JPS621768B2 - - Google Patents

Info

Publication number
JPS621768B2
JPS621768B2 JP58130623A JP13062383A JPS621768B2 JP S621768 B2 JPS621768 B2 JP S621768B2 JP 58130623 A JP58130623 A JP 58130623A JP 13062383 A JP13062383 A JP 13062383A JP S621768 B2 JPS621768 B2 JP S621768B2
Authority
JP
Japan
Prior art keywords
pressure
gas
column
adsorption
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58130623A
Other languages
Japanese (ja)
Other versions
JPS6022919A (en
Inventor
Masaaki Nakamura
Keiichi Saida
Kyoshi Uenoyama
Norihiro Kodate
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP58130623A priority Critical patent/JPS6022919A/en
Publication of JPS6022919A publication Critical patent/JPS6022919A/en
Publication of JPS621768B2 publication Critical patent/JPS621768B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 製鉄所において副産物として得られる製鉄ガス
(コークス炉ガス、高炉ガス、転炉ガス)等、あ
るいは火力発電所、各種化学工場等より発生する
排ガスを有効利用することが最近のエネルギー事
情をふまえて、必要となつてきている。 これらの製鉄ガス、排ガスから有効成分ガスを
分離回収する際、高純度の有効ガスを効率よく回
収するシステムとして、工程が簡単で設備費が安
い、選択的吸着方法である圧力スイング法があ
る。 得られる有効ガスが高純度高価値であるほどそ
の回収率は大きな問題となるが、本発明は上記圧
力スイング法における有効成分ガスの回収率の向
上に利用される。 〔従来技術及びその問題点〕 今日迄広く利用されている3塔式圧力スイング
法によるガス分離法に関し、コークス炉ガスより
H2を製造する方法については第1図のようなも
のが考えられている。 以下、第1図の一例に従つて従来技術を説明す
る。 原料ガス(コークス炉ガス)を吸着塔Aの下部
から通すと、そこで不純物(CO2、N2、O2)は吸
着剤に吸着され、製品ガス(H2)が塔頂から留出
してくる(吸着工程)、その後吸着を打ち切り塔
内の不純物を塔下部より圧抜きをして脱着させる
(減圧工程)。さらにその後製品ガスを吸着塔頂部
から通し吸着塔に残つている不純物を洗い流し、
吸着塔内の吸着剤を再生する(パージ工程)。そ
の後、製品ガスを用いて塔内の圧力を上げる(昇
圧工程)。その後前記吸着工程に戻るサイクルを
行なつている。すなわち減圧による脱着とパージ
による脱着成分はオフガスとして系外に排出され
ている。 このように、製品ガスは昇圧工程、パージ工程
の両方に用いられているために製品ガスの回収率
は悪い。その為にこの圧力スイング法による欠点
である製品ガスの回収率が問題となつてきてい
る。 〔発明の目的〕 本発明は従来の3塔式圧力スイング法が有する
上記問題点を解決する為に、減圧工程を均圧と排
圧の二工程に分け一部を昇圧工程に利用し、有効
成分の回収とエネルギー回収とを同時に行うこと
に特徴がある。 即ち、本発明の目的は減圧工程で排出されるオ
フガスを均圧になるまで昇圧に有効利用し、製品
ガスの回収率を向上させ、製品ガスの製造コスト
を引き下げることにある。 〔発明の構成〕 第2図に本発明の具体的な一例を示した。図に
おいてA塔は吸着、B塔は減圧後パージ、C塔は
オフガスによる均圧後、製品ガスによる昇圧の状
態を示している。 以下、この図に従つて本発明の構成を説明す
る。各種装置より発生する例えばH2を含んだ排
ガスは加圧下で吸着塔Aに供給される。ここで
H2は吸着剤への吸着容量が小さいので塔頂部か
ら留出してくるが、不純物(CO2、N2、O2等)
は吸着塔に吸着されて残留している。その後吸着
を打ち切り、塔内に吸着されている不純物成分を
塔底部から塔内の圧力を減圧することによつて脱
着させ排出させる。この減圧工程の初期において
排出されるガス中のH2が原料ガス中のH2濃度よ
り高いことに注目してこのオフガスの一部を別の
塔の昇圧工程に均圧になるまで利用するために塔
底部から導入する。このことによつて従来昇圧に
必要とされていた製品H2ガスの消費量が少なく
てすむ。このことはすなわちシステム全体として
の製品ガスの回収率の向上へとつなかる。 〔実施例〕 第3図の具体的な実施例をもとにさらに本発明
を説明する。 本実施例は表−1に示した設備仕様にて実施し
た。また表―2には塔切替のタイムスケジユール
を示した。 まず表―3に示したような組成の原料ガスを弁
A―1、A―5を開き吸着塔Aに通す。そこで
H2以外の不純物成分を主に吸着させ塔頂部より
製品H2を留出させる(吸着工程)。この際この製
品H2の組成は表―4に示すものであつた。その
後弁A―1、A―5を閉じ吸着工程を打ち切る。
次に弁A―3、B―3を開きA塔の向流減圧を行
ない、初期に排出されるオフガスを下部から抜
き、これをB塔下部から導入させる。この工程に
よつてA塔とB塔を均圧させる。その後弁A―
3、B―3を閉じ、次に弁A―4を開き塔内の圧
力を減圧させ、残りの不純物を脱着させ塔底部か
ら排出させる(減圧工程)。その後塔内の圧力が
十分に落ちた後、さらに弁A―2を開き、製品
H2を塔頂部から導き内部を製品H2で洗浄(パー
ジ工程)し、吸着剤を再生する。 一方、B塔は弁B―1から製品ガスを塔内部に
導入して塔内の圧力を上げる(昇圧工程)。この
際、先の工程でA塔の初期の脱着成分で塔内の圧
力はあらかじめある程度昇圧されているので昇圧
に利用される製品H2の量は少なくてすむ。そこ
で製品H2の回収率を計算すると従来方式に比べ
およそ4%の向上につながつた。
[Industrial Application Fields] Recently, the effective use of steelmaking gas (coke oven gas, blast furnace gas, converter gas), etc. obtained as a by-product in steel plants, or exhaust gas generated from thermal power plants, various chemical factories, etc. has become effective. It has become necessary in light of the current energy situation. When separating and recovering effective component gases from these steelmaking gases and exhaust gases, there is a pressure swing method, which is a selective adsorption method with a simple process and low equipment cost, as a system for efficiently recovering high-purity effective gases. The higher the purity and value of the resulting effective gas, the greater the problem with its recovery rate, and the present invention is utilized to improve the recovery rate of the active component gas in the pressure swing method. [Prior art and its problems] Regarding the gas separation method using the three-column pressure swing method, which has been widely used to date,
The method shown in Figure 1 has been considered for producing H2 . The prior art will be described below with reference to an example in FIG. When raw material gas (coke oven gas) is passed from the bottom of adsorption tower A, impurities (CO 2 , N 2 , O 2 ) are adsorbed by the adsorbent, and product gas (H 2 ) is distilled out from the top of the tower. (adsorption step), and then the adsorption is stopped and the impurities in the tower are depressurized from the bottom of the tower and desorbed (depressurization step). Furthermore, the product gas is passed through the top of the adsorption tower to wash away any impurities remaining in the adsorption tower.
