JPH01264990A - Method of refinning ii-vi compound semiconductor, production of ii-vi compound semiconductor single crystal and production of semiconductor light emitting element formed by using semiconductor single crystal obtained by the same method as substrate - Google Patents

Method of refinning ii-vi compound semiconductor, production of ii-vi compound semiconductor single crystal and production of semiconductor light emitting element formed by using semiconductor single crystal obtained by the same method as substrate

Info

Publication number
JPH01264990A
JPH01264990A JP63207527A JP20752788A JPH01264990A JP H01264990 A JPH01264990 A JP H01264990A JP 63207527 A JP63207527 A JP 63207527A JP 20752788 A JP20752788 A JP 20752788A JP H01264990 A JPH01264990 A JP H01264990A
Authority
JP
Japan
Prior art keywords
compound semiconductor
single crystal
group
sealed tube
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63207527A
Other languages
Japanese (ja)
Inventor
Kazutaka Terajima
一高 寺嶋
Masaru Kawachi
河内 勝
Hiroaki Yoshida
博昭 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to EP88310558A priority Critical patent/EP0316161B1/en
Priority to DE88310558T priority patent/DE3887274D1/en
Priority to US07/268,926 priority patent/US4960721A/en
Publication of JPH01264990A publication Critical patent/JPH01264990A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/28Materials of the light emitting region containing only elements of group II and group VI of the periodic system
    • H01L33/285Materials of the light emitting region containing only elements of group II and group VI of the periodic system characterised by the doping materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • C30B29/48AIIBVI compounds wherein A is Zn, Cd or Hg, and B is S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0083Processes for devices with an active region comprising only II-VI compounds

Abstract

PURPOSE:To obtain the blue light emitting element having excellent light emitting efficiency and light emitting characteristics by disposing a II-VI compd. semiconductor in the high-temp. part in a sealing tube provided with a temp. difference and transporting the impurities contained therein to the low-temp. part in the sealing tube, thereby extremely easily executing refining and enabling gettering of various impurities. CONSTITUTION:The II-VI compd. semiconductor (e.g.: ZnSe polycrystal) which is a raw material to be refined and at least one 13 selected from Zn, chalcogen element (e.g.; Se) and halogen element (e.g. I) which forms the atmosphere in the sealing tube and is the transport body of the impurities in the raw material 12 are sealed into the bottom of the sealing tube 11 formed of a heat resistant material (e.g.; quartz) and after the inside of the tube is evacuated to about 10<-6>Torr pressure, the top part of the tube 11 is hermetically sealed. This tube 11 is then disposed in the heating furnace in such a manner that the bottom of the tube is positioned in the high-temp. part of the heating furnace and the top part in the low-heating part to provide the temp. difference in the tube 11. The refining is thus executed by transmitting and settling the impurities such as Cu, Al, and Cr in the raw material 12 to the low-temp. part by the transport body 13.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はn−VI族化合物半導体のM製方法、■−VI
族化合物半導体単結晶の製造方法にかかり、特に青色発
光素子に適用されるn −VI族化合物半導体に対する
高純度化のための熱処理方法と結晶の単結晶化、および
この半お体裁板を用いた半導体発光素子の製造方法に関
する。
[Detailed description of the invention] [Object of the invention] (Industrial application field) The present invention provides a method for manufacturing n-VI group compound semiconductor, ■-VI
The present invention relates to a method for producing a group compound semiconductor single crystal, and a heat treatment method for high purification of an n-VI group compound semiconductor, which is particularly applied to blue light emitting devices, single crystallization of the crystal, and the use of this semi-shaped plate. The present invention relates to a method for manufacturing a semiconductor light emitting device.

(従来の技術) 化合物半導体材料を用いて赤色から緑色に至る間に発光
域を有する半導体発光素子は量産されており、さらに輝
度を向ヒさせるための開発が進められている。しかしな
がら、可視領域で青色の発光域を有する青色発光素子は
、未だ満足できる1造技術が提供されていない。
(Prior Art) Semiconductor light emitting devices using compound semiconductor materials and having a light emitting range ranging from red to green are being mass produced, and development is underway to further improve the brightness. However, a satisfactory manufacturing technology has not yet been provided for a blue light-emitting element that emits blue light in the visible region.

青色発光素子を製造するには、その半導体材料の禁制帯
幅が2.6〜3.7eVを超えていることが必要であり
、最近ではこれを満足する半導体として■−■族化合物
半導体が注目されるようになった。
In order to manufacture blue light emitting devices, it is necessary that the forbidden band width of the semiconductor material exceeds 2.6 to 3.7 eV, and recently, ■-■ group compound semiconductors have attracted attention as semiconductors that satisfy this requirement. It started to be done.

中でも禁制帯幅が2.6〜3.7eVの領域内にある硫
化亜鉛(ZnS) 、セレン化亜鉛(ZnSe)および
これらの混晶(ZnSSe)が有望視されている。以下
、前記材料を総称して硫化セレン化亜鉛(ZnSxSe
、4 : O≦8≦1)と呼ぶことにする。 そして、
前記単結晶育成方法には1例えば高温・高圧条件下の納
品成長方法として知られている高圧溶融法、例えばブリ
ッジマン法、タンマン法や、封管化学輸送法。
Among these, zinc sulfide (ZnS), zinc selenide (ZnSe), and their mixed crystals (ZnSSe), which have a forbidden band width in the range of 2.6 to 3.7 eV, are considered promising. Hereinafter, the above materials will be collectively referred to as zinc sulfide selenide (ZnSxSe
, 4: O≦8≦1). and,
The single crystal growth method includes, for example, a high-pressure melting method known as a delivery growth method under high-temperature and high-pressure conditions, such as the Bridgman method, the Tamman method, and the sealed tube chemical transport method.

昇華法などがある。取上の方法によると、比較的大径の
単結晶を得ることも可能とされている。
There are methods such as sublimation. According to the above method, it is also possible to obtain a single crystal with a relatively large diameter.

しかし、前記単結晶の育成に用いられる原料は粉末状、
もしくは不定形の多結晶体が多い。これら多結晶体には
銅等の不純物が多量に含まれている。すなわち、−例の
原料に、含有率がi PPmで、AQ、 Si : 0
.5. Cu、 Cr : 0.3. Mg : 0.
1が測定された。このため、かかる原料から作った単結
晶体もおのずから不純物を引継ぐので、使用上満足な結
晶が得られなかった。また、不純物が格子欠陥等と複雑
に関係し、発光素子をこの結晶で構成するには限界があ
る等の問題がある。さらに、これらの原料に対し予め不
純物を抽出するという詳細な報告例はない。
However, the raw materials used for growing the single crystal are powdery,
Or, there are many polycrystalline bodies with irregular shapes. These polycrystals contain large amounts of impurities such as copper. That is, - for the example raw material, the content is i PPm, AQ, Si: 0
.. 5. Cu, Cr: 0.3. Mg: 0.
1 was measured. For this reason, single crystals made from such raw materials naturally inherit impurities, making it impossible to obtain crystals that are satisfactory for use. In addition, impurities have a complicated relationship with lattice defects, etc., and there are limitations to constructing light emitting devices using this crystal. Furthermore, there are no detailed reports on the extraction of impurities from these raw materials in advance.

