JPS6396928A - Vapor deposition apparatus - Google Patents

Vapor deposition apparatus

Info

Publication number
JPS6396928A
JPS6396928A JP24283286A JP24283286A JPS6396928A JP S6396928 A JPS6396928 A JP S6396928A JP 24283286 A JP24283286 A JP 24283286A JP 24283286 A JP24283286 A JP 24283286A JP S6396928 A JPS6396928 A JP S6396928A
Authority
JP
Japan
Prior art keywords
crucible
evaporation
cooling pipe
vapor deposition
liquid nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24283286A
Other languages
Japanese (ja)
Inventor
Satoshi Tanda
聡 丹田
Takashi Nire
孝 楡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP24283286A priority Critical patent/JPS6396928A/en
Publication of JPS6396928A publication Critical patent/JPS6396928A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To limit the amount of evaporation with good controllability even when a material with high vapor-pressure is used as an evaporating source in such a way that a cooling means using liquid nitrogen is installed around at least one crucible at a multiple evaporation apparatus. CONSTITUTION:A first crucible 2 and a second crucible 3 are installed inside a vacuum tank 1; a substrate 4 is arranged at the position facing the crucibles. A heater 21 is wound around the crucible 2; Zn is contained inside this crucible. A heater 31 is wound around the crucible 3; a cooling pipe 32 is installed at the outer circumference of the crucible. S is contained inside the crucible 3. With this setup the tank 1 is evacuated to produce a vacuum; the crucibles 2 and 3 are heated while the temperature is controlled independently of each other so that the amount of evaporation for each crucible can be controlled. As a result, it is possible to obtain a good epitaxial growth layer or a pillar- shaped polycrystal. Because liquid nitrogen is fed to the cooling pipe 32 according to the need and is discharged from the cooling pipe 32, it is possible to cool the crucible easily, with good controllability and uniformly.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、複数個のNR源を用いた多元蒸着装置に係り
、特に蒸発源の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a multi-component evaporation apparatus using a plurality of NR sources, and particularly to the structure of the evaporation source.

〔従来技術およびその問題点) 分子線エピタキシーは、10” Torr程度モの超高
真空装置内で分子線として基板に当ててエピタキシャル
成長させる方法であり、通常、分子線の供給源として第
2図に示す如く複数のルツボを使用し各ルツボの温度を
夫々独立的にコントロールするようにしている。
[Prior art and its problems] Molecular beam epitaxy is a method of epitaxial growth by applying molecular beams to a substrate in an ultra-high vacuum apparatus of approximately 10” Torr. As shown, a plurality of crucibles are used and the temperature of each crucible is controlled independently.

ところで、分子線の供給を少なくしたい場合は窒素シュ
ラウドなどの間接的な輻射による冷却、熱伝導による冷
却等が用いられている。
By the way, when it is desired to reduce the supply of molecular beams, cooling by indirect radiation such as a nitrogen shroud, cooling by heat conduction, etc. are used.

しかしながら、イオウ(S)等の蒸気圧の高い物質はM
BEB置等の高真空(10°” Torr)下では常温
でも蒸発を続けるため、制御性が悪いという問題があっ
た。
However, substances with high vapor pressure such as sulfur (S)
Under high vacuum (10°'' Torr) such as in BEB, evaporation continues even at room temperature, resulting in a problem of poor controllability.

本発明は前記実情に鑑みてなされたもので、多元蒸着装
置において、蒸発量の制御性を高め、結品性の良好な蒸
着膜を形成することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to improve the controllability of the amount of evaporation and form a deposited film with good crystallization properties in a multi-component vapor deposition apparatus.

〔問題を解決するための手段〕[Means to solve the problem]

そこで本発明では、蒸発源を収容するルツボのうち少な
くとも1つが液体窒素を充填可能な冷却管で覆われるよ
うにしている。
Therefore, in the present invention, at least one of the crucibles that accommodate the evaporation sources is covered with a cooling pipe that can be filled with liquid nitrogen.

