JP2539443B2 - A method for separating and recovering CO 2 under 2 with high purity from exhaust gas from a steel mill - Google Patents

A method for separating and recovering CO 2 under 2 with high purity from exhaust gas from a steel mill

Info

Publication number
JP2539443B2
JP2539443B2 JP62189825A JP18982587A JP2539443B2 JP 2539443 B2 JP2539443 B2 JP 2539443B2 JP 62189825 A JP62189825 A JP 62189825A JP 18982587 A JP18982587 A JP 18982587A JP 2539443 B2 JP2539443 B2 JP 2539443B2
Authority
JP
Japan
Prior art keywords
adsorption tower
adsorption
gas
exhaust gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62189825A
Other languages
Japanese (ja)
Other versions
JPS6434422A (en
Inventor
宗治 岸田
佐和子 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP62189825A priority Critical patent/JP2539443B2/en
Publication of JPS6434422A publication Critical patent/JPS6434422A/en
Application granted granted Critical
Publication of JP2539443B2 publication Critical patent/JP2539443B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は製鉄所では大量に副生する高炉ガス(以下BF
Gという)や転炉ガス(以下LDGという)等の如くCO2を1
5〜40%含有する排ガスに圧力スイング法(以下PSA法と
いう)を適用してCO2を高純度で分離回収する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a blast furnace gas (hereinafter referred to as BF
CO 2 such as converter gas (hereinafter referred to as LDG) etc.
The present invention relates to a method for separating and recovering CO 2 with high purity by applying a pressure swing method (hereinafter referred to as PSA method) to exhaust gas containing 5 to 40%.

[従来の技術] CO2の主な用途としては溶接シールド用、清涼飲料
用、ドライアイス用および底吹転炉用等がある。従来こ
れらに用いられているCO2源はアンモニア合成の際の副
生ガス、及び石油精製の際のオフガスから回収されるも
のが主であり、両者を合せると工業上生産されているCO
2の80%以上を占めることになる。そしてその回収方法
としてはアルカノールアミン法、熱炭酸カリ法、カタカ
ーブ法等の液吸収法が利用されている。
[Prior Art] The main uses of CO 2 are for welding shields, soft drinks, dry ice, and bottom blowing converters. The CO 2 sources conventionally used for these are mainly those recovered from the by-product gas during ammonia synthesis and off-gas during oil refining.
It will occupy more than 80% of 2 . A liquid absorption method such as an alkanolamine method, a potassium carbonate method, or a catacarb method is used as a method for recovering the same.

[発明が解決しようとする問題点] しかしながら前記したこれらの方法はいずれも液吸収
法であり、設備費が高くつくこと、吸収液の再生や循環
に多大な蒸気や電力を必要としランニングコストが高く
つくこと、また液体であるため取扱いが煩雑となること
等の問題を有していた。
[Problems to be Solved by the Invention] However, all of the above-mentioned methods are liquid absorption methods, and the equipment cost is high, and a large amount of steam or electric power is required for regeneration and circulation of the absorption liquid, resulting in running costs. There are problems such as high cost and complicated handling due to being a liquid.

さらに近年アンモニア合成プラントおよび石油精製プ
ラントは産業構造の変化に伴って縮小される傾向にあ
り、新しいCO2源の確保が必要となってきた。こうして
着目されたのが製鉄所から大量に副生されるBFGやLDGで
あり、これ等のCO2含有ガスからCO2を高純度で分離回収
できれば工業上大いに有益である。
Further, in recent years, ammonia synthesis plants and oil refining plants have tended to shrink with changes in the industrial structure, and it has become necessary to secure new CO 2 sources. In this way, BFG and LDG, which are produced as a large amount by-products from steel mills, have been paid attention to. If CO 2 can be separated and recovered with high purity from these CO 2 -containing gases, it will be of great industrial benefit.

本発明はこのような環境下で検討されたものであっ
て、本発明の目的は15〜40%のCO2を含有する製造所排
ガス中のCO2を、PSA法によって高純度且つ安価に分離回
収することのできる方法を提供することにある。
The present invention has been studied under such an environment, and the object of the present invention is to separate CO 2 in the exhaust gas of a manufacturing plant containing 15 to 40% CO 2 with high purity and at low cost by the PSA method. It is to provide a method that can be recovered.

