JPH04137566A - Manufacture of ii-vi compound semiconductor single crystal and manufacture of semiconductor light emitting element - Google Patents

Manufacture of ii-vi compound semiconductor single crystal and manufacture of semiconductor light emitting element

Info

Publication number
JPH04137566A
JPH04137566A JP2256951A JP25695190A JPH04137566A JP H04137566 A JPH04137566 A JP H04137566A JP 2256951 A JP2256951 A JP 2256951A JP 25695190 A JP25695190 A JP 25695190A JP H04137566 A JPH04137566 A JP H04137566A
Authority
JP
Japan
Prior art keywords
single crystal
crucible
compound semiconductor
light emitting
sealed tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2256951A
Other languages
Japanese (ja)
Inventor
Masaru Kawachi
河内 勝
Kazutaka Terajima
一高 寺嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2256951A priority Critical patent/JPH04137566A/en
Publication of JPH04137566A publication Critical patent/JPH04137566A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve characteristics of single crystal, by arranging polycrystal of II-VI compound semiconductor at a high temperature part of a crucible arranged in a sealed tube provided with temperature difference, forming an Li2Se atmosphere at a specified temperature in the crucible, and turning the polycrystal into single crystal by solid growth. CONSTITUTION:Polycrystal ZnSe which is an example of raw material 12 to be turned into single crystal and Li2Se which is dopant 13 for turning the original material into conductor are put in a crucible 11, which is put in a sealed tube 14 made of quartz as heat resistant material. The inside of the sealed tube is vacuumized at about 10<-6> Torr, and the top part of the tube is fused and sealed. The crucible 11 is so placed in a heating furnace that the crucible bottom part where the original material 12 and the dopant 13 for conductor are disposed is at the high temperature part, and the top part of the crucible is at the low temperature part of the heating furnace. In this state, heat treatment for, e.g. about two weeks is performed. Thereby the polycrystal line ZnSe as the raw material 12 is almost turned into single crystal.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は■−■族化合物半導体の精製方法、II−VI
族化合物半導体単結晶の製造方法にかかり、特に青色発
光素子に適用されるII−VI族化合物半導体に対する
結晶の単結晶化方法、およびこの半導体基板を用いた半
導体発光素子の製造方法に1する。
[Detailed Description of the Invention] [Object of the Invention (Industrial Application Field) The present invention provides a method for purifying a ■-■ group compound semiconductor, II-VI
This article will focus on a method for manufacturing a group compound semiconductor single crystal, particularly a method for single crystallizing a II-VI group compound semiconductor that is applied to a blue light emitting device, and a method for manufacturing a semiconductor light emitting device using this semiconductor substrate.

(従来の技術) 化合物半導体材料を用いて赤色がら緑色にjる間に発光
域を有する半導体発光素子は量産さねでおり、さらに輝
度を向上させるための開発が進められている。しかしな
がら、可視領域で青色の発光域を有する青色発光素子は
、未だ満足できる製造技術が提供されていない。
(Prior Art) Semiconductor light emitting devices using compound semiconductor materials and having a light emission range from red to green are being mass-produced, and development is underway to further improve brightness. However, a satisfactory manufacturing technology has not yet been provided for a blue light emitting element that emits blue light in the visible region.

青色発光素子を製造するには、その半導体材料の禁制帯
幅2.6〜3.7eVを超えていることが必要であり、
最近ではこれを満足する半導体として1l−VI族化合
物半導体が注目されるようになった中でも禁制帯幅が2
.6〜3.7eVの領域内にある硫化亜鉛(ZnS)、
セレン化亜鉛(ZnSe)よびこれらの液晶(Z n 
S S e)が有望視されている。以下、前記材料を総
称して硫化セレン化亜鉛(ZnS  Se 、  1□ :0≦X≦1)と呼ぶことにする。
In order to manufacture a blue light emitting device, it is necessary that the forbidden band width of the semiconductor material exceeds 2.6 to 3.7 eV,
Recently, 1l-VI group compound semiconductors have been attracting attention as semiconductors that satisfy this requirement, but the forbidden band width is 2.
.. Zinc sulfide (ZnS) in the range of 6-3.7 eV,
Zinc selenide (ZnSe) and these liquid crystals (Z n
SS e) is seen as promising. Hereinafter, the above materials will be collectively referred to as zinc sulfide selenide (ZnS Se , 1□: 0≦X≦1).