(発明が解決しようとする課題) 上記従来例で述べたように、発光累子用の化合物半導体
結晶内には、銅、アルミニウム、マグネシウム等の不純
物が多量に含まれているので、これを原料として作られ
た単結晶も純度が悪く、例えばZnS、 Zn5eなど
の単結晶のように、電気抵抗の制御や、導電型の制御が
困難である等の問題点があった。また、単結晶内にはZ
n空孔等の発生が見られ、発光特性が阻害される問題点
があった。
(Problem to be Solved by the Invention) As mentioned in the above conventional example, the compound semiconductor crystal for the light emitting element contains a large amount of impurities such as copper, aluminum, magnesium, etc. Single crystals made as ZnS and Zn5e also have poor purity, and have problems such as difficulty in controlling electrical resistance and conductivity type, unlike single crystals such as ZnS and Zn5e. In addition, there is Z in the single crystal.
There was a problem in that the generation of n-vacancies and the like was observed, and the light-emitting characteristics were inhibited.

救上により優れた性能を備えた青色発光素子を実現する
上での大きな障害になっていた。
This has been a major obstacle in realizing blue light emitting devices with superior performance.

さらに、上記従来の方法は、封管に入れた状態で結晶化
させるため、封管からの熱歪や、封管の内壁とZn5e
FA液との「濡れ性」の関係で、単結晶は双晶を多く含
んで固化する問題があった。そして、これらの原料につ
いて予め不純物の抽出を施した報告例は見当たらない。
Furthermore, in the conventional method described above, since the crystallization is carried out in a sealed tube, thermal distortion from the sealed tube and Zn5e on the inner wall of the sealed tube may occur.
Due to its "wettability" with the FA liquid, single crystals contain many twin crystals and have the problem of solidification. There are no reports of impurities being extracted in advance from these raw materials.

 そして、ZnSSeの合金を製造する場合、Sの偏析
により単結晶化が困難であり、かつ、Sの濃度が不均一
に分布するという問題がある。また、垂直ブリッジマン
法により作製された単結晶には双晶が多く含まれるとと
もに純度も低い等の問題がある。
When producing a ZnSSe alloy, there are problems in that single crystallization is difficult due to S segregation, and the S concentration is unevenly distributed. Furthermore, single crystals produced by the vertical Bridgman method contain many twin crystals and have low purity.

本発明は上記従来の問題点に鑑みてなされたもので、高
品質のn−VI族化合物半導体結晶を製造するためにI
I−VI族化合物半導体の精製と単結晶化の改良された
方法、およびこの半導体結晶基板を用いた発光素子の製
造方法を提供することを目的とする。
The present invention was made in view of the above-mentioned conventional problems, and is intended to produce high-quality n-VI group compound semiconductor crystals.
It is an object of the present invention to provide an improved method for purifying and single crystallizing a group I-VI compound semiconductor, and a method for manufacturing a light emitting device using this semiconductor crystal substrate.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明はII−VI族化合物半導体の精製方法、■−■
族化合物半導体単結晶の製造方法、およびこれで製造さ
れた半導体単結晶基板を用いる半導体発光素子の製造方
法にかかる。すなわち、封管を用いて、この封管に高温
度部と低温度部を形成し、これら少なくともいずれかに
化合物半導体を配置して封管的雰囲気の特定化、および
温度差を利用して不純物処理と単結晶化を行なう。
(Means for Solving the Problems) The present invention provides a method for purifying a II-VI group compound semiconductor, ■-■
The present invention relates to a method for manufacturing a group compound semiconductor single crystal, and a method for manufacturing a semiconductor light emitting device using a semiconductor single crystal substrate manufactured using the same. In other words, a sealed tube is used to form a high-temperature part and a low-temperature part, and a compound semiconductor is placed in at least one of these to specify the atmosphere of the sealed tube, and the temperature difference is used to eliminate impurities. Perform processing and single crystallization.

まず、第1の発明は、封管による化合物半導体の精製に
温度差を設けた封管内の高温部に[−VI族化合物半導
体装装し、この化合物半導体内の不純物を封管内の低温
部に輸送させて前記II −VI族化合物半導体の純度
を向−ヒさせる方法にある。
First, the first invention is to package a [-VI group compound semiconductor] in a high-temperature part of a sealed tube with a temperature difference for refining compound semiconductors, and to remove impurities in the compound semiconductor to a low-temperature part of the sealed tube. The present invention provides a method for improving the purity of the II-VI group compound semiconductor by transporting the compound semiconductor.

この第1の発明の変形例の第2の発明は、封管内を■族
元素または■族元素のいずれか、または前記同族元素の
いずれかとハロゲン元素との混合雰囲気にして行う方法
にある。
The second invention, which is a modification of the first invention, resides in a method in which the inside of the sealed tube is made into a mixed atmosphere of a group Ⅰ element, a group ① element, or one of the above homologous elements and a halogen element.

第3の発明は、封管によるII−VI族化合物半導体の
精製に、温度差を設けた封管内の高温部に■−■族化合
物半導体を、低温部に不純物吸着材を夫々配置してこの
化合物半導体内の不純物を封管内の低温部に輸送させて
純度を向上させる方法にある6 第4の発明は、封管によって化合物半導体単結晶を製造
するに際し、温度差を設けた封管内の高温部にn−VI
族化合物半導体を、低温部に不純物吸着材を夫々配置し
てこの化合物半導体内の不純物を封管内の低温部に輸送
させて純度を向上させ単結晶化する方法にある。この第
4の発明の変形例の第5の発明は、封管内を■族元素ま
たは■族元素のいずれか、または前記同族元素のいずれ
かとハロゲン元素との混合雰囲気にして行う方法にある
The third invention is to purify a II-VI group compound semiconductor using a sealed tube, by disposing a ■-■ group compound semiconductor in a high-temperature part and an impurity adsorbent in a low-temperature part of the sealed tube with a temperature difference. The fourth invention is a method for improving purity by transporting impurities in a compound semiconductor to a low-temperature part in a sealed tube.6 The fourth invention is a method for improving purity by transporting impurities in a compound semiconductor to a low-temperature part in a sealed tube. Part n-VI
This method involves disposing impurity adsorbents in respective low-temperature parts of group compound semiconductors, transporting impurities within the compound semiconductors to the low-temperature part of a sealed tube, improving the purity, and converting them into single crystals. A fifth invention, which is a modification of the fourth invention, resides in a method in which the inside of the sealed tube is made into an atmosphere of a mixture of a group Ⅰ element, a group ① element, or one of the above homologous elements and a halogen element.

