JPS627416A - Adsorbing tower - Google Patents

Adsorbing tower

Info

Publication number
JPS627416A
JPS627416A JP60145692A JP14569285A JPS627416A JP S627416 A JPS627416 A JP S627416A JP 60145692 A JP60145692 A JP 60145692A JP 14569285 A JP14569285 A JP 14569285A JP S627416 A JPS627416 A JP S627416A
Authority
JP
Japan
Prior art keywords
exhaust gas
adsorption
layer
adsorption tower
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60145692A
Other languages
Japanese (ja)
Inventor
Hiroshi Mori
博 森
Yasushi Fujita
藤田 恭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP60145692A priority Critical patent/JPS627416A/en
Publication of JPS627416A publication Critical patent/JPS627416A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To prevent the deterioration of the adsorbing efficiency of CO2, by mounting a moisture absorbing layer comprising activated alumina in the vicinity of an introducing port of exhaust gas containing H2O and CO2 while mounting an adsorbing layer comprising zeolite in the vicinity of the lead-out port of the exhaust gas. CONSTITUTION:Exhaust gas enters an adsorbing tower 1 from an exhaust gas introducing port 2 and H2O is adsorbed and removed by the moisture absorbing layer 4 comprising activated alumina, activated carbon or a silica gel in the upstream side and CO2 is removed by the adsorbing layer 6 comprising zoelite in the downstream side. A freely openable and closable damper 21 and regenerated used gas lead-out ports 22, 23 are provided to the space part between the moisture absorbing layer 4 and the adsorbing layer 6 and, at the time of regeneration, the moisture absorbing layer 4 and the adsorbing layer 6 can be separately regenerated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ガス中に含まれるCO2及びH2Oを効率的
に吸着除去する吸着塔に関するものであり、更に詳しく
は、接触燃焼法による雰囲気ガス製造における燃焼排ガ
ス中よりCO2及びH2Oを除去して、N2を主成分と
する雰囲気ガスを製造するのに特に適した吸着塔に関す
るものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an adsorption tower that efficiently adsorbs and removes CO2 and H2O contained in gas, and more specifically relates to an adsorption tower that efficiently adsorbs and removes CO2 and H2O contained in gas. The present invention relates to an adsorption tower that is particularly suitable for removing CO2 and H2O from combustion exhaust gas during production to produce an atmospheric gas containing N2 as a main component.

(従来の技術) ゼオライト吸着剤は気体の中のCO2,H2Oを効率よ
く除去ケることができ、()かも再生して何度も再使用
できるものであるので工業的用途に広範に使用されてい
る。従来の吸着塔はこのゼオライト吸着剤をその内部に
充填して、ゼオライト充填層を通して燃焼排ガス等を流
すことにより、燃焼排ガス中のCO2及びH2Oを同時
に吸着除去していた。
(Prior art) Zeolite adsorbents can efficiently remove CO2 and H2O from gases, and can be regenerated and reused many times, so they are widely used in industrial applications. ing. Conventional adsorption towers are filled with this zeolite adsorbent, and CO2 and H2O in the combustion exhaust gas are simultaneously adsorbed and removed by flowing the combustion exhaust gas through the zeolite packed bed.

(発明が解決しようとする問題点) しかしながら上述した従来法では、ゼオライト吸着剤に
よりCO2及びHzOを同時に吸着除去ブるため、この
際ビオライトは吸着が容易なHzOを優先的に吸着し、
CO2除去効率が短時間で低下していた。そのため、3
0分間に1回程度の再生処理が必要であると共に、再生
してもまたHzOを選択的に吸着除去してしまうため、
CO2を有効に除去することができない欠点があった。
(Problems to be Solved by the Invention) However, in the conventional method described above, CO2 and HzO are adsorbed and removed at the same time using a zeolite adsorbent.
The CO2 removal efficiency decreased in a short period of time. Therefore, 3
Regeneration processing is required about once every 0 minutes, and even after regeneration, HzO is selectively adsorbed and removed.
There was a drawback that CO2 could not be effectively removed.

本発明の目的は上述した不具合を解消して、吸着剤の寿
命を長くすることができると共に、COzの吸着効率を
悪化させることのない吸着塔を提供しようとするもので
ある。本発明の弛の目的は、吸着剤の再生処理が簡単か
つ確実にできる吸着塔を提供しようとするものである。
An object of the present invention is to provide an adsorption tower that can eliminate the above-mentioned problems and extend the life of the adsorbent without deteriorating the COz adsorption efficiency. It is an object of the present invention to provide an adsorption tower in which regeneration of adsorbent can be performed easily and reliably.