(作用〕 この方法では、ルツボの囲りを均一に冷却することがで
き、しかも液体窒素の昇華温度近くまで冷却できるため
、イオウのように蒸発し易い物質の蒸発を高真空下でも
、防止することができ、制御性良く所望の蒸着膜を得る
ことができる。
(Function) This method allows the area around the crucible to be cooled uniformly, and can be cooled to near the sublimation temperature of liquid nitrogen, thus preventing the evaporation of substances that easily evaporate, such as sulfur, even under high vacuum. It is possible to obtain a desired deposited film with good controllability.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照しつつ詳細に
説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図(a)は、本発明実施例の多元蒸着装置の構造を
示す図である。
FIG. 1(a) is a diagram showing the structure of a multi-component vapor deposition apparatus according to an embodiment of the present invention.

この多元蒸着装置は、多元蒸着法により硫化亜鉛(Zn
S)層を形成するためのもので真空槽1内に、第1のル
ツボ2、第2のルツボ3が配設されてなり、これに対向
する位置に基板4が配設される。
This multi-component vapor deposition equipment uses a multi-component vapor deposition method to produce zinc sulfide (Zn).
S) For forming a layer, a first crucible 2 and a second crucible 3 are arranged in a vacuum chamber 1, and a substrate 4 is arranged at a position facing them.

そして、第1図(b)に、部分拡大図を示すように第1
のルツボ2の周囲には第1のヒータ21が巻回されてお
り、亜鉛(Zn)が収容されている。
Then, as shown in FIG. 1(b), the first
A first heater 21 is wound around the crucible 2 and contains zinc (Zn).

また、第2のルツボ3の周囲にも第2のヒータ31が巻
回されると共に、その外側が冷却管32となっており、
上方の充填口33および下方の排出口34によって液体
窒素の供給および排出が自在である。この中にはイオウ
(S)が収容される。
Further, a second heater 31 is also wound around the second crucible 3, and the outside thereof is a cooling pipe 32.
Liquid nitrogen can be freely supplied and discharged through an upper filling port 33 and a lower discharge port 34. This contains sulfur (S).

また、これら第1および第2のルツボ2,3の蒸発口の
近傍には夫々、開閉自在のシャッタ5が配設されている
Furthermore, shutters 5 that can be opened and closed are provided near the evaporation ports of the first and second crucibles 2 and 3, respectively.

更に、真空槽1は真空ポンプ6により所望の真空度とな
るように真空排気されるがイオウガスが真空ポンプに流
入するのを防止すべく、銅ゲッタポンプ6[7を介して
真空ポンプ6に接続されている。
Further, the vacuum chamber 1 is evacuated to a desired degree of vacuum by a vacuum pump 6, but is connected to the vacuum pump 6 via a copper getter pump 6 [7] to prevent sulfur gas from flowing into the vacuum pump. ing.

この銅ゲッタポンプ装置117内には、第1図(C)に
示す如く、受皿70内にT字状に成型せしめられた3枚
の銅板71(第1図(d))が立てられており、これら
の間には上方からヒータ72がつり下げられている。
Inside this copper getter pump device 117, as shown in FIG. 1(C), three copper plates 71 (FIG. 1(d)) formed into a T-shape are placed in a saucer 70. A heater 72 is suspended between these from above.

このような装置では、通常、10”3〜1o−11程度
の真空度となるように真空槽1を真空排気し、第1およ
び第2のルツボを夫々独立的に温度制御しつつ加熱し、
基板4に成膜されるZnS層が化学量論的組成となるよ
うに夫々の蒸発量を制御することにより、良好なエピタ
キシャル成長膜あるいは柱状多結晶を青ることができる
In such an apparatus, the vacuum chamber 1 is usually evacuated to a degree of vacuum of about 10"3 to 1o-11, and the first and second crucibles are heated while independently controlling the temperature,
By controlling the amount of evaporation so that the ZnS layer formed on the substrate 4 has a stoichiometric composition, a good epitaxially grown film or columnar polycrystal can be obtained.

ここで液体窒素は必要に応じて充填口33から供給され
、排出口34に排出されるため、極めて容易に制御性良
くかつ均一な冷却を行なうことができる。
Here, liquid nitrogen is supplied from the filling port 33 as needed and discharged to the discharge port 34, so that uniform cooling can be extremely easily performed with good controllability.