第6の発明は、封管による化合物半導体の製造に、温度
差を設けた封管内の高温部にn −VII化合物半導体
を、また低温部に同種の単結晶体を夫々配置して単結晶
成長を行う方法にある6第7の発明は、封管による化合
物半導体の製造に、温度差を設けた封管内の高温部に■
−■族化合物半導体の多結晶体を5また低温部に同種の
単結晶体を夫々配置し、この封管内をII族またはVI
族元素とハロゲン元素の混合雰囲気にして単結晶成長を
行う方法にある6 第8の発明は、封管によって化合物半導体単結晶を製造
するに際し、温度差を設けた封管内の高温部にII −
VII化合物半導体を構成する■族元素の融液にII 
−VII化合物半導体の多結晶体を配置し、所定温度に
上昇させて前記多結晶体を固相成長により単結晶化させ
る方法にある。
The sixth invention is to produce a compound semiconductor using a sealed tube, and to grow a single crystal by placing an n-VII compound semiconductor in a high-temperature part and a single crystal of the same type in a low-temperature part in a sealed tube with a temperature difference. The seventh invention, which is a method for manufacturing a compound semiconductor using a sealed tube, is a method for manufacturing a compound semiconductor using a sealed tube.
- 5 polycrystals of group II compound semiconductors and single crystals of the same type are placed in the low temperature section, and the inside of this sealed tube is filled with group II or VI compound semiconductors.
The eighth invention resides in a method for growing a single crystal in a mixed atmosphere of group elements and halogen elements.6 The eighth invention resides in a method for growing a single crystal in a mixed atmosphere of group elements and halogen elements.
VII in the melt of Group II elements that constitute the compound semiconductor.
-VII A method of arranging a polycrystalline compound semiconductor, raising the temperature to a predetermined temperature, and converting the polycrystalline body into a single crystal by solid phase growth.

第9の発明は、II−VI族化合物半導体材料を一端か
ら所定の温度で溶融し、この溶融部分を順次材料の他端
に移して単結晶化をはかるII−VII化合物半導体単
結晶の製造方法において、第1の封管内で多結晶体を同
化形成する工程と、前記固定した結晶を内壁との接触面
積を低減させるように前記第1の封管よりも径の大きい
第2の封管内に移して再封入し、前記II−VI族化合
物半導体結晶の融解温度よりも低い温度で熱処理を施し
単結晶化する方法にある。上記第9の発明の変形例であ
る第10の発明は、第2の封管内にて行う熱処理に、低
温部に不純物吸着結晶体を配置して施す方法にある。上
記第10の発明の変形例である第11の発明は第2の封
管内にて行う熱処理に、■族元素、■族元素、またはハ
ロゲン元素を過剰に封入して施す方法にある。
A ninth invention is a method for producing a II-VII compound semiconductor single crystal, which comprises melting a II-VI group compound semiconductor material from one end at a predetermined temperature and sequentially transferring the melted portion to the other end of the material to achieve single crystallization. , a step of assimilating and forming a polycrystal in a first sealed tube, and placing the fixed crystal in a second sealed tube having a larger diameter than the first sealed tube so as to reduce the contact area with the inner wall. The method is to transfer the crystal, reseal it, and perform a heat treatment at a temperature lower than the melting temperature of the II-VI group compound semiconductor crystal to form a single crystal. A tenth invention, which is a modification of the ninth invention, resides in a method in which the heat treatment is carried out in the second sealed tube by arranging an impurity-adsorbing crystal in the low-temperature part. The 11th invention, which is a modification of the 10th invention, resides in a method in which the heat treatment performed in the second sealed tube is performed by enclosing an excessive amount of a group Ⅰ element, a group Ⅰ element, or a halogen element.

第12の発明は、封管による化合物半導体の製造に、温
度差を設けた封管内の高温部にII −VI族族化合物
半体体単結晶体を、また低温部に同種の単結晶体を夫々
配置し、この封管内をII族またはVI族元素とハロゲ
ン元素の混合雰囲気にして単結晶成長を行う方法にある
The twelfth invention is to manufacture a compound semiconductor using a sealed tube, in which a semi-single crystal of a group II-VI compound is placed in a high-temperature part of the sealed tube with a temperature difference, and a single crystal of the same type is placed in a low-temperature part. There is a method in which single crystal growth is performed by arranging the elements and creating a mixed atmosphere of a group II or group VI element and a halogen element in the sealed tube.

第13の発明は、封管に温度差を設け、封管内の高温部
にn−VII化合物半導体の多結晶体を、これを構成す
る■族元素の融液中に配置し、固相成長によりII−V
II化合物単結晶基板を形成し、この単結晶基板」二に
これと同種のエピタキシャル層を積層形成し、このエピ
タキシャル層を発光層とする半導体発光素子の製造方法
にある。
The 13th invention provides a temperature difference in a sealed tube, places a polycrystalline body of an n-VII compound semiconductor in a melt of a group II element constituting the polycrystalline body in a high-temperature part of the sealed tube, and performs solid phase growth. II-V
A method for manufacturing a semiconductor light-emitting device includes forming a II compound single-crystal substrate, laminating an epitaxial layer of the same type on the single-crystal substrate, and using this epitaxial layer as a light-emitting layer.

第14の発明は、温度差を設けた封管内の高温部に■−
■族化合物半浬体の結晶体を、また低温部に同種の単結
晶体を夫々配置し、この封管内をII族またはVI族元
素とハロゲン元素の混合雰囲気にして単結晶成長を行い
II −VII化合物半導体単結晶基板を形成し、この
結晶基板上にこれと同種のエピタキシャル層を形成し、
ここのエピタキシャル層を発光層とする半導体発光素子
の製造方法にある。
The fourteenth invention provides a high temperature section in a sealed tube with a temperature difference.
A crystal of a group II compound semi-solid and a single crystal of the same type are respectively placed in a low temperature section, and the single crystal is grown in a mixed atmosphere of a group II or group VI element and a halogen element in the sealed tube. Forming a VII compound semiconductor single crystal substrate, forming an epitaxial layer of the same type on this crystal substrate,
The present invention relates to a method of manufacturing a semiconductor light emitting device using an epitaxial layer as a light emitting layer.

第15の発明は、発光層を有機金属気相成長法により形
成することを特徴とする前記第13または14のいずれ
かに記載された発明の半′2萼体発光素子の製造方法に
ある。
A fifteenth invention resides in a method for manufacturing a semi-calyx light-emitting device according to any one of the thirteenth or fourteenth inventions, characterized in that the light-emitting layer is formed by organometallic vapor phase epitaxy.

第16の発明は、発光層をその構成元素の少なくとも一
方の元素を用い液相成長により形成することを特徴とす
る前記第13または14のいずれかに記載された発明の
半導体発光素子の製造方法にある。
A 16th invention is a method for manufacturing a semiconductor light emitting device according to any one of the 13th and 14th inventions, characterized in that the light emitting layer is formed by liquid phase growth using at least one of its constituent elements. It is in.

(作 用) 本発明は青色発光素子に用いられるII−VII化合物
半導体単結晶体の製造に、その原材料に含まれる不純物
を抽出し高純度化をはかるため、封管に温度差を設けて
その高温部に配置した被精製体の不純物を低温部に輸送
させることをベースに、封管内の雰囲気、不純物の輸送
体、不純物の吸着材等に互って開発し、高純度化を達成
する。
(Function) The present invention aims at high purity by extracting impurities contained in raw materials in the production of II-VII compound semiconductor single crystals used in blue light emitting devices, by providing a temperature difference in a sealed tube. Based on the idea of transporting impurities from the object placed in a high-temperature section to a low-temperature section, high purity is achieved by developing the atmosphere inside the sealed tube, impurity transporter, impurity adsorbent, etc.