[問題点を解決するための手段] 上記問題点を解決することのできた本発明とは吸着塔
を2基以上並列させた圧力スイング吸着装置に15〜40%
のCO2を含有する製鉄所排ガスを導入してこの排ガス中
のCO2を回収するに当たり、吸着塔内の吸着剤充填構成
を (1)上段にゼオライト、中段に活性炭、下段に活性
アルミナあるいはシリカゲルのいずれか1種以上とする
か、 (2)上段にゼオライト、下段に活性アルミナあるい
はシリカゲルのいずれか1種以上とし、 湿分およびS分を含有した状態の上記排ガスをCO2分圧1
20mmHg以上でCO2吸着塔内に下から導入した後、該吸着
塔内を大気圧まで減圧して該吸着塔内の死空間に充満し
ている不純ガス成分を排気し、更に700〜100torrに真空
引きして吸着剤に吸着されている不純成分を脱着させ、
その後更に100〜30torrに真空引きしてCO2を脱着させる
ことにより高純度のCO2を回収すると共に、吸着塔内に
吸着された湿分およびS分を、前記真空引きを行うと共
に他の吸着塔の吸着サイクルにおける吸着塔通過ガスを
上から導入することによって脱着させ、吸着剤を再生す
るとともにCO2回収率を向上させることを構成要旨とす
るものである。
[Means for Solving the Problems] The present invention, which was able to solve the above problems, has a pressure swing adsorption device in which two or more adsorption towers are arranged in parallel, and the amount is 15 to 40%.
In introducing CO 2 -containing steel plant exhaust gas to recover CO 2 in this exhaust gas, the adsorbent filling structure in the adsorption tower is as follows: (1) Zeolite in the upper stage, activated carbon in the middle stage, activated alumina or silica gel in the lower stage. (2) Zeolite is used in the upper stage and activated alumina or silica gel is used in the lower stage, and the exhaust gas containing moisture and S is CO 2 partial pressure 1
After introducing from below into the CO 2 adsorption tower at 20 mmHg or more, the pressure inside the adsorption tower is reduced to atmospheric pressure, and the impure gas component filling the dead space in the adsorption tower is exhausted, and further 700 to 100 torr Vacuum is applied to desorb the impure components adsorbed on the adsorbent,
With the recovery of high purity CO 2 by then to further desorb evacuated to a CO 2 to 100~30Torr, other adsorption with the moisture and S content adsorbed, performing the vacuum in the adsorption column In the adsorption cycle of the column, the gas passing through the adsorption column is introduced from above to desorb the gas, thereby regenerating the adsorbent and improving the CO 2 recovery rate.

[作用] 以下、15〜40%のCO2を含有する製鉄所排ガスの代表
例としてBFGの場合を取りあげて説明する。
[Function] Hereinafter, the case of BFG will be described as a typical example of the exhaust gas from a steel mill containing 15 to 40% CO 2 .

本発明方法を実施するための主要部は、第1図(a)
〜(e)に示すように、BFGを圧縮して吸着塔1に導
入するための圧縮機2、CO2を選択吸着する吸着剤の
充填された吸着塔1[第1図では3塔(1A,1B,1C)であ
るが、2塔以上を並列配置したものは全て本発明に含ま
れる]、及び選択吸着されたCO2を減圧脱着するため
の減圧機3より構成され、これらが配管によって接続さ
れる。
The main part for carrying out the method of the present invention is shown in FIG.
As shown in (e), a compressor 2 for compressing and introducing BFG into the adsorption tower 1, an adsorption tower 1 filled with an adsorbent for selectively adsorbing CO 2 [in FIG. 1, three towers (1A , 1B, 1C), but those in which two or more columns are arranged in parallel are all included in the present invention], and a pressure reducer 3 for desorbing the selectively adsorbed CO 2 under reduced pressure. Connected.