Regenerate the adsorbent in the adsorption tower (purge step). After that, the pressure inside the column is increased using the product gas (pressure increase step). Thereafter, a cycle of returning to the adsorption step is performed. That is, the components desorbed due to depressurization and purge are discharged out of the system as off-gas. As described above, since the product gas is used in both the pressurization process and the purge process, the recovery rate of the product gas is poor. Therefore, the recovery rate of product gas, which is a drawback of this pressure swing method, has become a problem. [Object of the invention] In order to solve the above-mentioned problems of the conventional three-column pressure swing method, the present invention divides the depressurization process into two processes, pressure equalization and depressurization, and utilizes a part of the process for the pressure increase process. The feature is that component recovery and energy recovery are performed at the same time. That is, an object of the present invention is to effectively utilize the off-gas discharged during the pressure reduction process to increase the pressure until the pressure is equalized, improve the recovery rate of product gas, and reduce the production cost of product gas. [Structure of the Invention] FIG. 2 shows a specific example of the present invention. In the figure, column A shows adsorption, column B shows purging after pressure reduction, and column C shows pressure equalization with off-gas and pressure increase with product gas. The configuration of the present invention will be explained below with reference to this figure. Exhaust gas containing, for example, H 2 generated from various devices is supplied to the adsorption tower A under pressure. here
H2 has a small adsorption capacity on the adsorbent, so it is distilled out from the top of the column, but impurities ( CO2 , N2 , O2, etc.)
is adsorbed by the adsorption tower and remains. Thereafter, the adsorption is stopped, and the impurity components adsorbed in the column are desorbed and discharged by reducing the pressure in the column from the bottom of the column. Noting that the H 2 concentration in the gas discharged at the beginning of this pressure reduction process is higher than the H 2 concentration in the raw material gas, a part of this off-gas is used in the pressure increase process of another column until the pressure is equalized. It is introduced from the bottom of the tower. This reduces the amount of product H 2 gas consumed, which was conventionally required for pressurization. This leads to an improvement in the product gas recovery rate for the entire system. [Example] The present invention will be further explained based on a specific example shown in FIG. This example was carried out using the equipment specifications shown in Table-1. Table 2 also shows the time schedule for tower switching. First, the raw material gas having the composition shown in Table 3 is passed through the adsorption tower A by opening valves A-1 and A-5. Therefore
Impurity components other than H 2 are mainly adsorbed and product H 2 is distilled from the top of the column (adsorption step). At this time, the composition of this product H2 was as shown in Table 4. Thereafter, valves A-1 and A-5 are closed to terminate the adsorption process.
Next, valves A-3 and B-3 are opened to perform countercurrent depressurization of the A tower, and the initially discharged off-gas is removed from the lower part, and this is introduced from the lower part of the B tower. This step equalizes the pressure in tower A and tower B. Then valve A-
3. Close B-3, then open valve A-4 to reduce the pressure inside the column, and the remaining impurities are desorbed and discharged from the bottom of the column (pressure reduction step). Then, after the pressure inside the tower has dropped sufficiently, valve A-2 is further opened and the product is
H 2 is introduced from the top of the column and the interior is washed with the product H 2 (purge step) to regenerate the adsorbent. On the other hand, in column B, the product gas is introduced into the column from valve B-1 to increase the pressure inside the column (pressure increasing step). At this time, since the pressure inside the column has already been increased to some extent by the initial desorption components of column A in the previous step, the amount of product H 2 used for pressure increase can be small. Therefore, when we calculated the recovery rate of product H2 , it led to an improvement of about 4% compared to the conventional method.

【表】【table】

【表】【table】

【表】【table】

〔発明効果〕[Invention effect]

本発明の減圧工程の初期に排出されるオフガス
を原料の送入方向と向流に抜き出し、均圧になる
まで他塔の底部に導入し昇圧に利用することによ
つて生じる効果としては、従来の方式より水素の
回収率が上がりすなわちH2製造のコストダウン
につながる。勿論、H2の製造に限らず、製鉄ガ
ス、各種排ガスに適用することにより、他の各種
有効成分ガスを低コストで製造できる。
The effect produced by extracting the off-gas discharged at the beginning of the pressure reduction process of the present invention in a countercurrent direction to the feeding direction of the raw material, introducing it into the bottom of another column until the pressure is equalized, and using it for pressure increase is as follows. The hydrogen recovery rate is higher than that of the above method, which leads to a reduction in the cost of H 2 production. Of course, the present invention is not limited to the production of H 2 , but by applying it to iron manufacturing gas and various exhaust gases, various other active ingredient gases can be produced at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の3塔式圧力スイング法の概略工
程図、第2図は本発明の3塔式圧力スイング法の
概略工程図、第3図は本発明の3塔式圧力スイン
グ法の具体的な実施例を示す図である。 図において、1……原料ガスライン、2……製
品ガスライン、3……パージライン、4……オフ
ガスライン、5……昇圧ライン、6……均圧ライ
ン。
Fig. 1 is a schematic process diagram of the conventional three-column pressure swing method, Fig. 2 is a schematic process diagram of the three-column pressure swing method of the present invention, and Fig. 3 is a specific diagram of the three-column pressure swing method of the present invention. It is a figure showing an example. In the figure, 1... Raw material gas line, 2... Product gas line, 3... Purge line, 4... Off gas line, 5... Pressure increase line, 6... Pressure equalization line.

Claims (1)

【特許請求の範囲】[Claims] 1 吸着,減圧−パージ,昇圧の各工程に
適宜切換えられる3塔の吸着塔に原料ガスを通過
させ有効成分ガスを分離する方法において、前記
減圧初期工程に排出されるオフガスを原料ガスの
送入方向と向流に抜き出し、均圧になるまで昇圧
工程中の吸着塔の底部に導入して昇圧に利用し、
有効成分の回収とエネルギー回収とを同時に行う
ことを特徴とする3塔式圧力スイング法における
吸着塔の昇圧方法。
1 In a method of separating active ingredient gas by passing raw material gas through three adsorption towers that are switched appropriately to each step of adsorption, depressurization-purge, and pressurization, the off-gas discharged in the initial step of depressurization is used as the raw material gas. It is extracted in a countercurrent direction and introduced into the bottom of the adsorption tower during the pressure increase process until the pressure is equalized and used for pressure increase.
A method for increasing the pressure of an adsorption tower in a three-column pressure swing method, which is characterized by recovering active ingredients and recovering energy at the same time.
JP58130623A 1983-07-18 1983-07-18 Pressure increasing method of adsorption tower in three-tower pressure swinging method Granted JPS6022919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58130623A JPS6022919A (en) 1983-07-18 1983-07-18 Pressure increasing method of adsorption tower in three-tower pressure swinging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58130623A JPS6022919A (en) 1983-07-18 1983-07-18 Pressure increasing method of adsorption tower in three-tower pressure swinging method