また、温度差を設けた封管の高温部にII−VI族化合
物半導体多結晶体を、これを構成する■族元素の融液中
に配置し固相成長により単結晶化を達成する。
Further, a II-VI group compound semiconductor polycrystal is placed in a melt of a group II element constituting it in a high-temperature part of a sealed tube provided with a temperature difference, and single crystallization is achieved by solid phase growth.

さらに、上記に基づいて第1の封管内で多数の双晶が含
まれ作製されたII −VI族化合物半導体結晶を、別
にこれより大径になる第2の封管にその内壁との接触面
積が極減するように封入し、かつこの半導体の融点より
低い温度で一ヒ記に基づいて熱処理を施すことにより、
大型で欠陥の少ない単結晶体を得ることができる。
Furthermore, the II-VI group compound semiconductor crystal produced in the first sealed tube containing a large number of twins based on the above is separately placed in a second sealed tube having a larger diameter with a contact area with the inner wall of the second sealed tube. By enclosing the semiconductor in such a way that the
A large single crystal with few defects can be obtained.

次に、上記に基づいて製造された結晶基板上へ同種の結
晶層を積層させ、この結晶層を発光層とする発光接合を
形成することにより、良好な素子特性の電流−電圧特性
が得られる。
Next, a crystal layer of the same type is laminated on the crystal substrate manufactured based on the above, and a light emitting junction is formed using this crystal layer as a light emitting layer, thereby obtaining current-voltage characteristics with good device characteristics. .

(実施例) 以下、第1および第2の発明の実施例につき図面を参照
して説明する。
(Example) Examples of the first and second inventions will be described below with reference to the drawings.

第1図に第1、ないし第3の発明の実施例に用いた封管
とその内部の配置を断面図で示す。第1図に示すように
、耐熱材の例えば石英で形成された封管11内に、精製
される原材料12の一例の多結晶Zn5eと、封管内の
雰囲気を形成するとともに前記原材料中の不純物の輸送
体13であるZn、カルコゲン元素特にSe、ハロゲン
元素特に沃素から選ばれた少くとも一つを封入し、10
−’ トール(Torr、)程度に排気しこの封管の頂
部を溶封する。救主の封管11は前記原材料I2と輸送
体13が配置された底部を加熱炉の高温部に、頂部を加
熱炉の低温部に夫々配置し、この状態で一例として約2
週間経過される熱処理を施す。この熱処理は第2図に示
す温度勾配の加熱炉で、高温部温度が一例の850℃、
低温部温度が一例の840℃で施す。
FIG. 1 shows a sectional view of the sealed tube used in the first to third embodiments of the invention and its internal arrangement. As shown in FIG. 1, polycrystalline Zn5e, which is an example of the raw material 12 to be refined, is placed in a sealed tube 11 made of a heat-resistant material such as quartz, and an atmosphere inside the sealed tube is formed while impurities in the raw material are removed. At least one selected from Zn, a chalcogen element, particularly Se, and a halogen element, particularly iodine, which is a transporter 13, is enclosed, and 10
-' Evacuate the tube to a pressure of about 100 torr and melt-seal the top of the sealed tube. The savior's sealed tube 11 has the bottom part where the raw material I2 and the transporter 13 are placed in the high temperature part of the heating furnace, and the top part in the low temperature part of the heating furnace.
Apply a heat treatment that lasts for a week. This heat treatment is carried out in a heating furnace with a temperature gradient shown in Figure 2, with a high temperature of 850°C, for example.
The temperature of the low temperature part is 840°C, for example.

救主の如くすることにより、原材料12である多結晶Z
n5e中のCu、 AQ、 Cr等の不純物は輸送体1
3によって低温部に輸送され沈積する。この熱処理は封
管11が直径20閣、長さ50mmで、これに原材料の
多結晶Zn5e 12を50g、不純物輸送体のZn1
3を10■夫々封入して高温部850℃、低温部840
℃の較差を設けて施した。このようにして原材料とこれ
に前記熱処理を施した後の夫々の不純物濃度をICP(
Injected Coupled Plasma)法
により分析した結果を次の第1表に示す。
By acting like a savior, raw material 12 polycrystalline Z
Impurities such as Cu, AQ, and Cr in n5e are transporter 1
3, it is transported to the low-temperature area and deposited. In this heat treatment, the sealed tube 11 has a diameter of 20 mm and a length of 50 mm, and 50 g of polycrystalline Zn5e 12 as a raw material and Zn1 as an impurity transporter are added to the sealed tube 11.
The high temperature part is 850℃ and the low temperature part is 840℃.
It was applied at different temperature ranges. In this way, the impurity concentration of the raw material and each impurity after it has been subjected to the heat treatment is determined by ICP (
The results of the analysis using the injected coupled plasma method are shown in Table 1 below.

第1表に見られるように、熱処理により原材料の高純度
化が顕著に進み、特にCr、 Cu等の重金属類の抽出
に大きな効果のあることが明らかになった。
As shown in Table 1, heat treatment significantly improved the purity of raw materials, and was particularly effective in extracting heavy metals such as Cr and Cu.

さらに、雰囲気として前記Znのほか、すでに述べたS
e、ハロゲン元素、また、封管内をZnとハロゲン元素
の混合雰囲気、またはSeとハロゲン元素の混合雰囲気
などがよく、夫々の雰囲気に適した不純物の吸着が可能
である。
Furthermore, as an atmosphere, in addition to the above-mentioned Zn, the already mentioned S
e, a halogen element, and a mixed atmosphere of Zn and a halogen element, or a mixed atmosphere of Se and a halogen element in the sealed tube, and it is possible to adsorb impurities suitable for each atmosphere.

次に第4および第5の発明の実施例につき第3図を参照
して説明する。第3図にこの実施例に用いた封管とその
内部の配置を断面図で示す。第3図に示すように、耐熱
材の例えば石英で形成された封管21内に、精製される
原材料12の一例の多結晶Zn5eと、封管内の雰囲気
を形成するとともに前記原材料中の不純物の輸送体13
であるZn、カルコゲン元素特にSe、およびハロゲン
元素から選ばれた少くとも一つの例えば沃素をともに底
部に配置し、輸送された不純物を吸着させるための吸着
材22の一例の多結晶Zn5eをこの封管の頂部に形成
されたくびれ部21aに収納し、封管21内を10−’
トール(Torr、)程度に排気し頂部を溶封する。救
主の如く構成された封管21は、前記原材料12と輸送
体13が配置された底部を加熱炉の高温部に、頂部を加
熱炉の低温部に夫々配置し、この状態で一例として約2
週間経過させる熱処理を施す。この熱処理は第2図に示
す温度勾配の加熱炉で、高温部温度が一例の850℃、
低温部温度が一例の840℃で施す。
Next, embodiments of the fourth and fifth inventions will be described with reference to FIG. FIG. 3 shows a sectional view of the sealed tube used in this example and its internal arrangement. As shown in FIG. 3, polycrystalline Zn5e, which is an example of the raw material 12 to be refined, is placed in a sealed tube 21 made of a heat-resistant material such as quartz, and an atmosphere inside the sealed tube is formed while impurities in the raw material are removed. Transport body 13
At least one selected from Zn, a chalcogen element, particularly Se, and a halogen element, for example, iodine, are placed at the bottom, and polycrystalline Zn5e, which is an example of an adsorbent 22, is placed in this seal to adsorb the transported impurities. It is stored in the constriction 21a formed at the top of the tube, and the inside of the sealed tube 21 is 10-'
Evacuate to about Torr and seal the top. The sealed tube 21 configured like a savior has its bottom part where the raw material 12 and transporter 13 are placed in the high temperature part of the heating furnace, and its top part in the low temperature part of the heating furnace. 2
Heat treatment is performed for a week. This heat treatment is carried out in a heating furnace with a temperature gradient shown in Figure 2, with a high temperature of 850°C, for example.
The temperature of the low temperature part is 840°C, for example.