硫化セレン化亜鉛か青色発光素子材料として有望視され
ていながら、未だ実用化されていないのは、低抵抗のp
型結晶を得るのが難しいことにある。その原因は、■−
■族化合物に多く見られる欠陥(Se、S空孔、格子等
)か特に強く、アクセプター不純物をドープしてもv 
V か補償すSe  S ることになり抵抗の高いn型になるたけて、不純物ドー
プの効果が現われず、導電率の増大に寄与しないためと
考えられている。したがってp聖母導性をもつ結晶は得
られていない。従来、前記単結晶育成方法には、例えば
高温・高圧条件下の結晶成長方法として知られている高
圧溶融法、例えばブリッジマン法、タンマン法や、封管
化学輸送法1昇華法などかある。斜上の方法によると、
得られる結晶は、形状や特性が不均一であり、不純物や
格子欠陥濃度か高く、また極めて高抵抗であって、発光
素子をこの結晶で構成するには限界かある等の問題かあ
る。
Zinc sulfide selenideAlthough it is seen as a promising material for blue light-emitting devices, it has not yet been put to practical use.
The reason is that it is difficult to obtain type crystals. The reason is ■-
Defects (Se, S vacancies, lattice, etc.) that are often found in group compounds are particularly strong, and even when doped with acceptor impurities,
This is thought to be because the effect of impurity doping does not appear and does not contribute to an increase in conductivity since V compensates for Se S and becomes n-type with high resistance. Therefore, a crystal with p-Virgin conductivity has not been obtained. Conventionally, the single crystal growth method includes, for example, a high-pressure melting method known as a crystal growth method under high temperature and high pressure conditions, such as the Bridgman method, the Tamman method, and the sealed tube chemical transport method 1 sublimation method. According to the diagonal method,
The crystals obtained are non-uniform in shape and characteristics, have a high concentration of impurities and lattice defects, and have extremely high resistance, which poses problems such as there are limits to the construction of light-emitting devices with these crystals.

(発明か解決しようとする課題) 上記従来例で述べたように、発光素子用の化合物半導体
結晶、例えばZnS、Zn5eなどの単結晶のように、
電気抵抗の制御や、導電型の制御か困難である等の問題
点があった。また、結晶内にはS、Se空孔等の発生が
見られ、発光特性を阻害される問題点があった。斜上に
より優れた性能を備えた青色発光素子を実現する上での
大きな障害になっていた。
(Problem to be solved by the invention) As described in the above conventional example, compound semiconductor crystals for light emitting devices, such as single crystals such as ZnS and Zn5e,
There were problems such as difficulty in controlling electrical resistance and conductivity type. In addition, S, Se vacancies, etc. are observed to occur within the crystal, which poses a problem of inhibiting light-emitting characteristics. This slanting effect has been a major obstacle in realizing blue light emitting devices with superior performance.

さらに、上記従来の方法は、封管に入れた状態で結晶化
させるため、封管がらの熱歪や、封管の内壁とZn5e
融液との「濡れ性」の関係で、単結晶は双晶を多く含ん
で固化する問題があった。
Furthermore, in the conventional method described above, since crystallization is performed while the tube is in a sealed tube, thermal distortion of the sealed tube and damage to the inner wall of the sealed tube and the Zn5e may occur.
Due to its "wettability" with the melt, single crystals contain many twin crystals and have the problem of solidifying.

また、垂直ブリッジマン法により作製された単結晶には
双晶が多く含まれるとともに純度も低い等の問題がある
Furthermore, single crystals produced by the vertical Bridgman method contain many twin crystals and have low purity.

本発明は上記従来の問題点に鑑みてなされたもので、低
抵抗のp型1l−VI族化合物半導体結晶を製造するた
めに■−■族化合物半導体の導電型の制御と単結晶化の
改良された方法、およびこの半導体結晶基板を用いた発
光素子の製造方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and improves control of conductivity type and single crystallization of ■-■ group compound semiconductors in order to manufacture low-resistance p-type 1l-VI group compound semiconductor crystals. The present invention aims to provide a method for manufacturing a light emitting device using this semiconductor crystal substrate.