吸着塔1内の吸着剤の充填構成は (1)上段にゼオライト、中段に活性炭、下段に活性
アルミナあるいはシリカゲルのいずれか1種以上とする
か、 (2)上段にゼオライト、下段に活性アルミナあるい
はシリカゲルのいずれか1種以上とし、 吸着塔1内に充填されるゼオライトとしては、10Å以上
の細孔径を有し、且つ細孔容積の大きいものが望まれ
る。このような例として、X型ゼオライトNoXが挙げら
れる。このゼオライトNaXは第2図に示した等温下にお
ける吸脱着圧−吸脱着量関係図から明らかである様に、
CO2の吸着量が多い反面CO,N2,H2の吸着量が少なく、ま
た脱着が容易であり、圧力スイングに好適な吸着剤であ
ることが分かる。またBFGの主成分は第1表に示すとお
りであり、N2,CO2,COおよびH2の他に湿分(H2O)と微量
のS分が含まれており、中段および/または下段に充填
される活性炭,活性アルミナ,シリカゲルはガス中の湿
分やS分の吸着能力が優れているので、原料ガスを塔の
下方から導入すると、これらが上段のゼオライト充填層
に至るまでにこれらの成分が優先的に吸着される。また
第1表よりBFG中にはCO2が多量に含まれているのでCO2
回収用資源として有用であることが分かる。
The adsorbent may be packed in the adsorption tower 1 as follows: (1) Zeolite in the upper stage, activated carbon in the middle stage, activated alumina or silica gel in the lower stage, or (2) zeolite in the upper stage, activated alumina in the lower stage or It is desired that any one or more kinds of silica gel and the zeolite packed in the adsorption tower 1 have a pore diameter of 10 Å or more and a large pore volume. An example of this is X-type zeolite NoX. As is clear from the adsorption / desorption pressure-adsorption / desorption amount diagram under isothermal conditions shown in FIG.
Although the amount of CO 2 adsorbed is large, the amount of CO, N 2 and H 2 adsorbed is small, and desorption is easy, which indicates that the adsorbent is suitable for pressure swing. The main components of BFG are as shown in Table 1, which contains moisture (H 2 O) and a trace amount of S in addition to N 2 , CO 2 , CO and H 2 , and the middle and / or The activated carbon, activated alumina, and silica gel packed in the lower stage have excellent adsorption capacity for moisture and S in the gas. Therefore, when the raw material gas is introduced from the bottom of the tower, they reach the upper zeolite packed bed. These components are preferentially adsorbed. Since the BFG in from Table 1 CO 2 are contained in a large amount CO 2
It can be seen that it is useful as a recovery resource.

以下第1図(a)〜(e)を参照しつつBFGから高純
度のCO2を回収するプロセスについて具体的に述べる。
The process for recovering high-purity CO 2 from BFG will be specifically described below with reference to FIGS. 1 (a) to 1 (e).

(1) 吸着工程:原料BFGを圧縮機2にて圧縮し、ア
フタークーラー4で温度を調整した後吸着塔1A内に導入
所定圧力まで昇圧する。この際吸着塔1Aのガス排出部か
ら排出されてくる通過排ガス中のCO2濃度を測定してお
き、吸着塔1Aのガス入口部における原料BFG中のCO2濃度
とほぼ同じになるまでBFGを導入し吸着剤にCO2を吸着さ
せる[第1図(a)太線原料BFGから吸着塔1Aまで]。
(1) Adsorption step: The raw material BFG is compressed by the compressor 2, the temperature is adjusted by the aftercooler 4, and then introduced into the adsorption tower 1A to raise the pressure to a predetermined pressure. At this time, the CO 2 concentration in the passing exhaust gas discharged from the gas discharge part of the adsorption tower 1A was measured, and the BFG was measured until it became almost the same as the CO 2 concentration in the raw material BFG at the gas inlet part of the adsorption tower 1A. It is introduced and CO 2 is adsorbed on the adsorbent [Fig. 1 (a) Thick line raw material BFG to adsorption tower 1A].

ここでBFG中のCO2は主に吸着塔1の上段に充填された
ゼオライト吸着され、湿分およびS分は中段および/ま
たは下段に充填された活性炭,活性アルミナあるいはシ
リカゲルに吸着される。吸着圧力は第2図に示す吸脱着
塔温線から明らかなように高圧側ほどCO2分圧が高くな
りCO2の吸着量は増加するが、吸着圧力を高くすること
はガス圧縮のためのエネルギーコストが高くなるので、
CO2含有量が15〜40%であること、並びにCO2吸脱着等温
線と吸着量の関係等から判断してCO2分圧で120mmHg以
上,全圧で0.2〜2kgf/cm2・Gとするとが望ましい。
Here, CO 2 in BFG is mainly adsorbed on the zeolite packed in the upper stage of the adsorption tower 1, and moisture and S are adsorbed on the activated carbon, activated alumina or silica gel packed in the middle stage and / or the lower stage. As the adsorption pressure becomes clearer from the adsorption / desorption tower temperature curve shown in Fig. 2, the CO 2 partial pressure becomes higher and the CO 2 adsorption amount increases on the higher pressure side. However, increasing the adsorption pressure is necessary for gas compression. Energy costs are high,
Based on the fact that the CO 2 content is 15 to 40% and the relationship between the CO 2 adsorption and desorption isotherm and the adsorption amount, the CO 2 partial pressure is 120 mmHg or more, and the total pressure is 0.2 to 2 kgf / cm 2 · G. It is desirable.