救主の如くして原材料12の多結晶Zn5e中のCu。Cu in polycrystalline Zn5e as raw material 12 as a savior.

AQ、 Cr等の不純物は輸送体13によって低温部に
配置された吸着材22の単結晶Zn5eに輸送され、こ
れに吸着される。
Impurities such as AQ and Cr are transported by the transporter 13 to the single crystal Zn5e of the adsorbent 22 placed in the low-temperature part, and are adsorbed thereon.

叙」二の処理は封管21が直径20閾、長さ50mmで
In the second process, the sealed tube 21 has a diameter of 20 mm and a length of 50 mm.

これに原材料12の多結晶Zn5eを50g、輸送体1
3のZnを10111g、吸着材22の単結晶Zn5e
を5g夫々封入して、原材料と輸送体を高温度850℃
、吸着材を低温部840℃の較差を設けて施した。この
ようにして原材料とこれに前記熱処理を施した後の夫々
の不純物濃度をICP法により分析した結果は次の第2
表に示す如く、Cu、Cr等重金属類の低減が顕著に認
められた。また、上記処理により吸着材22中の不純物
濃度の変化を調査して第3表に示す結果が得られた。
To this, 50g of polycrystalline Zn5e as raw material 12, transporter 1
10111g of Zn of 3, single crystal Zn5e of adsorbent 22
The raw material and the carrier were heated to a high temperature of 850°C.
, the adsorbent was applied with a temperature difference of 840°C. The results of analyzing the impurity concentrations of the raw materials and each of them after the heat treatment using the ICP method are as follows.
As shown in the table, a significant reduction in heavy metals such as Cu and Cr was observed. Furthermore, changes in the impurity concentration in the adsorbent 22 were investigated by the above treatment, and the results shown in Table 3 were obtained.

以下余白 この第3表に見られるように、吸着材22中の不純物濃
度が顕著な増大を示すことから、第2表の結果と相俟っ
て原材料12の含有不純物が輸送体13により吸着材2
2に搬送され吸着されたことが明らかである。
Margin below As shown in Table 3, the concentration of impurities in the adsorbent 22 shows a remarkable increase, which together with the results in Table 2 means that the impurities contained in the raw material 12 are transferred to the adsorbent by the transporter 13. 2
It is clear that the sample was transported to and adsorbed by 2.

なお、この発明は取上の実施例に限られるものでなく、
雰囲気としてZnのほか、すでに述べたSi。
Note that this invention is not limited to the above-mentioned embodiments,
In addition to Zn, the atmosphere includes Si as already mentioned.

ハロゲン元素など、また、 Znとハロゲン元素との混
合雰囲気、あるいはSsとハロゲン元素との混合雰囲気
が適し、夫々の雰囲気に適した不純物の吸着が可能であ
る。
A mixed atmosphere of Zn and a halogen element, or a mixed atmosphere of Ss and a halogen element is suitable, and impurities suitable for each atmosphere can be adsorbed.

また、ト記不純物吸着材は、高温部に配置されたII−
VI族化合物半導体と同種の化合物半導体を用いて適合
する。
In addition, the impurity adsorbent described in (g) is
Compatible with compound semiconductors of the same type as Group VI compound semiconductors.

次に第6の発明と第7の発明の一実施例につき第4図お
よび第5図を参照して説明する。
Next, an embodiment of the sixth invention and the seventh invention will be described with reference to FIGS. 4 and 5.

第4図に一実施例に用いた封管とその内部の配置を断面
図で示す。この第4図に示すように、耐熱材の例えば石
英で形成された封管21内の底部に、精製された原材料
12の一例として多結晶Zn5eと、Zn、沃素などの
化学輸送体13を、また、封管21の頂部のくびれ部2
1aに単結晶Zn5eの種結晶14を夫々配置する。そ
して、この封管21の底部を加熱炉の高温部に、頂部を
加熱炉の低温部に夫々配置し、この状態で一例として約
2週間経過させる、この結晶成長は前記第2図に示す温
度分布の加熱炉で、その高温部温度が一例の850℃、
低温部温度が一例の840℃で施し、第5図に図示する
ように種結晶14に成長したZn5e単結晶成長体24
が得られた。
FIG. 4 shows a sectional view of the sealed tube used in one embodiment and its internal arrangement. As shown in FIG. 4, polycrystalline Zn5e as an example of the purified raw material 12 and chemical transporters 13 such as Zn and iodine are placed at the bottom of a sealed tube 21 made of a heat-resistant material such as quartz. In addition, the constriction 2 at the top of the sealed tube 21
Seed crystals 14 of single-crystal Zn5e are respectively placed in 1a. Then, the bottom part of the sealed tube 21 is placed in the high temperature part of the heating furnace, and the top part is placed in the low temperature part of the heating furnace, and in this state, for example, about two weeks pass.This crystal growth is performed at the temperature shown in FIG. In a distributed heating furnace, the temperature of the high temperature part is 850℃, for example.
The Zn5e single crystal grown body 24 was grown at a low temperature part temperature of 840° C. as an example, and was grown into a seed crystal 14 as shown in FIG.
was gotten.

なお、L記実施例の封管21は直径が20+m、長さが
50mに形成されたものを用い、原材料の多結晶Zn5
aを10g、沃素を50mH,Znを1.2■底部に配
置し、種結晶14の単結晶Zn5eは頂部のくびれ部2
1aに夫々配置したのち封管内を10−’ トール(丁
orr)程度に排気して前記半導体結晶の製造を行う。
The sealed tube 21 of Example L was formed to have a diameter of 20+ m and a length of 50 m, and the raw material polycrystalline Zn5
10g of a, 50mH of iodine, and 1.2cm of Zn are placed at the bottom, and the single crystal Zn5e of the seed crystal 14 is placed at the constriction part 2 at the top.
1a, the inside of the sealed tube is evacuated to about 10-' Torr to manufacture the semiconductor crystal.

また、上記成長雰囲気を、II −VI族化合物の一例
のZnあるいはSeと、ハロゲン元素との混合雰囲気に
て行なってよい。さらに、上記成長雰囲気の形成のため
に封入される一例のZnの量を、モル分率で同時に封入
されるハロゲン元素の172以下にして行うことを特徴
とする。
Further, the growth atmosphere may be a mixed atmosphere of Zn or Se, which is an example of a II-VI group compound, and a halogen element. Furthermore, the method is characterized in that the amount of Zn sealed in order to form the growth atmosphere is set to a molar fraction of 172 or less of the halogen element simultaneously sealed.