〔発明の構成] (課題を解決するための手段) 本発明は■−■族化合物半導体の導電制御方法、II−
VIl族化合物半導体型型単結晶製造方法、およびこれ
て製造された半導体単結晶基板を用いる半導体発光素子
、製造方法にががる。すなわち、封管を用いて、この封
管に高温度部と低温度部を形成し、これら少なくともい
ずれかに化合物半導体装置して封管内界囲気の特定化、
および温度差を利用して不純物処理と単結晶化を行なう
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a method for controlling conductivity of a ■-■ group compound semiconductor, II-
This article describes a method for manufacturing a group VII compound semiconductor type single crystal, a semiconductor light emitting device using the semiconductor single crystal substrate manufactured using the method, and a method for manufacturing it. That is, using a sealed tube, forming a high temperature part and a low temperature part in this sealed tube, and specifying the surrounding air inside the sealed tube by using a compound semiconductor device in at least one of these parts.
Impurity treatment and single crystallization are performed using the temperature difference.

まず、第1の発明は、封管による化合物半導体のp型厚
電性を得るために温度差を設けた封管内に配置したるっ
ほの高温部にII−VI=族化合物半導体装置装、この
るっは内をLi236の雰囲気にして前記■−■族化合
物半導体をp型の単結晶にさせる方法にある。
First, the first invention is to provide a II-VI=group compound semiconductor device in a high-temperature part of a rubber placed in a sealed tube with a temperature difference in order to obtain p-type thick conductivity of a compound semiconductor using a sealed tube. This method consists in making the ①-③ group compound semiconductor into a p-type single crystal by creating an atmosphere of Li236 inside.

第2の発明は、第1の発明の雰囲気としてのLi2Se
の量を規定した方法にある。
The second invention is Li2Se as the atmosphere of the first invention.
There is a method that specifies the amount of

第3の発明は、第1の発明の雰囲気として用いたLi2
Seが従来の石英製封管と反応をおこして所有の導電型
の制御が困難になるため侵され難い材料で容器を構成さ
せp型を得るための方法にある。
The third invention is based on Li2 used as the atmosphere in the first invention.
Since Se reacts with conventional quartz sealed tubes, making it difficult to control the conductivity type, there is a method for obtaining p-type by constructing the container with a material that is difficult to attack.

第4の発明は、温度差を設けた封管内の高温部にII−
VI族化合物半導体の多結晶体を、この封管内をLi2
 Seの雰囲気にして単結晶成長を行い■−■族化族化
合物半導体卓型単結晶基板成し、このp型車結晶基板上
にこれと同種のエピタキシャル層を積層形成し、このエ
ピタキシャル層を発光層とする半導体発光素子の製造方
法。
The fourth invention provides a high temperature section in a sealed tube with a temperature difference.
A polycrystalline body of a Group VI compound semiconductor is placed inside this sealed tube with Li2
Single crystal growth is performed in a Se atmosphere to form a ■-■ group compound semiconductor table-type single crystal substrate, and an epitaxial layer of the same type as this is laminated on this p-type vehicle crystal substrate, and this epitaxial layer is used to emit light. A method for manufacturing a semiconductor light emitting device as a layer.

第5の発明は、発光層を有機金属気相成長法により形成
することを特徴とする請求項4に記載された発明の半導
体発光素子の製造方法にある。
A fifth invention resides in the method for manufacturing a semiconductor light emitting device according to the invention as set forth in claim 4, characterized in that the light emitting layer is formed by metal organic vapor phase epitaxy.

第6の発明は、発光層をその構成元素の少なくとも一方
の元素を用い液相成長により形成することを特徴とする
請求項4に記載の半導体発光素子の製造方法にある。
A sixth invention resides in the method of manufacturing a semiconductor light emitting device according to claim 4, characterized in that the light emitting layer is formed by liquid phase growth using at least one of its constituent elements.

(作 用) 本発明は青色発光素子に用いられるII−VIl族化合
物半導体型型単結晶製造に、導電制御をはかるため、封
管に温度差を設けて内装したるっほをその高温部にII
−VI族化合物半導体多結晶体を、るつは内界囲気とし
てLi2Seをまた、るつぼとしてPBNを用いて固相
成長に単結晶化を達成する。
(Function) The present invention is applied to the manufacture of a II-VII group compound semiconductor type single crystal used in a blue light emitting device, in order to control the conductivity, the sealed tube is provided with a temperature difference and a luho is placed inside the sealed tube in the high temperature part. II
Single crystallization of a group VI compound semiconductor polycrystal is achieved by solid phase growth using Li2Se as the inner atmosphere and PBN as the crucible.

