degree of vacuum at this time is 30-2CO torr
is desirable [thick line in Figure 1(d)].

(5)昇圧再生工程:他塔ICの吸着工程で排出される
吸着塔通過ガスを吸着塔通過ガス出口側から導入し、吸
着塔のBFG入口部に一部残留しているH2O及びS分
を脱着し吸着剤の再生を行なうと共に塔内を昇圧して次
回吸着工程に備える。また、前記吸着塔通過ガスはCO
2を含んでおり、これを回収することによりCO7回収
率を向上させる役目ももつ。吸着塔内を通過したガスは
レストガスとして排気あるいは回収される[第1図(e
)太線吸着塔ICから吸着塔IAを経てレストガスまで
]。このレストガスはCO2をわずかしか含まないので
単位量当たりのカロリーが高いものとして別途回収の対
象となり得る。
(5) Pressure boosting regeneration step: The gas passing through the adsorption tower discharged in the adsorption process of the other tower IC is introduced from the outlet side of the gas passing through the adsorption tower, and the H2O and S components partially remaining at the BFG inlet of the adsorption tower are removed. The adsorbent is desorbed and regenerated, and the pressure inside the column is increased to prepare for the next adsorption step. Further, the gas passing through the adsorption tower is CO
It also has the role of improving the CO7 recovery rate by recovering it. The gas that has passed through the adsorption tower is exhausted or recovered as rest gas [Figure 1 (e
)Thick line from adsorption tower IC to rest gas via adsorption tower IA]. Since this rest gas contains only a small amount of CO2, it can be separately collected as having a high calorie per unit amount.

なお脱水、脱硫の効率を高めるため、ゼオライトNaX
と異なる細孔を有するゼオライトや活性炭等の吸着剤を
吸着塔のBFG入口部に充填しても良い。
In order to improve the efficiency of dehydration and desulfurization, zeolite NaX
The BFG inlet of the adsorption tower may be filled with an adsorbent such as zeolite or activated carbon having pores different from those of the adsorbent.

以上のようなCO2回収を3塔の吸着塔を用いた場合の
サイクルパターンの例を第2表に示す。
Table 2 shows an example of a cycle pattern when three adsorption towers are used for CO2 recovery as described above.

第   2   表 以上のように2塔以上の吸着塔を並列配置して交互に吸
着、脱着を行なうことにより製品CO2ガスを連続的に
回収することができる。
As shown in Table 2, product CO2 gas can be continuously recovered by arranging two or more adsorption towers in parallel and performing adsorption and desorption alternately.

また、本発明においては、吸着剤として市販のゼオライ
トを使用するので吸着剤を安価にしかも容易に入手でき
る。また設備的にも主要部が圧縮機、吸着塔、減圧機で
構成され、従来のように不純物(特に水分および3分)
除去のための前処理をする必要がなく、また製品純度を
高めるための製品ガスによる洗浄工程を設けることもな
いので設備面積が小さくなり、建設費も安価になる。
Furthermore, in the present invention, since commercially available zeolite is used as the adsorbent, the adsorbent can be obtained at low cost and easily. In addition, the main parts of the equipment are a compressor, an adsorption tower, and a pressure reducer, and as in the past, impurities (especially moisture and
There is no need for pretreatment for removal, and there is no need to provide a cleaning process using product gas to improve product purity, so the equipment area is small and construction costs are low.

また吸着工程での吸着圧も低圧で良くランニングコスト
の点でも有益でありPSA法を用いるので運転保持が容
易である。
In addition, the adsorption pressure in the adsorption step is low, which is beneficial in terms of running costs, and since the PSA method is used, operation maintenance is easy.

尚本発明方法では原料ガスとしてBFGを用いているが
、転炉ガスその他CO2含有混合ガスにも適用できる。
Although BFG is used as the raw material gas in the method of the present invention, it can also be applied to converter gas and other CO2-containing mixed gases.

