JPH0325401Y2 - - Google Patents

Info

Publication number
JPH0325401Y2
JPH0325401Y2 JP1985121691U JP12169185U JPH0325401Y2 JP H0325401 Y2 JPH0325401 Y2 JP H0325401Y2 JP 1985121691 U JP1985121691 U JP 1985121691U JP 12169185 U JP12169185 U JP 12169185U JP H0325401 Y2 JPH0325401 Y2 JP H0325401Y2
Authority
JP
Japan
Prior art keywords
shutter
molecular beam
film
view
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985121691U
Other languages
Japanese (ja)
Other versions
JPS6230333U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985121691U priority Critical patent/JPH0325401Y2/ja
Publication of JPS6230333U publication Critical patent/JPS6230333U/ja
Application granted granted Critical
Publication of JPH0325401Y2 publication Critical patent/JPH0325401Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔概要〕 分子線結晶成長装置において、 分子線源用シヤツタを金属板が空間を設けて重
ね合わせられた構造にすることにより、 該シヤツタにおける成長膜形成基板に対向する
面からの不純物ガスの放出やドーパントなどの再
蒸発を低減させ、成長膜の純度が向上するように
したものである。
[Detailed description of the invention] [Summary] In a molecular beam crystal growth apparatus, the shutter for the molecular beam source has a structure in which metal plates are stacked with a space provided so that the shutter faces the growth film forming substrate in the shutter. This improves the purity of the grown film by reducing the release of impurity gas from the surface and the re-evaporation of dopants.

〔産業上の利用分野〕[Industrial application field]

本考案は分子線結晶成長装置に係り、特にその
分子線源用シヤツタの改良に関す。
The present invention relates to a molecular beam crystal growth apparatus, and particularly to an improvement of the shutter for the molecular beam source.

分子線結晶成長(MBE)装置は、基板上に形
成する成長膜に対して例えば10Å程度の膜厚制御
が可能であり、然も多層構成の膜成長を連続して
行うことが出来ると言う際立つた特徴を有するた
め、近年、半導体素子の形成に使用される化合物
半導体の結晶成長に賞用されるようになつてき
た。
Molecular beam crystal growth (MBE) equipment is unique in that it is possible to control the thickness of the grown film formed on the substrate by, for example, about 10 Å, and it is also possible to continuously grow multilayered films. Because of these characteristics, in recent years it has come to be used for crystal growth of compound semiconductors used in the formation of semiconductor devices.

そして、成長膜に不要な不純物が混入するのを
極力低減させることが望まれている。
It is also desired to reduce as much as possible the mixing of unnecessary impurities into the grown film.

〔従来の技術〕[Conventional technology]

第3図は従来のMBE装置の要部構成を示す平
面図である。
FIG. 3 is a plan view showing the main part configuration of a conventional MBE device.

同図において、1は超高真空にするチヤンバ、
2は複数個あり成長膜を構成する異なつた原料元
素をそれぞれに入れ加熱してその分子線を放射さ
せる分子線セル、3は各セル2の放射口直前に配
設された分子線源用シヤツタ、4は上記原料の温
度を監視する熱電対、5はセル2の周囲で熱遮断
をするシユラウドである。
In the same figure, 1 is a chamber for ultra-high vacuum;
2 is a molecular beam cell, which has a plurality of cells, in which different raw material elements constituting a grown film are heated and emitted from the molecular beam; 3 is a molecular beam source shutter placed just before the radiation port of each cell 2; , 4 is a thermocouple that monitors the temperature of the raw material, and 5 is a shroud that blocks heat around the cell 2.

結晶成長は、チヤンバ1内のセル2の放射口に
対向する位置に基板Sを配置し、シヤツタ3を選
択開閉して開れたセル2からの分子線を基板Sに
照射して行う。この際閉じられたシヤツタ3はセ
ル2からの分子線を遮断している。即ち例えばノ
ンドープのガリウム砒素(GaAs)を成長させる
際にはガリウム(Ga)と砒素(As)のそれぞれ
を放射する二つのセル2のシヤツタ3を開き、錫
(Sn)をドーパントにしたn型GaAsを成長させ
る際には上記二つのセル2にSnを放射するセル
2を加えた三つのセル2のシヤツタ3を開いて行
う。
Crystal growth is performed by arranging the substrate S at a position facing the radiation opening of the cell 2 in the chamber 1, selectively opening and closing the shutter 3, and irradiating the substrate S with the molecular beam from the opened cell 2. At this time, the closed shutter 3 blocks the molecular beam from the cell 2. That is, for example, when growing non-doped gallium arsenide (GaAs), the shutters 3 of the two cells 2 that emit gallium (Ga) and arsenic (As) are opened, and n-type GaAs with tin (Sn) as a dopant is grown. When growing, the shutters 3 of three cells 2, which are the two cells 2 mentioned above plus the cell 2 that emits Sn, are opened.