吸着塔通過ガスは他塔の昇圧再生工程(後述する)を
経てレストガスとして排出(または回収、以下同様)さ
れる[第1図(a)太線吸着塔1Aから1Bを経てレストガ
スまで]。
The gas that has passed through the adsorption tower is discharged (or recovered, the same applies hereinafter) as rest gas through a pressure regeneration step (described later) of the other tower [Fig. 1 (a) Thick line adsorption tower 1A to 1B to rest gas].

(2) 減圧工程:吸着工程終了後、大気圧まで減圧し
て吸着塔1A内の死空間に充満している不純ガス成分を吸
着塔1Aから排出する[第1図(b)太線]。同工程は吸
着圧が低圧である場合は省略することも可能である。
(2) Depressurization step: After the adsorption step is completed, the pressure is reduced to atmospheric pressure and the impure gas component filling the dead space in the adsorption tower 1A is discharged from the adsorption tower 1A [Fig. 1 (b) thick line]. This step can be omitted if the adsorption pressure is low.

(3) 初期真空脱着工程:減圧工程終了後減圧機3に
て700〜100torrまで減圧するが、この初期真空脱着によ
って脱着されるガス(CO2を多量に含み不純物としてN2,
CO,H2,S分等を含むガス)は、吸着塔1A内から排出され
る[第1図(c)太線]。
(3) Initial vacuum desorption process: After the decompression process is completed, the pressure is reduced to 700 to 100 torr by the decompressor 3, but the gas desorbed by this initial vacuum desorption (containing a large amount of CO 2 , N 2 as impurities,
The gas containing CO, H 2 , S, etc.) is discharged from the inside of the adsorption tower 1A [thick line in FIG. 1 (c)].

(4) 真空脱着工程:減圧機3にて吸着塔内をさらに
減圧して吸着剤に吸着されているCO2を脱着させ製品と
して回収する。この際の真空度はCO2の純度および回収
性を考慮して100〜30torrが望ましい[第1図(d)の
太線]。
(4) Vacuum desorption process: The pressure inside the adsorption tower is further reduced by the decompressor 3, and CO 2 adsorbed on the adsorbent is desorbed and recovered as a product. At this time, the degree of vacuum is preferably 100 to 30 torr in consideration of CO 2 purity and recoverability [thick line in FIG. 1 (d)].

(5) 昇圧再生工程:前記初期真空脱着工程と真空脱
着工程時の脱着により吸着塔下部に吸着された湿分およ
びS分も大部分脱着されているが、他塔1Cの吸着工程で
排出される吸着塔通過ガスを吸着塔1Aの上から、つまり
通過ガス出口側から導入し、吸着塔のBFG入口部に一部
残留している湿分及びS分を脱着し吸着剤の再生を行な
うと共に塔内を昇圧して次回吸着工程に備える。また、
前記吸着塔1Cの通過ガスは未吸着で通過したCO2を含ん
でおり、これを回収することにより全体としてのCO2
収率を向上させる役目ももつ。この昇圧再生用の吸着塔
内を通過したガスはレストガスとして排気あるいは回収
される[第1図(e)太線吸着塔1Cから吸着塔1Aを経て
レストガスまで]が、このレストガスはCO2をわずかし
か含まないので単位量当たりのカロリーが高いものとし
て別途回収の対象となり得る。
(5) Step-up regeneration step: Most of the moisture and S adsorbed in the lower part of the adsorption tower by the desorption during the initial vacuum desorption step and the vacuum desorption step are also desorbed, but are discharged in the adsorption step of the other tower 1C. The adsorbent passing gas is introduced from above the adsorbing tower 1A, that is, from the passing gas outlet side, and the moisture and S remaining in the BFG inlet part of the adsorbing tower are desorbed to regenerate the adsorbent. The pressure inside the tower is increased to prepare for the next adsorption step. Also,
The gas passing through the adsorption tower 1C contains CO 2 that has not passed through the adsorption column, and by collecting this gas, the CO 2 recovery rate as a whole is also improved. The gas that has passed through the adsorption tower for pressurization regeneration is exhausted or recovered as rest gas [Fig. 1 (e) Thick line adsorption tower 1C through adsorption tower 1A to rest gas], but this rest gas contains little CO 2. Since it does not contain calories per unit amount, it can be separately collected as having high calories.