上記について、単結晶Zn5eの沃素のみによる従来の
化学輸送法で得られた結晶体と、沃素とZnをドープし
て行なう実施例によって得られた結晶体について光吸収
およびフォトルミネッセンスを用いて比較した。まず、
第6図の光吸収の比較データから本発明で得られた結果
は短波長(〜47oIJra)での透過率が高く、不純
物による吸収が少なく、大幅に高純度化が達せられてい
ることが明らかである。次に、第7図に325nmのH
i−Cdレーザ光励起の室温フォトルミネッセンス・ス
ペクトルの結果を示す。このフォトルミネッセンス特性
は沃素のみに比べ、580nm近付のSA発光強度は抑
制され、470nm近付の青色発光が強く現われた。こ
のように、沃素と同時にZn (またはSe)をドープ
したことによる効果は明らかであり、これによって青色
発光素子に適した低抵抗n型結晶が得られた。
Regarding the above, a comparison was made using light absorption and photoluminescence between a crystal obtained by a conventional chemical transport method using only iodine of single crystal Zn5e and a crystal obtained by an example of doping with iodine and Zn. . first,
From the comparative data of light absorption shown in Figure 6, it is clear that the results obtained with the present invention have high transmittance at short wavelengths (~47oIJra), little absorption due to impurities, and significantly higher purity. It is. Next, in Figure 7, 325 nm H
The results of room temperature photoluminescence spectra of i-Cd laser light excitation are shown. Compared to iodine alone, this photoluminescence property showed that the SA emission intensity near 580 nm was suppressed, and the blue emission near 470 nm appeared strongly. Thus, the effect of doping Zn (or Se) at the same time as iodine is clear, and a low resistance n-type crystal suitable for a blue light emitting device was obtained.

次に、結晶の成長速度に関しては第8図に示すように、
ハロゲン元素(沃素)の量に対し、これと同時に封入さ
れるZnの量をモル比で172以下にして顕著に向上し
、かつ特性も優れたものが得られた。
Next, regarding the crystal growth rate, as shown in Figure 8,
By setting the molar ratio of Zn to the amount of halogen element (iodine) to be simultaneously encapsulated at a molar ratio of 172 or less, a product with excellent characteristics was obtained.

なお、実施例ではZn5eにつき例示したが、同様な効
果はZnS、 ZnTe、 CdSe、 CdTe等の
他のII−VI族化合物半導体材料に応用できることは
言うまでもない。
Although Zn5e is used as an example in the embodiment, it goes without saying that similar effects can be applied to other II-VI group compound semiconductor materials such as ZnS, ZnTe, CdSe, and CdTe.

次に第8の発明の一実施例につき第9図ないし第11図
を参照して説明する。
Next, an embodiment of the eighth invention will be described with reference to FIGS. 9 to 11.

第9図(a)、 (b)に示すように、アンプル11内
下部の高温部にn −vi族化合物半導体の一例の多結
晶Zn5e22を、Zn中850−1100℃にて20
〜10000時間の熱処理を施してほぼ単結晶化を達成
する。第9図(b)に単結晶Zn5e32を示す。そし
てアンプルの上記高温部と低温部との温度勾配を少なく
とも10°C以上に保持して行う。
As shown in FIGS. 9(a) and 9(b), polycrystalline Zn5e22, which is an example of an n-vi group compound semiconductor, is placed in the high temperature part of the lower part of the ampoule 11 in Zn at 850-1100°C for 20 minutes.
After heat treatment for ~10,000 hours, nearly single crystallization is achieved. FIG. 9(b) shows single crystal Zn5e32. The temperature gradient between the high-temperature part and the low-temperature part of the ampoule is maintained at at least 10°C.

次に、上記Znに第3の不純物として一例のAQを添加
し、Zn5e、 ZnSSe等の結晶内に拡散、成長さ
せることにより、これらの結晶体の電気抵抗値を低下さ
せることができる。
Next, by adding an example of AQ as a third impurity to the Zn and allowing it to diffuse and grow into crystals such as Zn5e and ZnSSe, the electrical resistance value of these crystals can be reduced.

また、上記AQ等の活性な不純物を添加させる場合、第
10図に示すようにAQ、0.のるつぼ16を用い、こ
のるつぼ内にて熱処理を施すとよい。
In addition, when adding active impurities such as AQ, as shown in FIG. It is preferable to use a crucible 16 and perform the heat treatment in this crucible.

次に、第11図(a)、 (b)に示すものは、アンプ
ル21内面に結晶体の支持部材17を係止し、冷却時に
同図(b)に示すようにアンプルを逆さにし、Zn15
と単結晶42とを分離させることを特徴とするものであ
る。なお、上記結晶体の支持部材17はアンプル21の
「くびれ部」21aを利用し、装入してもよい。
Next, in the case shown in FIGS. 11(a) and 11(b), the support member 17 of the crystal is locked on the inner surface of the ampoule 21, and the ampoule is turned upside down as shown in FIG. 11(b) during cooling.
This is characterized by separating the single crystal 42 and the single crystal 42. Note that the support member 17 for the crystal body may be inserted using the "necked part" 21a of the ampoule 21.

この実施例によれば、 (υ 高純度の単結晶体を簡単に固相成長させることが
できる、 ■ 面上欠陥を一方向に揃えることが可能である、(3
)低抵抗が得られる、 (4)安定に不純物をドープさせることできる、■ 単
結晶体に例えばZn固化により生ずる固化膜の歪が印加
されないので、単結晶体の特性が向−トする、等の利点
がある。
According to this example, (υ a high-purity single crystal can be easily grown in solid phase, ■ it is possible to align defects on the surface in one direction, (3)
) low resistance can be obtained, (4) impurities can be stably doped, ■ the strain of the solidified film caused by solidification of Zn, for example, is not applied to the single crystal, so the characteristics of the single crystal are improved, etc. There are advantages.

次に第9ないし第11の発明の実施例につき第12図な
いし第18図を参照して説明する。
Next, embodiments of the ninth to eleventh inventions will be described with reference to FIGS. 12 to 18.