次に、上記に基づいて製造された結晶基板上へ同種の結
晶層を積層させ、この結晶層を発光層とする発光接合を
形成することにより、良好な素子特性の電流−電圧特性
が得られる。
Next, a crystal layer of the same type is laminated on the crystal substrate manufactured based on the above, and a light emitting junction is formed using this crystal layer as a light emitting layer, thereby obtaining current-voltage characteristics with good device characteristics. .

(実施例) 以下、本発明の詳細を図示の実施例によって説明する。(Example) Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図に、本発明の実施例に用いた封管とその内部の配
置を断面図で示す。第1図に示すように、耐熱材の例え
ばパイロリテイク・ボロン・ナイトライドで形成された
るつは内に、単結晶される原材料12の一例の多結晶Z
n5eと、るつぼ内の雰囲気を形成するとともに前記原
材料を導電性化させるドーパント13であるLi2Se
を入れ、そのるつぼを耐熱材である石英の封管14に装
入し、10”−6トール(Torr)程度に排気しこの
封管14の頂部を溶封する。斜上のるつは11は前記原
材料12と導電性用ドーパント13か配置された底部を
加熱炉の高温部に、頂部を加熱炉の低温部に夫々配置し
、この状態で一例として約2週間経過される熱処理を施
す。この熱処理は第2図に示す温度勾配の加熱炉で、高
温部温度か一例の850℃、低温部温度か一例の840
℃で施す。
FIG. 1 shows a sectional view of a sealed tube used in an embodiment of the present invention and its internal arrangement. As shown in FIG. 1, polycrystalline Z, an example of a raw material 12 that is made into a single crystal, is placed inside a crucible made of a heat-resistant material such as pyrolytic boron nitride.
n5e and Li2Se, which is a dopant 13 that forms the atmosphere inside the crucible and makes the raw material conductive.
The crucible is placed in a sealed tube 14 made of quartz, which is a heat-resistant material, and the top of the sealed tube 14 is evacuated to about 10''-6 Torr. The bottom part where the raw material 12 and the conductive dopant 13 are placed is placed in the high temperature part of the heating furnace, and the top part is placed in the low temperature part of the heating furnace, and heat treatment is performed in this state for about two weeks, for example. This heat treatment is carried out in a heating furnace with the temperature gradient shown in Figure 2.
Apply at °C.

斜上の如くすることにより、原材料12である多結晶Z
n5eはほぼ単結晶化を達成する。またLiをドープし
たことによりp型結晶が得られた。
By tilting it upward, polycrystalline Z, which is the raw material 12,
n5e achieves almost single crystallization. Further, by doping with Li, a p-type crystal was obtained.

この熱処理はるっは11が直径20mm、長さ50關で
、これに原材料の多結晶Zn5e12を10g 、 不
純物4電体0) L i 2 S e 13を1001
00l11,1モル%)夫々封管14直径30mm、長
さ7011111に入れ封入して高温部850℃、低温
部840℃の較差を設けて施した。
In this heat treatment, 11 has a diameter of 20 mm and a length of 50 mm, and 10 g of polycrystalline Zn5e12 as a raw material and 1001 of Li 2 S e 13 (0) impurities and 4 electric bodies are added to this.
00l11,1 mol %) were placed in sealed tubes 14 with a diameter of 30 mm and a length of 7011111, and the temperature difference was set at 850° C. in the high temperature part and 840° C. in the low temperature part.

このようにして前記熱処理を施した後、結晶を厚さ1關
にスライスし、30%NaOHで表面処理を施し、その
表面に電極を設はホール測定を行った。更に不純物のド
ープ材であるLi2Se二を種々変えて熱処理を施し、
電気的特性を比較して第3図に示す結果か得られた。
After the above-mentioned heat treatment, the crystal was sliced into 1-inch thick slices, surface-treated with 30% NaOH, and an electrode was placed on the surface to perform hole measurement. Furthermore, heat treatment was performed with various changes in the impurity doping material Li2Se2,
By comparing the electrical characteristics, the results shown in FIG. 3 were obtained.