尚、吸着塔1、圧縮機2、減圧機3、熱交換器4,5お
よび配管間に配される開閉弁は前記各圧力を充たすよう
に操作される。
The adsorption tower 1, the compressor 2, the decompressor 3, the heat exchangers 4, 5 and the on-off valve arranged between the pipes are operated so as to satisfy the above respective pressures.

ここでCO2回収を3塔の吸着塔を用いた場合のサイク
ルパターンの例を第3図に示す。
FIG. 3 shows an example of a cycle pattern when CO 2 recovery is performed using three adsorption towers.

以上のように2塔以上の吸着塔を並列配置して交互に
吸着,脱着を行なうことにより製品CO2ガスを連続的に
回収することができる。
As described above, the product CO 2 gas can be continuously collected by arranging two or more adsorption towers in parallel and alternately adsorbing and desorbing them.

また、本発明においては、吸着剤として市販のゼオラ
イト,活性炭,活性アルミナおよびシリカゲルを使用す
るので吸着剤を安価にしかも安易に入手できる。また設
備的にも主要部が圧縮機、吸着塔、減圧機で構成され、
従来のように不純物(特に湿分およびS分)除去のため
の前処理をする必要がなく、また製品純度を高めるため
の製品ガスによる洗浄工程を設けることもないので設備
面積が小さくなり、建設費も安価になる。
Further, in the present invention, since commercially available zeolite, activated carbon, activated alumina and silica gel are used as the adsorbent, the adsorbent can be easily obtained at low cost. Also in terms of equipment, the main part consists of a compressor, adsorption tower, decompressor,
Since there is no need to perform a pretreatment for removing impurities (particularly moisture and S content) as in the past, and there is no need to provide a cleaning step with a product gas to increase product purity, the equipment area can be reduced and construction The cost will be low.

また吸着工程での吸着圧も低圧で良くランニングコス
トの点でも有益でありPSA法を用いるので運転保持が容
易である。
Also, the adsorption pressure in the adsorption step is low, which is beneficial in terms of running cost, and the PSA method is used, which makes it easy to maintain operation.

尚本発明方法では原料ガスとしてBFGを用いている
が、転炉ガスその他CO2含有混合ガスにも適用できる。
Although BFG is used as the raw material gas in the method of the present invention, it can be applied to the converter gas and other CO 2 -containing mixed gas.

[実施例] 次に述べる実験条件および方法にて、CO2を含有する
製鉄所排ガスから高純度のCO2を分離回収した。
[Example] High-purity CO 2 was separated and recovered from CO 2 -containing exhaust gas from a steelworks under the experimental conditions and methods described below.

装 置:2塔式PSA 吸着剤:上段にゼオライト480cc,中段に活性炭150cc,下
段に活性アルミナ80ccをそれぞれ充填 原料ガス組成: CO2:22.0%,CO:21.1%,H2:2.6%,H2:54.3%,COS:33.6pp
m,H2S:12.0ppm,湿分:飽和 操作温度:20℃ 吸着圧力:1.0kgf/cm2・G(CO2分圧 330mmHg) 操 作: 実験結果: 第2表に示す様に初期真空脱着による排ガス量に応じ
て製品純度が高くなり、初期真空脱着の効果が認められ
る。
Equipment: Two-column PSA adsorbent: Zeolite 480 cc in the upper stage, activated carbon 150 cc in the middle stage, activated alumina 80 cc in the lower stage Raw gas composition: CO 2 : 22.0%, CO: 21.1%, H 2 : 2.6%, H 2 : 54.3%, COS: 33.6pp
m, H 2 S: 12.0ppm, Moisture: Saturation Operating temperature: 20 ℃ Adsorption pressure: 1.0kgf / cm 2 · G (CO 2 partial pressure 330mmHg) Operation: Experimental results: As shown in Table 2, the product purity increases according to the amount of exhaust gas from the initial vacuum desorption, and the effect of the initial vacuum desorption is recognized.

湿分およびS分については第3表に示す割合で各工程
で排出されている。
Moisture and S are discharged in each step at the ratio shown in Table 3.