このように使用される分子線源用シヤツタ3
は、第4図の正面図aと側断面図bに示される如
く、一枚の例えばタンタル(Ta)からなる金属
板(厚さ約0.2mm、直径約70mmφ程度)で構成さ
れている。なお図中シヤツタ3を固定している6
は例えば矢印方向に移動してシヤツタ3を開閉さ
せる棒状の軸〓である。
Molecular beam source shutter 3 used in this way
As shown in the front view a and the side sectional view b of FIG. 4, it is composed of a single metal plate (approximately 0.2 mm thick and approximately 70 mmφ in diameter) made of tantalum (Ta), for example. In the figure, shutter 3 is fixed by 6.
is, for example, a rod-shaped shaft that moves in the direction of the arrow to open and close the shutter 3.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

上記構成のMBE装置において、分子線の温度
が例えば1300℃と言つた具合に高温になると、シ
ヤツタ3は閉じた状態で1000℃近くの高温にな
る。
In the MBE apparatus having the above configuration, when the temperature of the molecular beam reaches a high temperature of, for example, 1300°C, the shutter 3 reaches a high temperature of nearly 1000°C in the closed state.

このため、シヤツタ3の材料に含まれる例えば
炭素Cの如き不純物がガスとなつて放出され成長
表面に飛来して取り込まれ成長膜の純度を劣化さ
せる問題がある。
Therefore, there is a problem that impurities such as carbon C contained in the material of the shutter 3 are released as a gas, fly to the growth surface, and are taken in, thereby deteriorating the purity of the grown film.

また、成長表面から再蒸発したドーパントなど
の分子線が高温のシヤツタ3に付着し、そこで再
び蒸発して例えばノンドープで成長中の成長膜に
取り込れ該成長膜の純度を劣化させる問題があ
る。
In addition, there is a problem in that molecular beams such as dopants reevaporated from the growth surface adhere to the high-temperature shutter 3, where they evaporate again and are incorporated into, for example, a non-doped grown film that is being grown, deteriorating the purity of the grown film. .

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本考案によるMBE装置の要部構成を
示す平面図である。
FIG. 1 is a plan view showing the main part configuration of the MBE device according to the present invention.

上記問題点は、第1図に示される如く、金属板
が空間を設けて重ね合わせられた構造の分子線源
用シヤツタ7を具える本考案の分子線結晶成長装
置によつて解決される。
The above-mentioned problems are solved by the molecular beam crystal growth apparatus of the present invention, which includes a molecular beam source shutter 7 having a structure in which metal plates are stacked with a space provided therebetween, as shown in FIG.

〔作用〕[Effect]

第3図および第4図図示従来例において、シヤ
ツタ3が高温になるのは分子線セル2側からの輻
射熱によるものであり、また成長膜の純度に影響
を与えるのは主としてシヤツタ3の成長膜形成基
板Sに対向する面である。
In the conventional examples shown in FIGS. 3 and 4, the high temperature of the shutter 3 is due to radiant heat from the molecular beam cell 2 side, and the purity of the grown film is mainly affected by the grown film of the shutter 3. This is the surface facing the formation substrate S.

本考案はこの点に着目しシヤツタ3を上記構造
のシヤツタ7に変更したもので、上記空間が熱の
断層となつてセル2に対向する金属板が高温にな
つても基板Sに対向する金属板の温度上昇は緩和
され、問題となる不純物ガスの放出やドーパント
の再蒸発が低減して成長膜の純度が向上する。
The present invention focuses on this point and changes the shutter 3 to the shutter 7 having the above structure. The temperature rise of the plate is moderated, and the problematic release of impurity gases and re-evaporation of dopants are reduced, improving the purity of the grown film.