(問題点を解決するための手段) 本発明は、燃焼ガス中に含まれるCO2及びHzOを吸
着除去するための、排ガス導入口と排ガス導出口とを有
する吸着塔において、前記排ガス導入口に近い上流側に
設けた活性アルミナ、活性炭、シリカゲルの少くとも一
種以上よりなる吸湿層と、前記排ガス導出口に近い下流
側に設けたビオライトよりなる吸着層とを具えることを
特徴とするもものである。
(Means for Solving the Problems) The present invention provides an adsorption tower having an exhaust gas inlet and an exhaust gas outlet for adsorbing and removing CO2 and HzO contained in combustion gas. A moisture absorption layer made of at least one of activated alumina, activated carbon, and silica gel provided on the upstream side, and an adsorption layer made of biolite provided on the downstream side near the exhaust gas outlet. be.

なお、上述した吸湿層とゼオライト吸着層との間に空間
部を設は該空間部に再生ガス排出口を設けることが好ま
しく、また、排ガス導入口及び排ガス導出口に再生処理
用の再生ガス吹込管を連結してもよい。もちろん、再生
ガス吹込口を排ガス導入口及び排ガス導出口と異にして
設けてもよい。
In addition, if a space is provided between the moisture absorption layer and the zeolite adsorption layer described above, it is preferable to provide a regeneration gas discharge port in the space, and also to inject regeneration gas for regeneration processing into the exhaust gas inlet and exhaust gas outlet. The tubes may be connected. Of course, the regeneration gas inlet may be provided separately from the exhaust gas inlet and the exhaust gas outlet.

く作用) 上jホした構成において、上流側に設けた吸湿層により
ガス中のHzOを吸着除去した後、HzOの少ないガス
を下流側のゼオライト吸着層に通してCO2を有効に吸
着除去できるのC1ゼオライト吸着剤の寿命す゛なわら
吸着塔の寿命を長くすることができる。また、吸湿層と
吸着層との間の空間に再生ガス排出口を設けた場合は、
再生時に吸湿Nのガス導入側および吸着層のガス排出側
よりそれぞれ乾燥ガスを導入して再生ガス排出口からガ
スを排出すれば、再生ガスが他方の吸着剤又は吸湿剤に
悲影響を及ぼすことがない。
In the configuration described above, after HzO in the gas is adsorbed and removed by the moisture absorption layer provided on the upstream side, CO2 can be effectively adsorbed and removed by passing the gas with less HzO through the zeolite adsorption layer on the downstream side. The life of the C1 zeolite adsorbent, that is, the life of the adsorption tower can be extended. In addition, if a regeneration gas outlet is provided in the space between the moisture absorption layer and the adsorption layer,
During regeneration, if drying gas is introduced from the gas introduction side of the hygroscopic N and the gas discharge side of the adsorption layer and the gas is discharged from the regeneration gas outlet, the regeneration gas will not have a negative effect on the other adsorbent or moisture absorbent. There is no.

(実施例) 第1図は本発明の吸着塔の一実施例を示す線図である。(Example) FIG. 1 is a diagram showing one embodiment of the adsorption tower of the present invention.

本実施例では、吸着塔1として一体構造のものを使用し
、その下部に排ガス導入口2を設けると共に上部には排
ガス導出口3を設けている。
In this embodiment, an adsorption tower 1 having a monolithic structure is used, and an exhaust gas inlet 2 is provided at the lower part of the adsorption tower 1, and an exhaust gas outlet 3 is provided at the upper part.

また吸着塔1内の上流側には、排ガス中のH2O分を吸
着除去するための活性アルミナ、活性炭、シリカゲル等
よりなる吸湿層4をその上下を支持金網5により保持す
ることにより設けている。吸着塔1内の下流側には、ゼ
オライトよりなる吸着16をその上下を支持金網7によ
り保持することにより設けている。なお本実施例では、
吸湿層4と吸着層6との間に空間部8を設けたが、空間
部8がない構造でも同様の効果がある。
Further, on the upstream side of the adsorption tower 1, a moisture absorption layer 4 made of activated alumina, activated carbon, silica gel, etc. for adsorbing and removing the H2O content in the exhaust gas is provided by holding the upper and lower sides of the moisture absorption layer 4 with support wire meshes 5. On the downstream side of the adsorption tower 1, an adsorption member 16 made of zeolite is provided by holding the upper and lower sides of the adsorption member 16 with support wire meshes 7. In this example,
Although the space 8 is provided between the moisture absorbing layer 4 and the adsorption layer 6, a structure without the space 8 can also have the same effect.