[実施例コ 市販NaX型ゼオライトA、B各150mJlを充填し
た内径28mm、高さ3COmmの吸着塔に第3表に示
す組成の混合ガスを圧力1 kg/cm2・G流量in
/min、温度20℃の条件で導入した。
[Example] A mixed gas having the composition shown in Table 3 was charged into an adsorption tower with an inner diameter of 28 mm and a height of 3 CO mm filled with 150 mJl each of commercially available NaX type zeolites A and B at a pressure of 1 kg/cm2・G flow rate in
/min and the temperature was 20°C.

第  3  表 吸着塔内の吸着剤に吸着されたco2tlA度が一定に
なった時点でガス導入を停止し、大気圧まで減圧した。
Table 3 When the degree of co2tlA adsorbed on the adsorbent in the adsorption tower became constant, gas introduction was stopped and the pressure was reduced to atmospheric pressure.

次に真空ポンプを用いて7CO torrまで段階的に
吸着塔内を減圧し初期真空脱気を行なったのち、吸着塔
内をさらに50 torrまで減圧してCO2を脱着さ
せ製品CO2を回収した。ゼオライトAおよびゼオライ
トBにおける初期真空脱気量と回収製品ガス組成を第4
表および第5表に示す。
Next, the pressure inside the adsorption tower was reduced stepwise to 7 CO torr using a vacuum pump to perform initial vacuum degassing, and then the pressure inside the adsorption tower was further reduced to 50 torr to desorb CO2 and recover product CO2. The initial vacuum degassing amount and recovered product gas composition in zeolite A and zeolite B were
It is shown in Table and Table 5.

第4表および第5表から明らかなように製品中のCO3
濃度は高く、また初期真空脱着を行なう第 4 表  
 (ゼオライトA) 第 5 表   (ゼオライトB) [発明の効果] 以上のように本発明方法によればBFGをはじめとする
各種のCO2含有ガスからCO2を高純度かつ安価に分
離回収することができる。
As is clear from Tables 4 and 5, CO3 in products
The concentration is high and initial vacuum desorption is performed.Table 4
(Zeolite A) Table 5 (Zeolite B) [Effects of the Invention] As described above, according to the method of the present invention, CO2 can be separated and recovered from various CO2-containing gases including BFG at high purity and at low cost. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、  (b) 、 (c) 、  (d
) 、  (e)は本発明方法を行なうための構成図例
、第2図は等温におりる吸脱着平衡分圧と吸脱着量との
関係図である。
Figure 1 (a), (b), (c), (d
) and (e) are examples of the configuration for carrying out the method of the present invention, and FIG. 2 is a diagram showing the relationship between the adsorption/desorption equilibrium partial pressure and the amount of adsorption/desorption at an isothermal state.

Claims (1)

【特許請求の範囲】[Claims] 吸着塔を2基以上並列させた圧力スイング吸着装置にC
O_2含有ガスを導入してCO_2含有ガス中のCO_
2を回収するに当たり、湿分およびS分を含有した状態
のCO_2含有ガスを加圧下にCO_2吸着塔内に導入
した後、該吸着塔内を減圧して該吸着塔内の死空間に充
満している不純ガス成分を排気し、さらに軽度に真空引
きして吸着剤に吸着されている不純物含有CO_2を脱
着させて更に高真空に真空引きして高純度のCO_2を
回収すると共に前記吸着塔内に一部残留している湿分お
よびS分を他の吸着塔の吸着サイクルにおける吸着塔通
過ガスによって脱着し、吸着剤を再生するとともにCO
_2回収率を向上させることを特徴とするCO_2含有
ガスからCO_2を高純度で分離回収する方法。
C in a pressure swing adsorption device with two or more adsorption towers arranged in parallel.
CO_2 in the CO_2-containing gas by introducing O_2-containing gas
2, a CO_2-containing gas containing moisture and S content is introduced into a CO_2 adsorption tower under pressure, and then the pressure inside the adsorption tower is reduced to fill the dead space within the adsorption tower. The impurity gas components contained in the adsorbent are evacuated, and the impurity-containing CO_2 adsorbed by the adsorbent is further evacuated by a slight vacuum, and the impurity-containing CO_2 adsorbed by the adsorbent is desorbed, and the highly purified CO_2 is recovered by further evacuation to a high vacuum. The moisture and S content partially remaining in the adsorption tower are desorbed by the gas passing through the adsorption tower in the adsorption cycle of other adsorption towers, regenerating the adsorbent and CO
A method for separating and recovering CO_2 with high purity from a CO_2-containing gas, which is characterized by improving the recovery rate of CO_2.
JP61245103A 1986-10-15 1986-10-15 Method for separating and recovering high-purity co2 from co2-containing gas Pending JPS6397214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61245103A JPS6397214A (en) 1986-10-15 1986-10-15 Method for separating and recovering high-purity co2 from co2-containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61245103A JPS6397214A (en) 1986-10-15 1986-10-15 Method for separating and recovering high-purity co2 from co2-containing gas