この第3図に見られるようにアクセプターta度はドー
プするLi2Seの量と相関が見られ、所要とする濃度
1017cm−3〜1018cm−3を得るためにはL
i2Seの添加量は0.01〜0.5モル%か良く、ま
た電気抵抗値に関してもこの添加量の範囲か良く、不純
物としてのLlをZn5eの結晶内に拡散、成長させる
ことにより、これらの結晶体の電気抵抗値を低下させる
ことかてぎる。
As seen in Fig. 3, the acceptor degree is correlated with the amount of doped Li2Se, and in order to obtain the required concentration of 1017 cm-3 to 1018 cm-3, L
The amount of i2Se added may be 0.01 to 0.5 mol%, and the electrical resistance value may also be within this range.By diffusing and growing Ll as an impurity into the Zn5e crystal, these It is possible to reduce the electrical resistance value of the crystal.

次に第3の発明の一実施例につき第4図を参照して説明
する。第4図に一実施例に用いた封管とその内部の配置
を断面図で示す。第4図に示すように、耐熱材の例えば
石英で形成された封管24内の底部に単結晶される原材
料12の一例の多結晶Zn5eと封管内の雰囲気を形成
するとともに前記原材料を導電性化させるドーパント1
3であるLi2Seを夫々配置する。そして、この封管
21の底部を加熱炉の高温部12.頂部を加熱炉の低温
部に夫々配置し、この状態で一例として約2週間経過さ
せる。この結晶成長は前記第2図に示す温度分布の加熱
炉でその高温部温度か一例の850℃、低温部温度が一
例の840℃で施す。
Next, an embodiment of the third invention will be described with reference to FIG. FIG. 4 shows a sectional view of the sealed tube used in one embodiment and its internal arrangement. As shown in FIG. 4, an atmosphere in the sealed tube is formed with polycrystalline Zn5e, which is an example of the raw material 12, which is monocrystallined at the bottom of the sealed tube 24 made of a heat-resistant material such as quartz, and the raw material is made conductive. dopant 1
3 of Li2Se are placed respectively. Then, the bottom of this sealed tube 21 is connected to the high temperature section 12 of the heating furnace. The top portions are respectively placed in the low temperature section of the heating furnace and kept in this state for about two weeks, for example. This crystal growth is performed in a heating furnace having the temperature distribution shown in FIG. 2 at a temperature of 850° C. in the high temperature portion and 840° C. in the low temperature portion.

なお、上記実施例の封止21は直径が20mm長さ50
III11に形成されたものを用い、原材料の多結晶Z
n5eをLog、Li2 Seを100111を底部に
配置し、封管内を10”トール(To r r)程度に
排気して前記半導体結晶の製造を行う。
The seal 21 in the above embodiment has a diameter of 20 mm and a length of 50 mm.
Using the one formed in III11, the raw material polycrystalline Z
The semiconductor crystal is manufactured by placing n5e at Log, Li2Se at 100111 at the bottom, and evacuating the inside of the sealed tube to about 10'' Torr.

このように熱処理を施したものは、封管である石英の内
壁が失透しており、原材料である多結晶Zn5eはその
ままで単結晶にはなっていなかった。Li2Se量を少
なく添加しても同様な結果てあり、石英はLiに侵され
易い材料であることが判った。
In the tube that was heat-treated in this way, the inner wall of the quartz tube that was the sealed tube was devitrified, and the polycrystalline Zn5e that was the raw material remained as it was and had not become a single crystal. Similar results were obtained even when a small amount of Li2Se was added, indicating that quartz is a material that is easily attacked by Li.

次に第1実施例と同様に真空封止した封管、この時的に
装入するるつほはAl2203を用い他は同じとしたも
のを前記第2図に示される温度分布の電気炉内に配置し
第1実施例と同し熱処理を施した。
Next, a sealed tube vacuum-sealed in the same manner as in the first embodiment, the melt tube to be charged at this time being made of Al2203, and the other parts being the same, was placed in an electric furnace with the temperature distribution shown in FIG. 2. , and was subjected to the same heat treatment as in the first example.

斜上の如くして処理されるZnS e多結晶体は第1実
施例と同様単結晶化は達成られたか、電気導電性は得ら
れず高抵抗であった。添加したLi25effiを変え
ても低抵抗のものは得られなかった。
The ZnSe polycrystalline body treated in the diagonal manner either achieved single crystallization as in the first example, or did not have electrical conductivity and had high resistance. Even if the added Li25effi was changed, low resistance could not be obtained.

以上の実施例によれば、るつぼ材をパイロリテイク・ボ
ロン・ナイトライド(PBN)を用いることで、 (1)安定に不純物をドープさせることかできる。
According to the above embodiments, by using pyrolytic boron nitride (PBN) as the crucible material, (1) impurities can be stably doped.