第12図に第9ないし第11の発明の第1実施例に用い
た封管とその内部の配置を断面図で示す。第12図に示
す封管11は、耐熱材の例えば石英で形成され、ブリッ
ジマン法で予め製造され多数の双晶を含み固化したZn
5e単結晶体52を収納するが、このZn5e単結晶体
52の製造に用いられた封管よりも径大のものが用いら
れる。すなわち、前記Zn5e単結晶体52の製造に用
いられた封管が、例えば20mm径の場合、封管11は
径50nyn径のものを用い、単結晶体52と封管内壁
との接触面積を低減させるようにする。また、この封管
11には前記Zn5e単結晶体52とともに、封管内の
雰囲気を形成するとともに前記実施例に用いられるZn
5e単結晶中の不純物の輸送体13であるZn、カルコ
ゲン元素特にSe、ハロゲン元素の例えば沃素から選ば
れた少なくとも一つと、前記不純物の輸送体によって輸
送された不純物を吸着するZn5e単結晶体14を封入
し、10−” トール(Torr)程度に排気しこの封
管の頂部を溶封する。取上の封管11は前記Zn5e単
結晶体52と輸送体13が配置された底部を加熱炉の高
温部に、頂部を加熱炉の低温部に夫々配置し、この状態
で一例として約2週間経過させる熱処理を施す。この熱
処理は前記第2図に示す温度勾配の加熱炉で、高温部温
度を一例の850℃、低温部温度を一例の840℃で施
す。これにより、原材料である結晶Zn5e52中のC
u、 Ax、 Cr等の不純物は輸送体13によって低
温部に輸送され沈積する。
FIG. 12 shows a sectional view of the sealed tube and its internal arrangement used in the first embodiment of the ninth to eleventh aspects of the invention. The sealed tube 11 shown in FIG. 12 is made of a heat-resistant material such as quartz, and is made of Zn which has been manufactured in advance by the Bridgman method and has been solidified containing a large number of twin crystals.
The Zn5e single crystal body 52 is housed in a sealed tube having a larger diameter than the sealed tube used to manufacture the Zn5e single crystal body 52. That is, when the sealed tube used to manufacture the Zn5e single crystal body 52 has a diameter of 20 mm, for example, the sealed tube 11 has a diameter of 50 nyn to reduce the contact area between the single crystal body 52 and the inner wall of the sealed tube. Let them do it. In addition, this sealed tube 11, together with the Zn5e single crystal 52, forms the atmosphere inside the sealed tube and contains the Zn5e used in the above embodiment.
At least one selected from Zn, a chalcogen element, particularly Se, and a halogen element, such as iodine, which is an impurity transporter 13 in the 5e single crystal, and a Zn5e single crystal 14 that adsorbs impurities transported by the impurity transporter 13. is sealed and the top of the sealed tube is melt-sealed by evacuation to about 10-'' Torr. The top part is placed in the high-temperature part of the heating furnace, and the top part is placed in the low-temperature part of the heating furnace, and heat treatment is performed in this state for about two weeks, for example.This heat treatment is performed in a heating furnace with the temperature gradient shown in FIG. is applied at an example of 850°C, and the low temperature part temperature is applied at an example of 840°C.As a result, C in crystalline Zn5e52, which is a raw material, is
Impurities such as u, Ax, and Cr are transported to the low temperature part by the transporter 13 and deposited therein.

上記熱処理は封管11に一例として直径50m、長さ1
50 onの石英アンプルを用い、 その底部にZn5
e単結晶体52を150g、輸送体13のZnを10■
を夫々内装し上述の真空封止を施した後、第2図に示さ
れる温度分布の電気炉内に配置し熱処理を施した。
The above heat treatment is applied to the sealed tube 11, which has a diameter of 50 m and a length of 1 as an example.
A 50 on quartz ampoule was used, and Zn5 was added to the bottom of it.
e 150g of single crystal 52, 10g of Zn as transporter 13
After each was placed inside and vacuum-sealed as described above, it was placed in an electric furnace with a temperature distribution shown in FIG. 2 and heat-treated.

2週間の熱処理後、採り出されたZn5e単結晶体はそ
の結晶内の双晶の7割以−ヒが消滅しており、高品質に
なっているのが確認された。
After two weeks of heat treatment, more than 70% of the twins in the extracted Zn5e single crystal had disappeared, and it was confirmed that the Zn5e single crystal was of high quality.

取上における熱処理の雰囲気は10気圧以上である。ま
た、熱処理温度は700℃〜1250℃の範囲内に選択
し設定される。さらに、前記高温部と低温部の温度差が
10℃の場合を例示したがこれに限られず、100℃以
内であれば有効である。
The atmosphere for the heat treatment during sampling is 10 atmospheres or more. Further, the heat treatment temperature is selected and set within the range of 700°C to 1250°C. Furthermore, although the case where the temperature difference between the high temperature part and the low temperature part is 10°C has been exemplified, the present invention is not limited to this, and is effective as long as it is within 100°C.

次に第13図に示す第2実施例は、前記第1実施例にお
けると同じ直径50鵬の封管21の石英アンプルを用い
るが、この石英アンプルは頂部にくびれ部21aが設け
られ、 ここに吸着材として用いられるZn5e単結晶
体■4を一例の10g内装し、底部にZn5e単結、W
+ 52を150g、輸送体13のZnを10111g
夫々内装し、第1実施例と同様に真空封止を施した後、
前記第2図に示される温度分布の電気炉内に配置し第1
実施例と同じ熱処理を施すものである。
Next, the second embodiment shown in FIG. 13 uses a quartz ampoule with a sealed tube 21 having a diameter of 50 mm, which is the same as in the first embodiment, but this quartz ampoule has a constricted part 21a at the top. An example of 10g of Zn5e single crystal ■4 used as an adsorbent is placed inside, and Zn5e single crystal, W
+ 150g of 52, 10111g of Zn of transporter 13
After installing each interior and applying vacuum sealing in the same manner as in the first embodiment,
Placed in an electric furnace with temperature distribution shown in FIG.
The same heat treatment as in the example is applied.

取上の如くして処理されるZn5e単結晶体52中のC
u、 AQ、 Cr等の不純物は輸送体13によって封
管11の低温部に(第1実施例)、または封管21の頂
部に内装され低温部にある吸着用のZn5e単結晶体1
4に(第2実施例)輸送され、沈積または吸着される。
C in Zn5e single crystal 52 treated as mentioned above
Impurities such as u, AQ, Cr, etc. are transported to the low temperature part of the sealed tube 11 by the transporter 13 (first embodiment), or to the Zn5e single crystal 1 for adsorption, which is housed in the top of the sealed tube 21 and is located in the low temperature part.
4 (Second Example), and is deposited or adsorbed.

前記処理によって生じた被処理Zn5e単結晶体52中
の不純物濃度をICP(Injected Coupl
ed Plasma)法により分析し、次の第4表に示
される結果が得られる。
The impurity concentration in the Zn5e single crystal to be treated 52 generated by the above treatment is determined by ICP (Injected Couple
The results are shown in Table 4 below.

この第4表に見られるように、熱処理により原材料の高
純度化が顕著に進み、特にCr、 Cu等の金属類の抽
出に大きな効果のあることが明らかになった・ また、第2実施例における吸着内のZn5e単結晶体1
4における処理前後の不純物量を比較した結果を次の第
5表に示す。
As shown in Table 4, heat treatment significantly improved the purity of raw materials, and was particularly effective in extracting metals such as Cr and Cu. Zn5e single crystal 1 in adsorption in
The results of comparing the amount of impurities before and after the treatment in No. 4 are shown in Table 5 below.

以下余白 また、2週間の熱処理後、採り出されたZn5a単結晶
体はその結晶内の双晶の7割以上が消滅しており、高品
質になっているのが確認された。しかも、得られた単結
晶体は、その色が白色を帯びていることからバンドギャ
ップが大きくなっていることが確認された。
It was also confirmed that more than 70% of the twins in the Zn5a single crystal extracted after two weeks of heat treatment had disappeared, and that the Zn5a single crystal was of high quality. Furthermore, it was confirmed that the obtained single crystal had a white color, which indicated that the band gap was large.