また、銅ゲッタポンプ装置を配設しているためイオウガ
スが流入しても、銅板71と反応し硫化銅(Cub)と
なって付着し、真空ポンプ6にはイオウガスは到達しな
い。従って真空ポンプの性能劣化を防止することができ
る。ここで、ヒータ72は、この銅板71とイオウガス
との反応を促進させる。また、生成された硫化銅は、常
温、乾燥雰囲気中では安定であり、再蒸発や分解の恐れ
はない。更にまた、硫化銅の付着した銅板は、受は皿ご
ととり出してとり替えればよく、取扱いが極めて簡単で
ある。
Further, since a copper getter pump device is provided, even if sulfur gas flows in, it reacts with the copper plate 71 and becomes copper sulfide (Cub) and adheres thereto, and the sulfur gas does not reach the vacuum pump 6. Therefore, performance deterioration of the vacuum pump can be prevented. Here, the heater 72 promotes the reaction between the copper plate 71 and the sulfur gas. Furthermore, the produced copper sulfide is stable at room temperature and in a dry atmosphere, and there is no fear of re-evaporation or decomposition. Furthermore, the copper plate to which copper sulfide has adhered is extremely easy to handle, as it is only necessary to take out the tray and replace it.

なお、実施例では、イオウの蒸気圧制御に冷却管を用い
たが、イオウのみならずカドミウム(Cd)、セレン(
Se)、ルビジウム(Rb)等の蒸気圧の高いものなら
何でも適用可能である。
In the example, a cooling pipe was used to control the vapor pressure of sulfur, but not only sulfur but also cadmium (Cd), selenium (
Any material having a high vapor pressure such as Se) or rubidium (Rb) can be used.

また、ここでは2つのルツボを用いたが2つに限定され
るものではない。
Furthermore, although two crucibles are used here, the crucibles are not limited to two.

また、冷却管の構造についても、実施例に限定されるこ
となく適宜変更可能であることはいうまでもない。
Furthermore, it goes without saying that the structure of the cooling pipe is not limited to the embodiment and can be modified as appropriate.

加えて、本発明は、分子線エピタキシー(MBE)法の
みならず、多数個の蒸発源を用いるいわゆる多元蒸着(
MSD)法であれば適用可能である。
In addition, the present invention is applicable not only to molecular beam epitaxy (MBE), but also to so-called multidimensional evaporation (MBE), which uses multiple evaporation sources.
MSD) method is applicable.

〔発明の効果〕〔Effect of the invention〕

以上説明してきたように、本発明では、複数の蒸発源を
用い独立的に温度制御するようにした多元蒸着装置にお
いて、少なくとも1つのルツボの周囲に液体窒素を用い
た冷却手段を配設しているため、蒸気圧の高い材料を蒸
発源として用いる場合にも極めて、制御性良く、蒸発量
を制御し、結晶性の高いWI膜を形成することができる
As explained above, in the present invention, in a multi-source evaporation apparatus in which temperature is controlled independently using a plurality of evaporation sources, cooling means using liquid nitrogen is provided around at least one crucible. Therefore, even when a material with high vapor pressure is used as an evaporation source, the amount of evaporation can be controlled with excellent controllability, and a highly crystalline WI film can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図<a)乃至(d)は、本発明実施例の多元蒸着装
置を示す図、第2図は、通常の多元蒸着装置を示す図で
ある。 1・・・真空槽、2・・・第1のルツボ、3・・・第2
のルツボ、21・・・第1のヒータ、31・・・第2の
ヒータ、32・・・冷却管、33・・・充填口、34・
・・排出口、4・・・基板、5・・・シャッタ、6・・
・真空ポンプ、7・・・銅ゲッタポンプ、70・・・受
皿、71・・・銅板、72・・・ヒータ。 第1図(α) 第1図(d)
FIGS. 1A to 1D are diagrams showing a multi-component vapor deposition apparatus according to an embodiment of the present invention, and FIG. 2 is a diagram showing a normal multi-component vapor deposition apparatus. 1... Vacuum chamber, 2... First crucible, 3... Second
crucible, 21... first heater, 31... second heater, 32... cooling pipe, 33... filling port, 34...
...Discharge port, 4... Board, 5... Shutter, 6...
・Vacuum pump, 7...Copper getter pump, 70...Saucer, 71...Copper plate, 72...Heater. Figure 1 (α) Figure 1 (d)