前記操作を50回以上繰り返しても活性炭層通過ガスは
露点−60℃以下を示し、活性炭通過ガスにはS分は検出
されなかった。
Even when the above operation was repeated 50 times or more, the gas passing through the activated carbon layer showed a dew point of −60 ° C. or lower, and S content was not detected in the gas passing through the activated carbon.

[発明の効果] 以上のように本発明方法によればBFGをはじめとするC
O2を15〜40%含有する製鉄所排ガスからCO2を高純度か
つ安価に分離回収することができる。
[Effects of the Invention] As described above, according to the method of the present invention, C including BFG
CO 2 can be separated and recovered with high purity and at low cost from exhaust gas from a steel mill containing 15 to 40% of O 2 .

【図面の簡単な説明】[Brief description of drawings]

第1図(a),(b),(c),(d),(e)は本発
明方法を行なうための構成図例、第2図は等温における
吸脱着平衡分圧と吸脱着量との関係図、第3図はサイク
ルパターンの例を示す図である。 1……吸着塔、2……圧縮機 3……減圧機、4,5……熱交換器
FIGS. 1 (a), (b), (c), (d), and (e) are examples of configuration diagrams for carrying out the method of the present invention, and FIG. 2 shows adsorption / desorption equilibrium partial pressure and adsorption / desorption amount at isothermal conditions. FIG. 3 is a diagram showing an example of a cycle pattern. 1 ... Adsorption tower, 2 ... Compressor 3 ... Decompressor, 4,5 ... Heat exchanger

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】吸着塔を2基以上並列させた圧力スイング
吸着装置に15〜40%のCO2を含有する製鉄所排ガスを導
入してこの排ガス中のCO2を回収するに当たり、吸着塔
内の吸着剤充填構成を (1)上段にゼオライト、中段に活性炭、下段に活性ア
ルミナあるいはシリカゲルのいずれか1種以上とする
か、 (2)上段にゼオライト、下段に活性アルミナあるいは
シリカゲルのいずれか1種以上とし、 湿分およびS分を含有した状態の上記排ガスをCO2分圧1
20mmHg以上でCO2吸着塔内に下から導入した後、該吸着
塔内を大気圧まで減圧して該吸着塔内の死空間に充満し
ている不純ガス成分を排気し、更に700〜100torrに真空
引きして吸着塔内に充満している原料ガス及び吸着剤に
吸着されている不純成分を脱着排気し、その後更に100
〜30torrに真空引きしてCO2を脱着させることにより高
純度のCO2を回収すると共に、吸着塔内に吸着された湿
分およびS分を、前記真空引きを行うと共に他の吸着塔
の吸着サイクルにおける吸着塔通過ガスを上から導入す
ることによって脱着させ、吸着剤を再生するとともにCO
2回収率を向上させることを特徴とする製鉄所排ガスか
らCO2を高純度で分離回収する方法。
1. An adsorption tower in which the exhaust gas from a steel mill containing 15 to 40% of CO 2 is introduced into a pressure swing adsorption device in which two or more adsorption towers are arranged in parallel to collect CO 2 in the exhaust gas. (1) Zeolite in the upper stage, activated carbon in the middle stage, activated alumina or silica gel in the lower stage, or (2) zeolite in the upper stage, activated alumina or silica gel in the lower stage CO 2 partial pressure of the above exhaust gas in a state of containing at least one kind of moisture and S content
After introducing from below into the CO 2 adsorption tower at 20 mmHg or more, the pressure inside the adsorption tower is reduced to atmospheric pressure, and the impure gas component filling the dead space in the adsorption tower is exhausted, and further 700 to 100 torr A vacuum is drawn to desorb and exhaust the raw material gas filled in the adsorption tower and the impure components adsorbed by the adsorbent, and then 100
With the recovery of high purity CO 2 by desorbing evacuation to CO 2 in ~30Torr, moisture and S component adsorbed in the adsorption tower, the other adsorption tower performs the evacuation suction The gas passing through the adsorption tower in the cycle is desorbed by introducing it from above to regenerate the adsorbent and CO
2 A method for separating and recovering CO 2 with high purity from exhaust gas from a steel plant, which is characterized by improving recovery rate.
JP62189825A 1987-07-29 1987-07-29 A method for separating and recovering CO 2 under 2 with high purity from exhaust gas from a steel mill Expired - Fee Related JP2539443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62189825A JP2539443B2 (en) 1987-07-29 1987-07-29 A method for separating and recovering CO 2 under 2 with high purity from exhaust gas from a steel mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62189825A JP2539443B2 (en) 1987-07-29 1987-07-29 A method for separating and recovering CO 2 under 2 with high purity from exhaust gas from a steel mill