Publications (1)

Publication Number Publication Date
JPS6397214A true JPS6397214A (en) 1988-04-27

Family

ID=17128658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61245103A Pending JPS6397214A (en) 1986-10-15 1986-10-15 Method for separating and recovering high-purity co2 from co2-containing gas

Country Status (1)

Country Link
JP (1) JPS6397214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020163247A (en) * 2019-03-28 2020-10-08 株式会社豊田中央研究所 Carbon dioxide recovery device, hydrocarbon manufacturing device, and carbon dioxide recovery method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197124A (en) * 1984-10-18 1986-05-15 インペリアル・ケミカル・インダストリーズ・ピーエルシー Collection of carbon dioxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197124A (en) * 1984-10-18 1986-05-15 インペリアル・ケミカル・インダストリーズ・ピーエルシー Collection of carbon dioxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020163247A (en) * 2019-03-28 2020-10-08 株式会社豊田中央研究所 Carbon dioxide recovery device, hydrocarbon manufacturing device, and carbon dioxide recovery method

Similar Documents

Publication Publication Date Title
KR960004606B1 (en) Process for producing high purity oxygen gas from air
JPS6137968B2 (en)
JPS62502180A (en) Enhanced pressure swing suction processing
JPS61176540A (en) Collection of gaseous mixture of methane and carbon dioxide
CN108236829B (en) From the content of CO2Separation of high purity CO from raw material gas2Method and apparatus
JP2539443B2 (en) A method for separating and recovering CO 2 under 2 with high purity from exhaust gas from a steel mill
CN208471537U (en) A kind of recycling crude argon purifying plant again
JPS6137970B2 (en)
CN108557787A (en) A kind of recycling crude argon method of purification again
JPS6397214A (en) Method for separating and recovering high-purity co2 from co2-containing gas
JPS621768B2 (en)
JP2001335305A (en) Co gas/h2 gas recovery equipment and method for recovering co gas/h2 gas
JPS60819A (en) Method for separating and removing carbon dioxide in gaseous mixture containing carbon monoxide by using adsorption method
JPS621767B2 (en)
JPH02283608A (en) Method for separating and recovering carbon monoxide
JPS62117612A (en) Regenerating method for adsorption tower
JP2581944B2 (en) Method for recovering specific gas components from mixed gas
KR100228239B1 (en) Apparatus and process for producing nitrogen using psa system depending on nitrogen concentration in the product
JPH0351647B2 (en)
JPS6259041B2 (en)
JP2004300035A (en) Method for separating methane gas and apparatus therefor
JPS6078611A (en) Concentration of carbon monoxide in gaseous mixture containing carbon monoxide by using adsorbing method
JPS6097021A (en) Purification of carbon monoxide from gaseous mixture containing carbon monoxide by using adsorbing method
JPH0351646B2 (en)
JPS6126506A (en) Concentration and separation of carbon monoxide gas