Claims (2)

【特許請求の範囲】[Claims] (1)真空容器と真空容器内に配設された複数の蒸発源
と、 真空容器内を排気する真空排気手段とを具え、これらの
蒸発量を独立的にコントロールするようにした蒸着装置
において、 前記蒸発源を収容するルツボのうち少なくとも1つが液
体窒素を充填した冷却管で覆われており、この冷却管は
液体窒素の出し入れが自在であり、ルツボを室温よりも
低い温度に保持することができるようにしたことを特徴
とする蒸着装置。
(1) A vapor deposition apparatus comprising a vacuum container, a plurality of evaporation sources disposed in the vacuum container, and a vacuum evacuation means for evacuating the inside of the vacuum container, and in which the amount of evaporation of these is independently controlled, At least one of the crucibles accommodating the evaporation source is covered with a cooling pipe filled with liquid nitrogen, and the cooling pipe can freely take in and out the liquid nitrogen, and can maintain the crucible at a temperature lower than room temperature. A vapor deposition apparatus characterized by being able to perform.
(2)前記真空排気手段は、真空容器との接続部にゲッ
タ空間を具え、該ゲッタ空間内に銅板を配設し、イオウ
を捕獲するようにしたことを特徴とする特許請求の範囲
第(1)項記載の蒸着装置。
(2) The evacuation means includes a getter space at the connection part with the vacuum container, and a copper plate is disposed in the getter space to capture sulfur. The vapor deposition apparatus described in item 1).
JP24283286A 1986-10-13 1986-10-13 Vapor deposition apparatus Pending JPS6396928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24283286A JPS6396928A (en) 1986-10-13 1986-10-13 Vapor deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24283286A JPS6396928A (en) 1986-10-13 1986-10-13 Vapor deposition apparatus

Publications (1)

Publication Number Publication Date
JPS6396928A true JPS6396928A (en) 1988-04-27

Family

ID=17094953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24283286A Pending JPS6396928A (en) 1986-10-13 1986-10-13 Vapor deposition apparatus

Country Status (1)

Country Link
JP (1) JPS6396928A (en)

Similar Documents

Publication Publication Date Title
US4239955A (en) Effusion cells for molecular beam epitaxy apparatus
US4181544A (en) Molecular beam method for processing a plurality of substrates
US4137865A (en) Molecular beam apparatus for processing a plurality of substrates
JP3754380B2 (en) Molecular beam source cell for thin film deposition and thin film deposition method
JPS6396928A (en) Vapor deposition apparatus
JP2719283B2 (en) Knudsen cell for low temperature
Salvato et al. Superconducting and structural properties of BSCCO thin films by molecular beam epitaxy
JP2719281B2 (en) Knudsen cell for low temperature
JPS6272113A (en) Molecular beam crystal growth device
JPH0831741A (en) K cell type evaporation source
JP2550870B2 (en) Method for controlling composition and doping concentration in mercury cadmium telluride molecular beam epitaxial growth
JPS61260622A (en) Growth for gaas single crystal thin film
JPH01305894A (en) Thin film crystal growth device and growth method
JPH0516399B2 (en)
JPH02293391A (en) Method for hot-wall epitaxial growth
JPH0325401Y2 (en)
JPH03183762A (en) Vacuum vapor deposition device
JPS62115820A (en) Molecular beam crystal growth device
JPH0234594A (en) Epitaxial vapor growth method
JPS61251591A (en) Production of compound semiconductor crystal
JPH0550479B2 (en)
JPH0334534A (en) Manufacture of phosphorus-doped ii-vi compound semiconductor
JPS61251022A (en) Liquid epitaxial growth process of compound semiconductor and equipment therefor
JPH05311400A (en) Method and device for forming hgcdte thin film
JP2004143553A (en) Capping melt thin film formation method and method for forming mgb2 superconducting thin film using the method