第2図は第1図に示す吸着塔を使用して実際のシステム
を構成した一実施例を示す縮図である。
FIG. 2 is a miniature diagram showing an example of an actual system constructed using the adsorption tower shown in FIG. 1.

2塔設けた吸着塔1a、1bの排ガス導入口2a。Exhaust gas inlet 2a of two adsorption towers 1a and 1b.

2bには、それぞれ電磁弁11a 、 11bを介して
原料ガス12を供給する。吸着塔1a又は1bでCO2
及びHzOを吸着除去された原料ガス12は、生成ガス
13として排ガス導出口3a 、3bから電磁弁14a
 、 14bを介して排出される。一方再生時には、吸
着塔の再生用ガス15を加熱器16および電磁弁17a
 、 17bを介して排ガス導出口3a 、 3bに供
給する。吸湿R4および吸着層6を活性化した再生使用
済ガス18は、排ガス導入口2a 、 2b及び電磁弁
19a 、 19bを介しで排出される。上述した実施
例において吸着塔を2塔使用するのは、一方で実際の吸
着操作を行なっている間に他方で再生処理を行なって、
連続して吸着操作を行なえるよう構成するためである。
2b is supplied with raw material gas 12 via electromagnetic valves 11a and 11b, respectively. CO2 in adsorption tower 1a or 1b
The raw material gas 12 from which HzO and HzO have been adsorbed and removed is transferred as a generated gas 13 from the exhaust gas outlet ports 3a and 3b to the electromagnetic valve 14a.
, 14b. On the other hand, during regeneration, the regeneration gas 15 of the adsorption tower is supplied to the heater 16 and the solenoid valve 17a.
, 17b to the exhaust gas outlets 3a, 3b. The regenerated spent gas 18 that has activated the moisture absorption R4 and the adsorption layer 6 is discharged through the exhaust gas inlets 2a, 2b and the electromagnetic valves 19a, 19b. The reason why two adsorption towers are used in the above-mentioned embodiments is that one is performing the actual adsorption operation while the other is performing the regeneration treatment.
This is because the structure is configured so that suction operations can be performed continuously.

第3図は本発明の吸着塔の他の実施例を示ず線図である
。本実施例に33いて、第1図に示す実施例と同一の部
材には同一の番号を付しその説明を省略する。本実施例
で相違する点は、吸湿層4ど吸着層6どの間の空間部8
に開開自在のダンパー21を設けると共に、このダンパ
ー21を挾んで再生使用済ガス導出口22.23を設け
た点である。ここでダンパー21は、吸着操作を行って
いるとぎはぞの」二下にガスが流通するよう開状態とな
る。一方眼湿層4および吸着層6の再生操作を行なって
いるときは閉状態どなり、排ガス導出口3、ゼオライト
吸着M6および再生使用済ガス導出口22を通る流路と
、排ガス導入口2、吸湿層4および再生使用済ガス導出
口23を通る流路とを形成する。
FIG. 3 is a diagram showing another embodiment of the adsorption tower of the present invention. In this embodiment, the same members as those in the embodiment shown in FIG. The difference in this embodiment is that the space 8 between the moisture absorbing layer 4 and the adsorption layer 6 is
A damper 21 which can be opened and opened is provided at the bottom, and recycled spent gas outlet ports 22 and 23 are provided between the damper 21 and the damper 21. Here, the damper 21 is in an open state so that gas can flow under the gap where the adsorption operation is being performed. On the other hand, when the eye moisture layer 4 and the adsorption layer 6 are being regenerated, they are in a closed state, and the flow path passing through the exhaust gas outlet 3, the zeolite adsorption M6, and the recycled spent gas outlet 22, the exhaust gas inlet 2, and the moisture absorption A flow path passing through the layer 4 and the recycled spent gas outlet 23 is formed.

第4図は第3図に示す吸着塔を使用して実際のシステム
を構成した一実施例を示す絵図である。
FIG. 4 is a pictorial diagram showing an example in which an actual system is constructed using the adsorption tower shown in FIG. 3.

本実施例は第2図に示したシステムとほとんど同様のも
のであり、第2図に示したシステムと同一部材には同一
符号を付しその説明を省略する。本実施例で相違する点
は、各吸着塔の再生時にダンパー21a 、 21bを
閉状態として、再生用ガス15を電磁弁17a 、 1
7b 、各排ガス導出口3a 、3bを介してゼオライ
ト吸着層5a 、5bに通して、その再生使用済ガス1
8を再生使用済ガス導出口22a。
This embodiment is almost the same as the system shown in FIG. 2, and the same members as those in the system shown in FIG. The difference in this embodiment is that when regenerating each adsorption tower, the dampers 21a and 21b are closed, and the regeneration gas 15 is supplied to the solenoid valves 17a and 1.
7b, the recycled spent gas 1 is passed through the zeolite adsorption layers 5a, 5b through the respective exhaust gas outlets 3a, 3b.
8 is the recycled spent gas outlet 22a.

22b1電磁弁24a 、 24bを介して排出すると
共にさらに再生用ガス15を電磁弁19a 、 19b
 、各排ガス導入口2a、2bを介して吸湿層4a 、
4bに通して、その再生使用済ガス18を再生使用済ガ
ス導出口23a 、 23b 、電磁弁24a 、 2
4bを介して排出している点である。
22b1 The regeneration gas 15 is discharged through the solenoid valves 24a and 24b, and the regeneration gas 15 is also discharged through the solenoid valves 19a and 19b.
, a moisture absorbing layer 4a through each exhaust gas inlet 2a, 2b,
4b, and the recycled used gas 18 is passed through the recycled used gas outlet ports 23a, 23b, and the electromagnetic valves 24a, 2.
4b.

第5図は本発明の吸着塔を使用して実際のシステムを構
成した他の実施例を示す線図である。本実施例において
、第4図に示すシステムと同一部材には同一符号を付し
その説明を省略する。本実施例では、吸湿層4と吸着層
6とを一体に構成せず別体に構成して、その間を配管し
て本発明の吸着塔を構成している。すなわち、吸着操作
時には原料ガス12を電磁弁11a 、 11b 、排
ガス導入口2a、2bを介して吸湿IW4a 、4bを
有する吸湿層31a 、 31bに供給して820分を
吸着除去した後、排ガス導出口32a 、 32b 、
 iFa弁33a。
FIG. 5 is a diagram showing another embodiment of an actual system using the adsorption tower of the present invention. In this embodiment, the same members as those in the system shown in FIG. 4 are designated by the same reference numerals, and their explanations will be omitted. In this embodiment, the hygroscopic layer 4 and the adsorption layer 6 are not integrally constructed, but are constructed separately, and piping is provided between them to construct the adsorption tower of the present invention. That is, during the adsorption operation, the raw material gas 12 is supplied through the electromagnetic valves 11a, 11b and the exhaust gas inlets 2a, 2b to the moisture absorption layers 31a, 31b having the moisture absorption IWs 4a, 4b, and after 820 minutes is adsorbed and removed, the exhaust gas outlet is removed. 32a, 32b,
iFa valve 33a.

331)を介して排ガス導入口 34a 、 34bよ
りゼオライト吸着層6a 、6bを有するゼオライト吸
着塔35a 、 35bに供給する。ゼオライト吸着塔
35a。
331) and is supplied from exhaust gas inlets 34a, 34b to zeolite adsorption towers 35a, 35b having zeolite adsorption layers 6a, 6b. Zeolite adsorption tower 35a.

35bで002分を吸着除去した精製ガス13は排ガス
導出口3a 、3b 、’R磁弁14a 、 14bを
介して排出する構成をとっている。一方、再生時には、
再生用ガス15を加熱器16で加熱した後、電磁弁36
a 、 36b 、排ガス導出D3a 、 3b ヲ介
シT、−f!オライ1〜吸着塔35a 、 35bに供
給すると共に、電磁弁37a 、 37b 、排ガス導
出口32a 、 32bを介して吸湿層31a 、 3
1bに供給している。吸着層5a。
The purified gas 13 from which 002 minutes have been adsorbed and removed by 35b is discharged through exhaust gas outlet ports 3a, 3b and 'R magnetic valves 14a, 14b. On the other hand, during playback,
After heating the regeneration gas 15 with the heater 16, the solenoid valve 36
a, 36b, exhaust gas derivation D3a, 3b wo-shi T, -f! It is supplied to the adsorption towers 35a, 35b, and is also supplied to the moisture absorption layers 31a, 3 through the electromagnetic valves 37a, 37b and exhaust gas outlets 32a, 32b.
1b. Adsorption layer 5a.

6bおよび吸湿層4a、4bの再生に使用された再生使
用済ガス18は、排ガス導入口34a 、 34bおよ
び電磁弁38a 、 38bを介して排出されると共に
、す1ガス導入口2a、2btjよび電磁弁39a 、
 39bを介して排出される。
The recycled spent gas 18 used for regenerating the moisture absorbing layers 6b and 4a, 4b is discharged through the exhaust gas inlets 34a, 34b and the electromagnetic valves 38a, 38b, and the gas inlets 2a, 2btj and the electromagnetic valve Valve 39a,
39b.

なa3本発明の吸着塔を使用してN2を主成分とする雰
囲気ガスを製造する実際のシステムを構成した第2図、
第4図、第5図において、再生ガス15としては高温の
精製ガスの1部分を使用するのが望ましい。また、加熱
器16に再生用ガス15を通し、加熱した俊これを吸着
層および吸湿層に導入して加熱再生する方法の他に、再
生使用済ガス18を通す配管に真空ポンプを接続し再生
用ガス15を流しながら吸着塔1内を減圧にすることに
より再生する方法も適用可能であり、この場合には加熱
器16が不要となるので省エネルギーの点から好ましい
方法と言える。
Figure 2 shows an actual system for producing atmospheric gas mainly composed of N2 using the adsorption tower of the present invention.
In FIGS. 4 and 5, it is desirable to use a portion of the high temperature purified gas as the regeneration gas 15. In addition to the method of heating and regenerating by passing the regeneration gas 15 through the heater 16 and introducing the heated gas into the adsorption layer and moisture absorption layer, it is also possible to regenerate by connecting a vacuum pump to the piping through which the regenerated spent gas 18 passes. A method of regeneration by reducing the pressure inside the adsorption tower 1 while flowing the gas 15 is also applicable, and in this case, the heater 16 is not required, so it can be said to be a preferable method from the point of view of energy saving.

実施例1 第1図に示す本発明の吸着塔を使用し、第2図に示すガ
ス流路により4voA%H20,12VOぶ%CO2を
含む燃焼排ガス中のN20とCO2を吸着除去した。こ
こで、吸湿層として5メツシユ(約41φ)の粒状シリ
カゲルを40β充填すると共に、吸Isとして6メツシ
ユ(3,21mφ)の球状合成ゼオライト(平均孔径5
人)を60i充填した。この吸着塔に毎時10 N m
”の燃焼排ガスを通し吸着操作を行なった。一方眼湿層
及び吸着層の再生は、吸着処理後の精製ガスのうち10
%容吊を250℃に加熱して、吸着操作時と逆方尚で吸
着塔内に通すことにより行なった。
Example 1 Using the adsorption tower of the present invention shown in FIG. 1, N20 and CO2 in a combustion exhaust gas containing 4 voA% H20, 12 VO% CO2 were adsorbed and removed through the gas flow path shown in FIG. Here, granular silica gel of 5 meshes (approximately 41 mφ) was filled with 40β as a moisture absorption layer, and 6 meshes (3.21 mφ) of spherical synthetic zeolite (average pore diameter 5
60i was filled. 10 Nm per hour to this adsorption tower
The adsorption operation was carried out through the combustion exhaust gas of 100% of the purified gas after the adsorption treatment.
This was carried out by heating the sample to 250° C. and passing it through an adsorption column in the opposite direction to that during the adsorption operation.

N20及びCO2の除去効率ならびに吸着能がなくなる
までの時間すなわち破過時間を測定した結果を第1表に
示す。なお比較例として、従来行われていた様に合成ゼ
オライト1段にして 1ooλ充填した吸着塔による除
去効率ならびに破過時間をも第1表に併わせで示す。
Table 1 shows the results of measuring the removal efficiency of N20 and CO2 as well as the time until the adsorption capacity disappears, that is, the breakthrough time. As a comparative example, Table 1 also shows the removal efficiency and breakthrough time using an adsorption tower packed with 100 λ of synthetic zeolite in one stage, as has been done conventionally.

第1表から明らかなように、本発明の実施例と比較例を
比べると、本発明の実施例の方がCO2及びH2Oの除
去効率も良好で破過時間も長いことがわかる。
As is clear from Table 1, when the Examples of the present invention and the Comparative Examples are compared, it can be seen that the Examples of the present invention have better CO2 and H2O removal efficiency and longer breakthrough time.

実施例2 第3図に示す本発明の吸着塔を使用し、第4図に示すガ
ス流路により4■OJ2%H20,12voβ%GO2
を含む燃焼排ガス中のH2OとCO2を吸着除去した。
Example 2 Using the adsorption tower of the present invention shown in Fig. 3, 4■OJ2%H20,12voβ%GO2 was
H2O and CO2 contained in the combustion exhaust gas were adsorbed and removed.

また、吸湿層及び吸@層は実施例1と同じものを使用し
、同様の吸着操作を行なった。
Further, the same moisture absorption layer and @ absorption layer as in Example 1 were used, and the same adsorption operation was performed.

一方、吸湿層及び吸着)Aの再生は、各層をダンパーに
より隔離した後、吸着処理後の精製ガスのうち10%容
量を250℃に加熱して吸湿層及び吸着層に別々に通し
た。
On the other hand, for regeneration of hygroscopic layer and adsorption) A, each layer was isolated by a damper, and then 10% volume of the purified gas after adsorption treatment was heated to 250° C. and passed through the hygroscopic layer and adsorption layer separately.

H2O及びCO2の除去効率ならびに破過時間を測定し
た結果を第2表に示す。なお実施例1と同様の比較例の
結果も第2表に示す。
The results of measuring H2O and CO2 removal efficiency and breakthrough time are shown in Table 2. Note that the results of comparative examples similar to those of Example 1 are also shown in Table 2.

第2表 第2表からも、本発明の実施例の方がCO2及びH2O
の除去効率も良好で破過時間も長いことがわかる。
Table 2 Table 2 also shows that the embodiment of the present invention has a higher CO2 and H2O
It can be seen that the removal efficiency is good and the breakthrough time is long.

本発明は上述した実施例にのみ限定されるものではなく
、幾多の変形、変更が可能である。例えば上述した実施
例では、吸湿層及び吸着層を支持するのに金網を用いた
が、他の手段例えばパンチングプレート、多孔板等によ
っても好適に保持することができる。また、再生時のガ
ス流通方法も上述した実施例に限定されるものでなく、
吸湿層及び吸着層を通り抜ける構成であればどのような
ものでも良い。
The present invention is not limited only to the embodiments described above, and numerous modifications and changes are possible. For example, in the above-mentioned embodiments, a wire mesh was used to support the moisture absorption layer and the adsorption layer, but they may also be suitably supported by other means such as a punching plate or a perforated plate. Furthermore, the gas distribution method during regeneration is not limited to the above-mentioned embodiments,
Any structure may be used as long as it can pass through the moisture absorption layer and adsorption layer.

(発明の効果) 以上詳細に説明したところから明らかなように、本発明
の吸着塔によれば、ゼオライト吸着層とは別に吸湿層を
設けているため、吸着塔の寿命が長くなると共に吸着効
率特に002分の吸着効率を向上することができる。ま
た、吸湿層及び吸着層の再生処理を簡単かつ確実に実施
することができる。
(Effects of the Invention) As is clear from the above detailed explanation, according to the adsorption tower of the present invention, since the moisture absorption layer is provided separately from the zeolite adsorption layer, the life of the adsorption tower is lengthened and the adsorption efficiency is increased. In particular, the adsorption efficiency for 002 minutes can be improved. Furthermore, the regeneration treatment of the moisture absorbing layer and adsorption layer can be easily and reliably performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の吸着塔の一実施例を示ず線図、第2図
は第1図に示す吸着塔を使用して実際のシステムを構成
した一実施例を示す線図、第3図は本発明の吸着塔の他
の実施例を示す線図、 第4図は第3図に示す吸着塔を使用して実際のシステム
を構成した一実施例を示す線図、第5図は本発明の吸着
塔を使用して実際のシステムを構成した他の実施例を示
す線図である。 1・・・吸着塔     2・・・排ガス導入口3・・
・排ガス導出口   4・・・吸湿層5.1・・・支持
金網  6・・・吸着層8・・・空間部 11、14.17.19.24.33.36.37.3
8.39・・・電磁弁 12・・・原料ガス    13・・・精製ガス15・
・・再生用ガス   16・・・加熱器18・・・再生
使用済ガス 21・・・ダンパー22.23・・・再生
使用済ガス導出口31・・・吸湿基     32・・
・排ガス導出口34・・・排ガス導入口   35・・
・ビオライト吸着塔特許出願人   日本碍子株式会社 ffa、1イb、(4a、f4b、f’la、f’7b
、/’?a、1Qb=tJA#第4図 24a、24b、・−・電磁弁 3fσ、3jb−−−一吸1罎
FIG. 1 is a diagram showing an embodiment of the adsorption tower of the present invention, FIG. 2 is a diagram showing an embodiment of an actual system using the adsorption tower shown in FIG. 1, and FIG. The figure is a line diagram showing another embodiment of the adsorption tower of the present invention, Figure 4 is a line diagram showing an example in which an actual system is configured using the adsorption tower shown in Figure 3, and Figure 5 is a diagram showing an example in which an actual system is constructed using the adsorption tower shown in Figure 3. FIG. 4 is a diagram showing another example in which an actual system is configured using the adsorption tower of the present invention. 1...Adsorption tower 2...Exhaust gas inlet 3...
・Exhaust gas outlet 4...Moisture absorption layer 5.1...Support wire mesh 6...Adsorption layer 8...Space 11, 14.17.19.24.33.36.37.3
8.39... Solenoid valve 12... Source gas 13... Purified gas 15.
... Regeneration gas 16 ... Heater 18 ... Regeneration spent gas 21 ... Damper 22.23 ... Regeneration spent gas outlet 31 ... Moisture absorption base 32 ...
・Exhaust gas outlet 34...Exhaust gas inlet 35...
・Biolite adsorption tower patent applicant Nippon Insulator Co., Ltd. ffa, 1b, (4a, f4b, f'la, f'7b
,/'? a, 1Qb=tJA# Fig. 4 24a, 24b, --- Solenoid valve 3fσ, 3jb --- 1 breath

Claims (1)

【特許請求の範囲】 1、燃焼ガス中に含まれるCO_2及びH_2Oを吸着
除去するための、排ガス導入口と排ガス導出口とを有す
る吸着塔において、前記排ガス導入口に近い上流側に設
けた活性アルミナ、活性炭、シリカゲルの少くとも一種
以上よりなる吸湿層と、前記排ガス導出口に近い下流側
に設けたゼオライトよりなる吸着層とを具えることを特
徴とする吸着塔。 2、前記吸湿層と吸着層との間に空間部を設け、該空間
部に対応する位置に再生ガス排出口を設ける特許請求の
範囲第1項記載の吸着塔。 3、前記排ガス導入口及び排ガス導出口に、再生処理用
の再生ガス吹込管を連結する特許請求の範囲第2項記載
の吸着塔。 4、前記排ガス導入口及び排ガス導出口とは異なる再生
ガス吸込口を前記吸湿層の上流側と前記吸着層の下流側
とに設ける特許請求の範囲第2項記載の吸着塔。
[Scope of Claims] 1. In an adsorption tower having an exhaust gas inlet and an exhaust gas outlet for adsorbing and removing CO_2 and H_2O contained in combustion gas, an active substance is provided on the upstream side near the exhaust gas inlet. An adsorption tower comprising a moisture absorption layer made of at least one of alumina, activated carbon, and silica gel, and an adsorption layer made of zeolite provided on the downstream side near the exhaust gas outlet. 2. The adsorption tower according to claim 1, wherein a space is provided between the moisture absorbing layer and the adsorption layer, and a regeneration gas outlet is provided at a position corresponding to the space. 3. The adsorption tower according to claim 2, wherein a regeneration gas blowing pipe for regeneration processing is connected to the exhaust gas inlet and the exhaust gas outlet. 4. The adsorption tower according to claim 2, wherein a regeneration gas suction port different from the exhaust gas inlet and exhaust gas outlet is provided on the upstream side of the moisture absorption layer and the downstream side of the adsorption layer.
JP60145692A 1985-07-04 1985-07-04 Adsorbing tower Pending JPS627416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60145692A JPS627416A (en) 1985-07-04 1985-07-04 Adsorbing tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60145692A JPS627416A (en) 1985-07-04 1985-07-04 Adsorbing tower

Publications (1)

Publication Number Publication Date
JPS627416A true JPS627416A (en) 1987-01-14

Family

ID=15390891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60145692A Pending JPS627416A (en) 1985-07-04 1985-07-04 Adsorbing tower

Country Status (1)

Country Link
JP (1) JPS627416A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6434422A (en) * 1987-07-29 1989-02-03 Kansai Coke & Chemicals Method for separating and recovering high purity co2 from exhaust gas discharged from ironworks
US5531809A (en) * 1994-09-14 1996-07-02 Air Products And Chemicals, Inc. Pretreatment layer for CO-VSA
US5632807A (en) * 1993-06-03 1997-05-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device for the separation of elements of a gas mixture by adsorption
US5755857A (en) * 1994-11-30 1998-05-26 The Boc Group Plc Purification apparatus
JP2009274007A (en) * 2008-05-14 2009-11-26 Mitsubishi Heavy Ind Ltd Air cleaner and air cleaning method
WO2013145899A1 (en) * 2012-03-26 2013-10-03 株式会社日立製作所 Carbon dioxide recovery system
WO2024047901A1 (en) * 2022-09-01 2024-03-07 三菱重工業株式会社 Carbon dioxide recovery apparatus and carbon dioxide recovery method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158107A (en) * 1979-05-29 1980-12-09 Mitsubishi Electric Corp Oxygen recycling type ozone generating apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158107A (en) * 1979-05-29 1980-12-09 Mitsubishi Electric Corp Oxygen recycling type ozone generating apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6434422A (en) * 1987-07-29 1989-02-03 Kansai Coke & Chemicals Method for separating and recovering high purity co2 from exhaust gas discharged from ironworks
US5632807A (en) * 1993-06-03 1997-05-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device for the separation of elements of a gas mixture by adsorption
US5531809A (en) * 1994-09-14 1996-07-02 Air Products And Chemicals, Inc. Pretreatment layer for CO-VSA
US5755857A (en) * 1994-11-30 1998-05-26 The Boc Group Plc Purification apparatus
JP2009274007A (en) * 2008-05-14 2009-11-26 Mitsubishi Heavy Ind Ltd Air cleaner and air cleaning method
WO2013145899A1 (en) * 2012-03-26 2013-10-03 株式会社日立製作所 Carbon dioxide recovery system
JP2013198868A (en) * 2012-03-26 2013-10-03 Hitachi Ltd Carbon dioxide recovery system
WO2024047901A1 (en) * 2022-09-01 2024-03-07 三菱重工業株式会社 Carbon dioxide recovery apparatus and carbon dioxide recovery method

Similar Documents

Publication Publication Date Title
US7189280B2 (en) Adsorptive separation of gas streams
US3594983A (en) Gas-treating process and system
JPH10323527A (en) Gas purity device and method
JPH04298216A (en) Adsorption method for removing oil vapor from steam-contained feed gas
EP1070531A2 (en) Air separation using monolith adsorbent bed
JPS627416A (en) Adsorbing tower
JP2008212845A (en) Carbon monoxide adsorbent, gas purification method, and gas purifier
JPH1190157A (en) Method and plant for separating air by adsorption
CN111249854A (en) High-humidity industrial waste gas purification device and method
JPS61125421A (en) Thermally regenerative adsorption tower and apparatus for dehumidifying compressed air
JPH02112796A (en) Device for treating radioactive gaseous waste
JPH10194708A (en) Oxygen enricher
JPS61101229A (en) Dehumidification apparatus
JPH05123525A (en) Gas purifying method and apparatus therefor
JP2946608B2 (en) Organic solvent containing gas adsorption / desorption processing equipment
JPH02157016A (en) Dry gas preparation
JP2808641B2 (en) Oxygen enrichment method and oxygen enrichment device
JPH0226610A (en) Dehumidification system for raw gas in separation apparatus by pressure swing adsorption process
JPH04257688A (en) Regenerating method for adsorption tower
JPH0475763B2 (en)
JP4602202B2 (en) Gas processing method and gas processing apparatus
JPH0418654Y2 (en)
JPH0214712A (en) Gas separation device
SU471702A3 (en) Air separation method
JP4249329B2 (en) Purification system