Publications (2)

Publication Number Publication Date
JPS6022919A JPS6022919A (en) 1985-02-05
JPS621768B2 true JPS621768B2 (en) 1987-01-16

Family

ID=15038657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58130623A Granted JPS6022919A (en) 1983-07-18 1983-07-18 Pressure increasing method of adsorption tower in three-tower pressure swinging method

Country Status (1)

Country Link
JP (1) JPS6022919A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105013289A (en) * 2015-07-04 2015-11-04 上海煜工环保科技有限公司 Pressure-equalizing moving bed type activated coke adsorption tower

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558451B2 (en) * 2000-05-10 2003-05-06 Airsep Corporation Multiple bed pressure swing adsorption method and apparatus
EP1968727A1 (en) * 2005-12-30 2008-09-17 Aker Cool Sorption A/S Filter to filter equalization
JP4758394B2 (en) * 2007-05-30 2011-08-24 住友精化株式会社 Method for purifying mixed gas, and mixed gas recycling system
JP5325435B2 (en) * 2007-10-31 2013-10-23 Jfeスチール株式会社 Blast furnace gas separation method
WO2009116674A1 (en) * 2008-03-18 2009-09-24 Jfeスチール株式会社 Method for separating blast furnace gas
JP5319140B2 (en) * 2008-03-19 2013-10-16 住友精化株式会社 Blast furnace gas separation method and blast furnace gas separation system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4256469A (en) * 1978-11-06 1981-03-17 Linde Aktiengesellschaft Repressurization technique for pressure swing adsorption

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4256469A (en) * 1978-11-06 1981-03-17 Linde Aktiengesellschaft Repressurization technique for pressure swing adsorption

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105013289A (en) * 2015-07-04 2015-11-04 上海煜工环保科技有限公司 Pressure-equalizing moving bed type activated coke adsorption tower

Also Published As

Publication number Publication date
JPS6022919A (en) 1985-02-05

Similar Documents

Publication Publication Date Title
TWI521056B (en) Methane recovery method and methane recovery unit
JPH01131005A (en) Recovery of nitrogen, hydrogen and carbon dioxide from hydrocarbon reformate
JPS6026571B2 (en) Method and apparatus for increasing the proportion of component gases in a gas mixture
JP3073917B2 (en) Simultaneous pressure change adsorption method
CA2462308C (en) Psa process for co-producing nitrogen and oxygen
EP1354619B1 (en) Method for separating hydrogen gas
JPS621768B2 (en)
JP3569420B2 (en) Hydrogen production method by pressure swing adsorption method
JPS621767B2 (en)
CN102160955A (en) One-stage pressure swing adsorption process in ammonia-urea synthesizing production
JP3219612B2 (en) Method for co-producing carbon monoxide and hydrogen from mixed gas
JP2009249571A (en) Method for eliminating hydrogen sulfide contained in biogas
JPS60155520A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide gas by adsorption process
KR102350033B1 (en) Method and apparatus for recovering hydrogen from FINEX off gas
WO2023042535A1 (en) Gas separation method
JPH01234313A (en) Production of carbon dioxide having high purity
JPH0221285B2 (en)
JP2581944B2 (en) Method for recovering specific gas components from mixed gas
JPS6259041B2 (en)
JPS60239310A (en) Process for recovering argon from smelting waste gas using argon-oxygen mixture
JPS63141622A (en) Treatment of blast-furnace gas
JPH0465302A (en) Pressure-swing hydrogen purification method
JPH0422415A (en) Method for adsorbing and removing carbon dioxide
JPS6097022A (en) Concentration and separation of carbon monoxide in carbon monoxide-containing gaseous mixture by using adsorbing method
JPS61146705A (en) Method for separating and recovering high purity carbon monoxide from gaseous mixture containing carbon monoxide