(2)低抵抗が得られる。(2) Low resistance can be obtained.

(3)面上欠陥を一方向に揃えることが可能であり、単
結晶体の特性が向上する、等の利点がある。
(3) It is possible to align defects on the surface in one direction, and there are advantages such as improving the characteristics of the single crystal.

次に、第5図に示す第4実施例は、青色発光素子を示す
。図において51は本発明で得られた原材料を用い 雰
囲気熱処理法で得られたp型Zn5e基板結晶であり、
この上に原料としてジメチル亜鉛(DMZ)  および
ンメチルセレン(D M S e )用いたMOCVD
法によりp型Zn5eの結晶層52.n型Zn5e結晶
層53を順次積層形成させpn接合型発光素子を構成し
た。
Next, a fourth embodiment shown in FIG. 5 shows a blue light emitting element. In the figure, 51 is a p-type Zn5e substrate crystal obtained by an atmospheric heat treatment method using the raw material obtained in the present invention,
On top of this, MOCVD using dimethylzinc (DMZ) and dimethylselenium (DMSe) as raw materials
A p-type Zn5e crystal layer 52. N-type Zn5e crystal layers 53 were sequentially stacked to form a pn junction type light emitting device.

この際、p型Zn5e結晶層52の主要なp型不純物は
Llであり、またn型Zn5e結晶層53の主要なn型
不純物はC1である。Zn5e基板51の裏面にはp副
電極としてAuZn電極54が形成され、n型Zn5e
層53の表面にはn型電極として、I nGa 55が
形成されている。
At this time, the main p-type impurity of the p-type Zn5e crystal layer 52 is Ll, and the main n-type impurity of the n-type Zn5e crystal layer 53 is C1. An AuZn electrode 54 is formed as a p sub-electrode on the back surface of the Zn5e substrate 51, and an n-type Zn5e
InGa 55 is formed on the surface of the layer 53 as an n-type electrode.

このようにして得られた発光素子は、良好な青色発光を
示し、優れた発光特性を示す素子が得られtこ。
The light-emitting device thus obtained exhibits good blue light emission and exhibits excellent light-emitting characteristics.

この発明は従来p型基板結晶化の困難であった1]−V
I族化合物半導体材料のp型が極めて容易に達成でき、
導電性の制御が可能である。また、本発明によれば、大
型のp型Zn5e結晶体を得ることも可能となった。
This invention was achieved by the conventional p-type substrate which was difficult to crystallize.1]-V
p-type of Group I compound semiconductor materials can be achieved extremely easily;
Conductivity can be controlled. Furthermore, according to the present invention, it has become possible to obtain a large p-type Zn5e crystal.

更に、このp型車結晶を基板結晶とすることで、良好な
青色発光特性を示す半導体発光素子が得られ、量産性と
発光特性の均一化が図られる。
Furthermore, by using this p-type wheel crystal as a substrate crystal, a semiconductor light emitting device exhibiting good blue light emission characteristics can be obtained, and mass productivity and uniformity of light emission characteristics can be achieved.

なお、前記実施例ではZn5eについて説明したが、同
様の効果がZnS、CdS、CdSe等のII−VI族
化合物半導体材料に応用出来ることは言うまでもない。
Although Zn5e was explained in the above embodiment, it goes without saying that similar effects can be applied to II-VI group compound semiconductor materials such as ZnS, CdS, and CdSe.

さらに、II−VI族化合物半導体層の成長法としても
MOCVD法に限らず、他の気相成長やM B E法或
いは液$11成長法を利用することか可能である。
Furthermore, the method for growing the II-VI group compound semiconductor layer is not limited to the MOCVD method, but other vapor phase growth, MBE method, or liquid $11 growth method may be used.

その他、本発明はその趣旨を逸脱しない範囲で種々変形
して実施することかできる。
In addition, the present invention can be implemented with various modifications without departing from the spirit thereof.

[発明の効果コ 本発明によれば、従来、P型化か困難であったII−V
I族化合物半導体材料のp型化が極めて容易に達成でき
、導電性の制御が可能である。このようにして得られた
p型車結晶基板に発光層の半導体層をMOCVD法等に
より形成し、発光効率。
[Effects of the invention] According to the present invention, II-V, which was conventionally difficult to convert into P-type.
It is extremely easy to convert a Group I compound semiconductor material into a p-type material, and its conductivity can be controlled. A semiconductor layer of a light-emitting layer is formed on the p-type crystal substrate thus obtained by MOCVD or the like, and the light-emitting efficiency is determined.