Publications (2)

Publication Number Publication Date
JPS6434422A JPS6434422A (en) 1989-02-03
JP2539443B2 true JP2539443B2 (en) 1996-10-02

Family

ID=16247838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62189825A Expired - Fee Related JP2539443B2 (en) 1987-07-29 1987-07-29 A method for separating and recovering CO 2 under 2 with high purity from exhaust gas from a steel mill

Country Status (1)

Country Link
JP (1) JP2539443B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101952011A (en) * 2007-12-12 2011-01-19 Co2Crc技术股份有限公司 A plant and process for recovering carbon dioxide

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2660703B2 (en) * 1987-12-26 1997-10-08 住友精化株式会社 A method for adsorbing, separating and recovering carbon dioxide from mixed gas
US4952223A (en) * 1989-08-21 1990-08-28 The Boc Group, Inc. Method and apparatus of producing carbon dioxide in high yields from low concentration carbon dioxide feeds
KR100324709B1 (en) * 1999-03-19 2002-02-16 이종훈 Pressure Swing Adsorption System for Highly Concentrated Carbon Dioxide Recovery from Power Plant Flue Gas and Recovery Method Using thereof
KR100340764B1 (en) * 2000-06-28 2002-06-20 최양우 Pressure Swing Adsorption System for Carbon Dioxide Recovery using Activated Carbon and Zeolite
KR100377838B1 (en) * 2000-09-01 2003-03-29 이창하 Absorbtion apparatus of pressure circulation
JP6507089B2 (en) * 2015-12-14 2019-04-24 株式会社東芝 Carbon dioxide recovery system
JP2023145852A (en) * 2022-03-29 2023-10-12 三菱重工業株式会社 Carbon dioxide recovery equipment, and carbon dioxide recovery method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627416A (en) * 1985-07-04 1987-01-14 Ngk Insulators Ltd Adsorbing tower

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101952011A (en) * 2007-12-12 2011-01-19 Co2Crc技术股份有限公司 A plant and process for recovering carbon dioxide

Also Published As

Publication number Publication date
JPS6434422A (en) 1989-02-03

Similar Documents

Publication Publication Date Title
CA3017705C (en) Carbon dioxide recovery method and recovery apparatus
CN102083512A (en) Carbon dioxide recovery
JP3416391B2 (en) Pretreatment method and apparatus for air liquefaction separation apparatus
JPS6137968B2 (en)
JP3902416B2 (en) Gas separation method
AU2017234497A1 (en) Method and device for recovering carbon dioxide
JPH04227814A (en) Improved air separation pressure variable adsorption method
JPS60227813A (en) Pressure swing method for adsorptive separation of gaseous mixture
JP5319140B2 (en) Blast furnace gas separation method and blast furnace gas separation system
JPS61222905A (en) Manufacture of oxygen-rich air
WO2010021127A1 (en) Xenon adsorbent, xenon enrichment method, xenon enrichment device, and air liquefaction and separation device
EP3208563A1 (en) Method for argon production via cold pressure swing adsorption
JP2539443B2 (en) A method for separating and recovering CO 2 under 2 with high purity from exhaust gas from a steel mill
CN111036029A (en) Method for recovering waste gas in polycrystalline silicon production process
JPS60176901A (en) Method for concentrating and purifying hydrogen, etc. in mixed gas containing at least hydrogen by using adsorption
CN108557787A (en) A kind of recycling crude argon method of purification again
JPS63107720A (en) Method for separating and removing water content and carbon dioxide gas in air
JPS59116115A (en) Method for recovering carbon monoxide
JPH02283608A (en) Method for separating and recovering carbon monoxide
JP2001335305A (en) Co gas/h2 gas recovery equipment and method for recovering co gas/h2 gas
JPH0351647B2 (en)
JPS6397214A (en) Method for separating and recovering high-purity co2 from co2-containing gas
WO2023140238A1 (en) Method and apparatus for manufacturing purified gas
JPS634824A (en) Impure gas adsorption bed
JPS62121615A (en) Gas separation process

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees