JPS6396949A - Mos constant-voltage circuit - Google Patents

Mos constant-voltage circuit

Info

Publication number
JPS6396949A
JPS6396949A JP61242483A JP24248386A JPS6396949A JP S6396949 A JPS6396949 A JP S6396949A JP 61242483 A JP61242483 A JP 61242483A JP 24248386 A JP24248386 A JP 24248386A JP S6396949 A JPS6396949 A JP S6396949A
Authority
JP
Japan
Prior art keywords
voltage
fet
vth
vout
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61242483A
Other languages
Japanese (ja)
Other versions
JP2763531B2 (en
Inventor
Michihiro Inoue
道弘 井上
Hironori Akamatsu
寛範 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61242483A priority Critical patent/JP2763531B2/en
Publication of JPS6396949A publication Critical patent/JPS6396949A/en
Application granted granted Critical
Publication of JP2763531B2 publication Critical patent/JP2763531B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors

Abstract

PURPOSE:To compensate the dependence of an output voltage on a threshold voltage by a method wherein an electric-current value at the output stage is controlled in such a way that a gate voltage of a P-ch FET at the output stage is controlled by a voltage at an FET circuit for voltage detection, whose characteristic is the same as that of an N-ch FET at the output stage. CONSTITUTION:An MOS FET, whose gate and drain are in common, is used. A P-ch FET 6 is installed at the load part of N stages of N-ch FETs 7-9. In parallel, N+1 or N+n stages of N-ch FETs 2-5 of the identical characteristic are installed, where a load resistor 1 is connected in series; their output is applied to the gate of the FET 6. If a threshold voltage of FETs 7, 8 is Vth, a constant-voltage output Vout is about Vth, and the Vout can be selected by the number of stages of serially connected FETs. In addition, about 4 Vth are generated at the drain of the FET 2. If the Vth is high, a gate-source voltage of the FET 6 is lowered, and an electric current of the FETs 6-9 is reduced, the Vout is lowered. If the Vth is low, the Vout becomes high and it is possible to keep the Vout constant irrespective of the value of the Vth of a device.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はMOSトランジスタで構成した定電圧発生回路
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a constant voltage generating circuit composed of MOS transistors.

従来の技術 ダイナミックメモリー等のダウンコンバータ等に用いら
れる定電圧発生回路では、ゲートとドレインを共通にし
たMOSトランジスタ数ケと負荷抵抗を直列に接続して
目的の電圧を発生する方法がよく用られる。ゲートとド
レインを共通にしたMOS)う/ジスタの動作は飽和領
域であるから、特性は β i== −(v  −V  )2   ・・・・・・・
・・・・・(1) GS T で表わされ、この式から出力電圧は となる。したがってβが充分大きなトランジスタで構成
すれば、 v0= VT       ・・・・・−・・・・・・
(3)となり、nヶ直列にした場合は Vo =nV7      ・・・・・・・・・・・・
(4となってVTに依存した定電圧を発生することが可
能である。
Conventional technology In constant voltage generation circuits used in down converters such as dynamic memories, a method is often used in which several MOS transistors with a common gate and drain are connected in series with a load resistor to generate the desired voltage. . Since the operation of a MOS transistor with a common gate and drain is in the saturation region, the characteristics are β i== −(v −V )2 .
...(1) It is expressed as GST, and from this formula, the output voltage becomes. Therefore, if the transistor is constructed with a sufficiently large β, v0=VT ・・・・・・−・・・・・・
(3), and when n units are connected in series, Vo = nV7 ・・・・・・・・・・・・
(It is possible to generate a constant voltage depending on VT.

但し、vTはMOSトランジスタのしきい値電圧、■は
ドレイン・ノース間の電流、vGs はゲート・ソース
間電圧である。
Here, vT is the threshold voltage of the MOS transistor, ■ is the current between the drain and north, and vGs is the voltage between the gate and source.

発明が解決しようとする問題点 一方、MOSトランジスタのしきい値電圧vTは製造の
際、ロフト間、ウェーハ間、チップ間で大巾にばらつく
ことがあり、n段構成するとn倍にばらつきも大きくな
り、定電圧回路の出力のばらつきが数10mV〜100
mV  にもなってしまうという問題点がある。
Problems to be Solved by the Invention On the other hand, during manufacturing, the threshold voltage vT of a MOS transistor can vary widely between lofts, between wafers, and between chips, and when configured with n stages, the variation is n times larger. Therefore, the variation in the output of the constant voltage circuit is several tens of mV to 100 mV.
There is a problem in that it becomes even mV.

本発明はかかる点に鑑みてなされたもので、簡単な構成
で、MOSトランジスタのしきい値電圧依存性の少ない
MO8形定電圧回路を提供するものである。
The present invention has been made in view of these points, and it is an object of the present invention to provide an MO8 type voltage regulating circuit that has a simple configuration and is less dependent on the threshold voltage of a MOS transistor.

問題点を解決するための手段 本発明は上記問題を解決するため、定電圧を発生するた
めのN段直列のゲート・ドレインを共通にしたnチャネ
ルMO3トランジスタの負荷としてpチャネルMOSト
ランジスタを設け、さらにその直列回路と並列にN+1
段もしくはN + n段のゲート・ドレインを共通にし
た前記nチャネルトランジスタと同一のトランジスタお
よび負荷抵抗を直列接続し、その出力を前記pチャネル
トランジスタのゲートに印加して、出力段のnチャネル
トランジスタのしきい値電圧のばらつきによる、出力電
圧のばらつきを補正するものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a p-channel MOS transistor as a load for N-channel MO3 transistors connected in series with a common gate and drain for generating a constant voltage. Furthermore, N+1 in parallel with that series circuit
A transistor that is the same as the n-channel transistor having a common gate and drain in the N+n stage and a load resistor is connected in series, and its output is applied to the gate of the p-channel transistor, so that the n-channel transistor in the output stage is This is to correct variations in output voltage due to variations in threshold voltage.

作  用 本発明は上記した構成により、出力段のnチャンネルト
ランジスタと同一特性の電圧検出用のトランジスタ回路
の電圧によって出力段の負荷であるpチャネルトランジ
スタのゲート電圧を制御し、出力段の電流値を制御する
ことによって出力電圧からしきい値電圧依存性を補正す
ることができる。
According to the above-described configuration, the present invention controls the gate voltage of the p-channel transistor, which is the load of the output stage, by the voltage of the voltage detection transistor circuit having the same characteristics as the n-channel transistor of the output stage, and adjusts the current value of the output stage. By controlling the output voltage, it is possible to correct the threshold voltage dependence from the output voltage.

実施例 以下に本発明の一実施例について図面とともに説明する
。図は本発明の定電圧回路の一実施例を示す回路図であ
る。図において、1は負荷抵抗、2.3,4.5はnチ
ャネルMOSトランジスタ、6はpチャネルMOSトラ
ンジスタ、7,8.9は2〜6と同様の特性を有するn
チャネルMOSトランジスタである。この回路において
定電圧出力Voutはnチャネルトランジスタ7.8.
9のしきい値電圧がvTn とすると(4)式からおよ
そ3vTn となる。したがって、このように直列に設
けたMOS トランジスタの段数によってVoutを適
宜選択することができる。一方トランジスタ2のドレイ
ンには同様にほぼ4vTn の電圧が出る。今、この回
路を同一チップ内に集積し、各nチャネルトランジスタ
のしきい値電圧vTnが同一であるとすれば、vTnが
高い時はpチャネルトランジスタのゲート・ソース間電
圧が低く、そのためにトランジスタ6.7,8.9を流
れる電流が下がりVoutが若干低くなる。vTnが低
い時はこの逆でVoutは1〜6の補正回路が無い時に
比べて若干高くなる。つまり、本回路によれば、nチャ
ネルMOSトランジスタのしきい値電圧vTnの高低に
かかわらず一定の出力電圧Voutを保つことができる
EXAMPLE An example of the present invention will be described below with reference to the drawings. The figure is a circuit diagram showing an embodiment of the constant voltage circuit of the present invention. In the figure, 1 is a load resistance, 2.3 and 4.5 are n-channel MOS transistors, 6 is a p-channel MOS transistor, and 7 and 8.9 are n-channel MOS transistors having the same characteristics as 2 to 6.
This is a channel MOS transistor. In this circuit, the constant voltage output Vout is the n-channel transistor 7.8.
If the threshold voltage of 9 is vTn, it becomes approximately 3vTn from equation (4). Therefore, Vout can be appropriately selected depending on the number of stages of MOS transistors arranged in series in this manner. On the other hand, a voltage of approximately 4vTn similarly appears at the drain of transistor 2. Now, if this circuit is integrated on the same chip and the threshold voltage vTn of each n-channel transistor is the same, when vTn is high, the gate-source voltage of the p-channel transistor is low, and therefore the transistor The current flowing through 6.7 and 8.9 decreases, and Vout becomes slightly lower. When vTn is low, the opposite is true, and Vout becomes slightly higher than when there are no correction circuits 1 to 6. In other words, according to this circuit, a constant output voltage Vout can be maintained regardless of the level of the threshold voltage vTn of the n-channel MOS transistor.

なお本実施例では出力段のnチャネルMOSトランジス
タを3段構成にし、しきい値検出段を4段構成にしたが
、トランジスタの数は任意に設定することができる。ま
たpチャネルとnチャネルトランジスタを入れ換えて構
成することも可能である。
In this embodiment, the n-channel MOS transistors in the output stage are configured in three stages, and the threshold value detection stage is configured in four stages, but the number of transistors can be set arbitrarily. It is also possible to configure the device by replacing the p-channel and n-channel transistors.