発光特性の優れた青色発光素子を得ることかできる。It is possible to obtain a blue light-emitting element with excellent light-emitting characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の発明の実施例に用いられる封管とその内
部に内装されるるつぼ、原材料等の配置を示す断面図、
第2図は本発明の実施例に用いられる封管の熱処理条件
を示す線図、第3図は本発明に係るLi3Seをドープ
したものの添加量と電気的特性を表わした線図、第4図
は第3の発明の実施例に用いられる封管の熱処理後の状
態を示す断面図、第5図は第4ないし第6の発明の実施
例で形成されるpn接合型発光素子の断面図である。 11・・・るつぼ、12・・・原材料 13・・・ドーパント、14.24・・・封管51 =
・p型Zn5e基板 52・・・p型Zn5e結晶層 53・・・n型Zn5e結晶層 54−−− A u Z n電極 55−1 n G a電極
FIG. 1 is a cross-sectional view showing a sealed tube used in an embodiment of the first invention, a crucible housed inside the tube, and the arrangement of raw materials, etc.;
Fig. 2 is a diagram showing the heat treatment conditions for the sealed tube used in the example of the present invention, Fig. 3 is a diagram showing the amount of addition and electrical characteristics of the Li3Se doped product according to the invention, and Fig. 4 5 is a sectional view showing the state of the sealed tube after heat treatment used in the embodiment of the third invention, and FIG. be. 11... Crucible, 12... Raw material 13... Dopant, 14.24... Sealed tube 51 =
・P-type Zn5e substrate 52...p-type Zn5e crystal layer 53...n-type Zn5e crystal layer 54---A u Z n electrode 55-1 n Ga electrode

Claims (6)

【特許請求の範囲】[Claims] (1)封管による化合物半導体単結晶を製造するのに際
し、温度差を設けた封管内に配置したるつぼの高温部に
II−VI族化合物半導体の多結晶体を配置し、このるつぼ
内をLi_2Seの雰囲気にして所定温度に上昇させて
前記多結晶体を固相成長により単結晶化させることを特
徴とするII−VI族化合物半導体単結晶の製造方法。
(1) When producing a compound semiconductor single crystal using a sealed tube, the high-temperature part of the crucible is placed inside the sealed tube with a temperature difference.
II-VI characterized in that a polycrystalline body of a group II-VI compound semiconductor is arranged, the interior of the crucible is made into an Li_2Se atmosphere, the temperature is raised to a predetermined temperature, and the polycrystalline body is turned into a single crystal by solid phase growth. A method for producing a group compound semiconductor single crystal.
(2)上記るつぼ内の雰囲気として用いたLi_2Se
の範囲は0.01〜0.5モル%であることを特徴とす
る請求項1記載のII−VI族化合物半導体単結晶の製造方
法。
(2) Li_2Se used as the atmosphere in the crucible
2. The method for producing a II-VI group compound semiconductor single crystal according to claim 1, wherein the range of is 0.01 to 0.5 mol%.
(3)上記るつぼ材質をパイロリティクボロンナイトラ
イド(PBN)であることを特徴とする請求項1記載の
II−VI族化合物半導体単結晶の製造方法。
(3) The crucible according to claim 1, wherein the material is pyrolytic boron nitride (PBN).
A method for producing a II-VI group compound semiconductor single crystal.
(4)温度差を設けた封管内に配置したるつぼの高温部
にII−VI族化合物半導体の多結晶体を、このるつぼ内を
Li_2Seの雰囲気にして単結晶成長を行いII−VI族
化合物半導体単結晶基板を形成し、この単結晶基板上に
これと同種のエピタキシャル層を積層形成し、このエピ
タキシャル層を発光層とする半導体発光素子の製造方法
(4) A polycrystal of a II-VI group compound semiconductor is placed in the high-temperature part of a crucible placed in a sealed tube with a temperature difference, and a single crystal is grown in the Li_2Se atmosphere inside the crucible to produce a II-VI group compound semiconductor. A method for manufacturing a semiconductor light emitting device, in which a single crystal substrate is formed, an epitaxial layer of the same type as the single crystal substrate is laminated on the single crystal substrate, and the epitaxial layer is used as a light emitting layer.
(5)発光層を有機金属気相成長法により形成すること
を特徴とする請求項4記載の半導体発光素子の製造方法
(5) The method for manufacturing a semiconductor light emitting device according to claim 4, wherein the light emitting layer is formed by metal organic vapor phase epitaxy.
(6)発光層をその構成元素の少なくとも一方の元素を
用い液相成長により形成することを特徴とする請求項4
記載の半導体発光素子の製造方法。
(6) Claim 4 characterized in that the light emitting layer is formed by liquid phase growth using at least one of its constituent elements.
The method for manufacturing the semiconductor light emitting device described above.
JP2256951A 1990-09-28 1990-09-28 Manufacture of ii-vi compound semiconductor single crystal and manufacture of semiconductor light emitting element Pending JPH04137566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2256951A JPH04137566A (en) 1990-09-28 1990-09-28 Manufacture of ii-vi compound semiconductor single crystal and manufacture of semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2256951A JPH04137566A (en) 1990-09-28 1990-09-28 Manufacture of ii-vi compound semiconductor single crystal and manufacture of semiconductor light emitting element