〔実施例〕〔Example〕

以下、第1図および第1図図示装置が具える分
子線源用シヤツタの実施例を示す第2図の正面図
a側断面図bを用い実施例について説明する。な
お全図を通じ同一符号は同一対象物を示す。
Hereinafter, an embodiment will be described with reference to FIG. 1 and a front view a side sectional view b of FIG. 2 showing an embodiment of a shutter for a molecular beam source included in the apparatus shown in FIG. Note that the same reference numerals indicate the same objects throughout the figures.

第1図に示すMBE装置は、第3図図示MBE装
置の分子線源用シヤツタ3を本考案による分子線
源用シヤツタ7に置換したもので、その他は構成
も使用法も従来と変わらない。
The MBE apparatus shown in FIG. 1 is obtained by replacing the molecular beam source shutter 3 of the MBE apparatus shown in FIG. 3 with a molecular beam source shutter 7 according to the present invention, and other than that, the structure and method of use are the same as before.

シヤツタ7は、第2図に示される如く、厚さ約
0.15mm、直径約70mmφの例えばTaからなる金属
板7aに約1mmの高さを有する複数の突起7bを
設け、突起7bの位置をずらせて二枚重ねたもの
で、従来と同様(第4図図示)に軸6に固定され
ている。
As shown in FIG. 2, the shutter 7 has a thickness of approximately
A plurality of protrusions 7b having a height of about 1 mm are provided on a metal plate 7a made of Ta, for example, with a diameter of 0.15 mm and a diameter of about 70 mmφ, and two plates are stacked with the protrusions 7b shifted in position, similar to the conventional method (as shown in Fig. 4). is fixed to the shaft 6.

従つて、二枚の金属板7aの間には約1mmの空
間7cが設けられている。この空間7cは先に説
明した分子線セル2側と成長膜形成基板S側との
間の熱の断層となる。
Therefore, a space 7c of approximately 1 mm is provided between the two metal plates 7a. This space 7c becomes a thermal cross-section between the molecular beam cell 2 side and the growth film forming substrate S side described above.

本願の考案者は、シヤツタ3を具えた第3図図
示のMBE装置とシヤツタ7を具えた第1図図示
のMBE装置とを用い、それぞれでGaAs基板S
上にSnドープのn型GaAs膜を成長させ更にその
上にノンドープのGaAs膜を成長させてノンドー
プGaAs膜のキヤリア濃度を比較したところ、前
者では約3×1015/cm3であつたが後者では約1×
1015/cm3となり、本考案が所望の効果を有するこ
とを確認した。
The inventor of the present application uses an MBE apparatus shown in FIG. 3 equipped with a shutter 3 and an MBE apparatus shown in FIG.
When an Sn-doped n-type GaAs film was grown on top of the Sn-doped n-type GaAs film and a non-doped GaAs film was grown on top of it, the carrier concentration of the non-doped GaAs film was compared; the former was about 3 x 10 15 /cm 3 , but the latter So about 1×
10 15 /cm 3 , confirming that the present invention has the desired effect.

なお上記実施例のシヤツタ7では金属板7aの
枚数を二枚にしたが、この枚数は本発明の原理か
らして三枚以上であつても良い。また、突起7b
がシヤツタ7の外側に向いている金属板7aにつ
いては、突起7bがなくとも良い。更に実施例で
は円形の独立した複数の金属板7aを重ね合わせ
たが、多角形などにして折り返し構造にしても良
い。
In the shutter 7 of the above embodiment, the number of metal plates 7a is two, but in view of the principle of the present invention, this number may be three or more. In addition, the protrusion 7b
As for the metal plate 7a, which faces outward from the shutter 7, the protrusion 7b may not be provided. Further, in the embodiment, a plurality of independent circular metal plates 7a are stacked one on top of the other, but they may be made into a polygonal shape or the like and have a folded structure.