発明の効果 以上述べてきたように、本発明によれば、きわめて簡単
な回路で、しきい値電圧依存性の少ない、MO3定電圧
回路を構成することができ、ダイナミックメモリー等の
LSIのダウンコンバータ等にきわめて有用である。
Effects of the Invention As described above, according to the present invention, it is possible to configure an MO3 constant voltage circuit with a very simple circuit and less dependence on threshold voltage, and it can be used as a down converter for LSI such as dynamic memory. It is extremely useful for

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例におけるMO3定電圧回路を示す
回路図である。 2.3,4.es、7,8.9・・・・・・nチャネル
MOSトランジスタ、6・・・・・・pチャネルMOS
トランジスタ。
The figure is a circuit diagram showing an MO3 constant voltage circuit in one embodiment of the present invention. 2.3,4. es, 7, 8.9...n channel MOS transistor, 6...p channel MOS
transistor.

Claims (1)

【特許請求の範囲】[Claims] ゲートとドレインを共通にした1個の、もしくは複数個
直列に接続した第1導電形のMOSトランジスタと、前
記MOSトランジスタと直列に設けた第2導電形のMO
Sトランジスタと、前記第1導電形のMOSトランジス
タと同一の特性を有するゲートとドレインを共通にした
MOSトランジスタ列と、前記MOSトランジスタ列と
直列に設け、かつその接続点を前記第2導電形のMOS
トランジスタのゲートに接続する抵抗とを有してなるM
OS定電圧回路。
One or more MOS transistors of a first conductivity type connected in series, each having a common gate and drain, and an MOS transistor of a second conductivity type provided in series with the MOS transistor.
an S transistor, a MOS transistor array having a common gate and drain having the same characteristics as the MOS transistor of the first conductivity type, and a MOS transistor array provided in series with the MOS transistor array, and a connecting point thereof is of the second conductivity type. M.O.S.
and a resistor connected to the gate of the transistor.
OS constant voltage circuit.
JP61242483A 1986-10-13 1986-10-13 MOS constant voltage circuit Expired - Lifetime JP2763531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61242483A JP2763531B2 (en) 1986-10-13 1986-10-13 MOS constant voltage circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61242483A JP2763531B2 (en) 1986-10-13 1986-10-13 MOS constant voltage circuit

Publications (2)

Publication Number Publication Date
JPS6396949A true JPS6396949A (en) 1988-04-27
JP2763531B2 JP2763531B2 (en) 1998-06-11

Family

ID=17089758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61242483A Expired - Lifetime JP2763531B2 (en) 1986-10-13 1986-10-13 MOS constant voltage circuit

Country Status (1)

Country Link
JP (1) JP2763531B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103235631B (en) * 2013-04-15 2015-07-08 无锡普雅半导体有限公司 Voltage stabilizer circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188255A (en) * 1986-02-13 1987-08-17 Toshiba Corp Reference voltage generating circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188255A (en) * 1986-02-13 1987-08-17 Toshiba Corp Reference voltage generating circuit

Also Published As

Publication number Publication date
JP2763531B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
JPH0793006B2 (en) Internal power supply voltage generation circuit
JPS63502858A (en) CMOS voltage converter
US6448811B1 (en) Integrated circuit current reference
JPS6240756A (en) Semiconductor device
JPH08335122A (en) Semiconductor device for reference voltage
US4158804A (en) MOSFET Reference voltage circuit
US4532467A (en) CMOS Circuits with parameter adapted voltage regulator
KR0126911B1 (en) Circuit and method for voltage reference generating
EP0112443A1 (en) Reference voltage generating circuit
US6229382B1 (en) MOS semiconductor integrated circuit having a current mirror
US4068140A (en) MOS source follower circuit
JPH07113862B2 (en) Reference voltage generation circuit
JPS6396949A (en) Mos constant-voltage circuit
US8222952B2 (en) Semiconductor device having a complementary field effect transistor
KR100607164B1 (en) Reference voltage generation circuit
GB2265478A (en) Reference voltage generating circuit
JPH0634676A (en) Power supply voltage detection circuit and semiconductor integrated circuit provided with the circuit
JP2748478B2 (en) Constant voltage generator
JPH0210917A (en) Threshold voltage generator of mos transistor
JPH01108622A (en) Current control circuit
JP3147042B2 (en) Semiconductor integrated circuit
JPH02148907A (en) Hysteresis circuit
SU1439558A1 (en) D.c. voltage stabilizer
JP2748477B2 (en) Constant voltage generator
JP2748476B2 (en) Constant voltage generator