Publications (1)

Publication Number Publication Date
JPH04137566A true JPH04137566A (en) 1992-05-12

Family

ID=17299631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2256951A Pending JPH04137566A (en) 1990-09-28 1990-09-28 Manufacture of ii-vi compound semiconductor single crystal and manufacture of semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPH04137566A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109943884A (en) * 2019-03-28 2019-06-28 北京中材人工晶体研究院有限公司 A kind of zinc selenide raw material high temperature purification method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109943884A (en) * 2019-03-28 2019-06-28 北京中材人工晶体研究院有限公司 A kind of zinc selenide raw material high temperature purification method

Similar Documents

Publication Publication Date Title
US5068204A (en) Method of manufacturing a light emitting element
US7323356B2 (en) LnCuO(S,Se,Te)monocrystalline thin film, its manufacturing method, and optical device or electronic device using the monocrystalline thin film
JP4249184B2 (en) Nitride semiconductor growth substrate
CN100405618C (en) Laminous element and its producing method
US6896731B1 (en) P-type single crystal zinc-oxide having low resistivity and method for preparation thereof
JP2001068485A (en) METHOD OF GROWING ZnO CRYSTAL, ZnO CRYSTAL STRUCTURE AND SEMICONDUCTOR DEVICE USING THE SAME
JP3492551B2 (en) P-type II-VI compound semiconductor crystal, method for growing the same, and semiconductor device using the same
US4960721A (en) Method for purifying group II-IV compound semiconductors
US3249473A (en) Use of metallic halide as a carrier gas in the vapor deposition of iii-v compounds
US5140385A (en) Light emitting element and method of manufacture
JP2001168392A (en) Semiconductor element and its manufacturing method
JP4045499B2 (en) Method for manufacturing ZnO-based semiconductor element
WO2019058467A1 (en) Substrate for epitaxial growth, method for manufacturing substrate for epitaxial growth, epitaxial substrate, and semiconductor element
WO2023081540A1 (en) Reactive gas modulation for group iii/iv compound deposition systems
JPH04137566A (en) Manufacture of ii-vi compound semiconductor single crystal and manufacture of semiconductor light emitting element
US5204283A (en) Method of growth II-VI semiconducting compounds
JP4778150B2 (en) Manufacturing method of ZnTe-based compound semiconductor single crystal and ZnTe-based compound semiconductor single crystal
JP2579336B2 (en) Method for manufacturing blue light emitting diode
JP2537296B2 (en) &lt;II&gt;-&lt;VI&gt; Intergroup compound semiconductor device manufacturing method
JP2010056464A (en) Semiconductor light emitting element and method of manufacturing same
US6043141A (en) Method for in situ growth of p-type doped group II-VI semiconductor films
JPH01264990A (en) Method of refinning ii-vi compound semiconductor, production of ii-vi compound semiconductor single crystal and production of semiconductor light emitting element formed by using semiconductor single crystal obtained by the same method as substrate
JPS5916393A (en) Blue light emitting element
JPS60260494A (en) Preparation of compound semiconductor crystal
JPH0682618B2 (en) &lt;II&gt;-&lt;VI&gt; Group compound semiconductor thin film manufacturing method