〔考案の効果〕[Effect of idea]

以上説明したように本考案の構成によれば、分
子線結晶成長装置において、分子線源用シヤツタ
における成長膜形成基板に対向する面からの不純
物ガスの放出やドーパントなどの再蒸発を低減さ
せることが出来て、成長膜の純度を向上させる効
果がある。
As explained above, according to the configuration of the present invention, in a molecular beam crystal growth apparatus, it is possible to reduce the release of impurity gas and the re-evaporation of dopants from the surface of the molecular beam source shutter facing the growth film formation substrate. This has the effect of improving the purity of the grown film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案によるMBE装置の要部構成を
示す平面図、第2図は第1図図示装置が具えるシ
ヤツタ実施例の正面図aと側断面図b、第3図は
従来のMBE装置の要部構成を示す平面図、第4
図は第3図図示装置が具えるシヤツタの正面図a
と側断面図b、である。 図において、1はチヤンバ、2は分子線セル、
3,7は分子線源用シヤツタ、7aは金属板、7
bは突起、7cは空間、Sは成長膜形成基板、で
ある。
FIG. 1 is a plan view showing the main structure of an MBE device according to the present invention, FIG. 2 is a front view a and a side sectional view b of a shutter embodiment included in the device shown in FIG. 1, and FIG. 3 is a conventional MBE device. Plan view showing the main part configuration of the device, No. 4
The figure is a front view a of the shutter included in the device shown in Figure 3.
and side sectional view b. In the figure, 1 is a chamber, 2 is a molecular beam cell,
3 and 7 are molecular beam source shutters, 7a is a metal plate, 7
b is a projection, 7c is a space, and S is a growth film forming substrate.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] チヤンバ中で成長膜の形成される基板に対向す
る位置に取付けられた分子線セルの放射口直前の
分子線源用シヤツタは、複数枚の金属板が空間間
隔をおいて重ね合わされ、かつ一体となつて放射
口を開閉しうる構造を有することを特徴とする分
子線結晶成長装置。
The shutter for the molecular beam source in front of the radiation port of the molecular beam cell, which is installed in the chamber at a position facing the substrate on which the grown film is formed, is made up of multiple metal plates stacked one on top of the other with a space interval between them, and is integrally formed. A molecular beam crystal growth apparatus characterized by having a structure that can open and close a radiation aperture.
JP1985121691U 1985-08-08 1985-08-08 Expired JPH0325401Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985121691U JPH0325401Y2 (en) 1985-08-08 1985-08-08

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985121691U JPH0325401Y2 (en) 1985-08-08 1985-08-08

Publications (2)

Publication Number Publication Date
JPS6230333U JPS6230333U (en) 1987-02-24
JPH0325401Y2 true JPH0325401Y2 (en) 1991-06-03

Family

ID=31011195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985121691U Expired JPH0325401Y2 (en) 1985-08-08 1985-08-08

Country Status (1)

Country Link
JP (1) JPH0325401Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50100972A (en) * 1973-10-30 1975-08-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50100972A (en) * 1973-10-30 1975-08-11

Also Published As

Publication number Publication date
JPS6230333U (en) 1987-02-24

Similar Documents

Publication Publication Date Title
JP3817206B2 (en) Semiconductor device having highly insulating single crystal gallium nitride thin film
TW201405636A (en) Multilayer substrate structure and method and system of manufacturing the same
JPH0325401Y2 (en)
US8900362B2 (en) Manufacturing method of gallium oxide single crystal
JP2004296821A (en) ZnO SEMICONDUCTOR DEVICE AND ITS MANUFACTURING METHOD
JPH04132233A (en) Cuinse2 compound thin film formation method
JPH09118590A (en) Molecular beam epitaxial growth method and apparatus therefor
Pearton et al. Ion implantation processing of GaAs and related compounds
JPS6263419A (en) Formation of polycrystalline silicon thin film
JPH0238442Y2 (en)
JPH04317495A (en) Method and device for epitaxial growth by molecular beam
JPH04137566A (en) Manufacture of ii-vi compound semiconductor single crystal and manufacture of semiconductor light emitting element
JPS6039820A (en) Manufacture of semiconductor device
JPS63211728A (en) Manufacture of semiconductor
JPS61141119A (en) Device for crystal growth by molecular beam
JPH06310747A (en) Formation of chalcopyrite thin film and fabrication of thin film solar cell
JPH0426588A (en) Molecular beam crystal growing device
JPS60133720A (en) Molecular beam epitaxial growth method
JPH03225916A (en) Formation of thin film of znse crystal
JPH04325499A (en) Manufacture of potassium sulfide added cadmium-zinc mixed crystal thin film
JPS60235788A (en) Formation of single crystal film
JPH01197388A (en) Molecular ray crystal growth device
TW201618158A (en) A method for forming a virtual germanium substrate using a laser
JPH02161719A (en) Semiconductor device and its manufacture
WO1990003659A1 (en) Fabrication of semiconductor nanostructures