次に、第3実施例に用いた封管とその内部の配置を第1
4図に断面図で示す。第14図に示すように、耐熱材の
例えば石英で形成された封管11に、ブリッジマン法で
得られた材料のZn5a単結晶体52と、封管内の雰囲
気を形成するとともに前記原材料中の不純物の輸送体1
3であるZn、カルコゲン元素特にSe、ハロゲン元素
特に沃素から選ばれた少なくとも一つのSと、前記不純
物の輸送体によって輸送された不純物を吸着するZn5
e単結晶体14を封入し、10−’ )−−ル(Tor
r)程度に排気しこの封管の頂部を溶封する。取上の封
管11は前記Zn5e単結晶体52と輸送体13が配置
された底部を加熱炉の高温部に、頂部を加熱炉の低温部
に夫々配置し、この状態で一例として約2週間経過され
る熱処理を施す。
Next, the sealed tube used in the third example and its internal arrangement are
A cross-sectional view is shown in Figure 4. As shown in FIG. 14, a Zn5a single crystal 52, which is a material obtained by the Bridgman method, is placed in a sealed tube 11 made of a heat-resistant material, such as quartz, to form an atmosphere inside the sealed tube and to absorb the contents of the raw material. Impurity transporter 1
At least one S selected from Zn, a chalcogen element, especially Se, and a halogen element, especially iodine, and Zn5, which adsorbs impurities transported by the impurity transporter.
e single crystal 14 is enclosed, and 10-')
Evacuate the tube to a level of r) and melt-seal the top of this sealed tube. The sealed tube 11 to be taken up is placed with the bottom part where the Zn5e single crystal 52 and the transporter 13 are placed in the high temperature part of the heating furnace, and the top part in the low temperature part of the heating furnace, and is kept in this state for about two weeks, for example. A heat treatment is applied.

この熱処理は前記第2図に示す温度勾配の加熱炉で、高
温部温度を一例の850℃、低温部温度を一例の840
℃で施す。これにより、原材料である結晶Zn5e52
の中のCu、 i、 Cr等の不純物は輸送体13によ
って低温部に輸送され沈積する。
This heat treatment was carried out in a heating furnace with the temperature gradient shown in FIG.
Apply at °C. As a result, the raw material crystal Zn5e52
Impurities such as Cu, i, and Cr are transported to the low temperature part by the transporter 13 and deposited therein.

上記熱処理は封管11に一例として直径501m、長さ
150mmの石英アンプルを用い、その底部にZn5e
単結晶体52を15g、輸送体13のZnを10■、過
剰のS、またその頂部吸着材として用いるZn5e単結
晶体14を10g、夫々配置し上述の真空封止を施した
後、前記第2図に示される温度分布の電気炉内に配置し
熱処理を施した。
In the above heat treatment, a quartz ampoule with a diameter of 501 m and a length of 150 mm is used as the sealed tube 11, and Zn5e is added to the bottom of the quartz ampoule.
After placing 15 g of the single crystal 52, 10 g of Zn in the transporter 13, excess S, and 10 g of the Zn5e single crystal 14 used as the top adsorbent, and performing the vacuum sealing described above, It was placed in an electric furnace with the temperature distribution shown in Figure 2 and heat treated.

2週間の熱処理後、採り出されたZnSSe単結晶体6
2はその結晶内の双晶の7割以上が消滅しておリ、高品
質になっているのが確認された。
ZnSSe single crystal 6 extracted after two weeks of heat treatment
It was confirmed that more than 70% of the twins in the crystal No. 2 had disappeared, and the quality was high.

取上における熱処理の雰囲気は10気圧以上である。ま
た、熱処理温度は700℃〜1250℃の範囲内に選択
し設定される。さらに、前記高温部と低温部の温度差が
10℃の場合を例示したがこれに限られず、100℃以
内であれば有効である。
The atmosphere for the heat treatment during sampling is 10 atmospheres or more. Further, the heat treatment temperature is selected and set within the range of 700°C to 1250°C. Furthermore, although the case where the temperature difference between the high temperature part and the low temperature part is 10°C has been exemplified, the present invention is not limited to this, and is effective as long as it is within 100°C.

次に第15図に示す第4実施例では、前記第3の実施例
におけると同じ直径50ny++の封管21の石英アン
プルを用いるが、この石英アンプルは頂部にくびれ部2
1aが設けられ、ここに吸着材として用いられるZn5
e単結晶体14を一例の10g内装し、底部にZn5e
単結晶体52を150g、輸送体13のZn、過剰量の
Sを10.夫々内装し、第1実施例と同様に真空封止を
施した後、前記第2図に示される温度分布の電気炉内に
配置し第1実施例と同じ熱処理を施すものである。
Next, in the fourth embodiment shown in FIG. 15, a quartz ampoule with a sealed tube 21 having the same diameter of 50 ny++ as in the third embodiment is used.
1a is provided, and Zn5 is used as an adsorbent here.
10g of e single crystal 14 is placed inside, and Zn5e is placed on the bottom.
150 g of the single crystal body 52, Zn of the transporter 13, and an excess amount of S of 10. After being placed inside and vacuum-sealed in the same manner as in the first embodiment, they are placed in an electric furnace having the temperature distribution shown in FIG. 2 and subjected to the same heat treatment as in the first embodiment.

取上の如くして処理されるZn5e単結晶体52中のC
u、 AQ、 Cr等の不純物は輸送体13によって封
管11の低温部に(第1実施例)、または封管21の頂
部に内装され低温部にある吸着用のZn5e単結晶体1
4に(第2実施例)輸送され、沈積または吸着される。
C in Zn5e single crystal 52 treated as mentioned above
Impurities such as u, AQ, Cr, etc. are transported to the low temperature part of the sealed tube 11 by the transporter 13 (first embodiment), or to the Zn5e single crystal 1 for adsorption, which is housed in the top of the sealed tube 21 and is located in the low temperature part.
4 (Second Example), and is deposited or adsorbed.

取上により得られた単結晶体内のSの濃度は。The concentration of S in the single crystal obtained by extraction is:

第16図に示されるようにこの単結晶体の長平方向につ
いて極めて均一であることが認められた。
As shown in FIG. 16, this single crystal was found to be extremely uniform in the longitudinal direction.

前記処理によって生じた被処理Zn5Sejl−1?i
品体62中の不純物濃度をICP(Injected 
Coupled Plasma)法により分析し、次の
第6表に示される結果が得られた。
Zn5Sejl-1? i
The impurity concentration in the product 62 is measured by ICP (Injected
The results are shown in Table 6 below.

次に第5実施例として、雰囲気を一例のSeにするため
に、第2の封管中にSeを100mg、被処理カルコゲ
ン化亜鉛とともに封入し、高温部を950℃。
Next, as a fifth example, in order to set the atmosphere to an example of Se, 100 mg of Se was sealed together with zinc chalcogenide to be treated in a second sealed tube, and the high temperature part was heated to 950°C.

低温部を900℃に保ち、約】0日間加熱を続けた。The low temperature section was maintained at 900°C and heating was continued for approximately 0 days.

そして、冷却、取出し加工を施したのち、多結晶体の成
長状態をSeを用いないものと顕微鏡写真によって比較
して第17図および第18図に示す。すなわち、本発明
の方法により処理が施された第17図には良好な単結晶
の状態が認められ、単結晶化への進行が著しく加速され
たことを示している。これに対し、第18図には双晶が
明確に認められる。
After cooling and extraction processing, the growth state of the polycrystalline body is compared with that of a polycrystalline body not using Se using micrographs, as shown in FIGS. 17 and 18. That is, in FIG. 17, which was treated by the method of the present invention, a good single crystal state was observed, indicating that the progress toward single crystallization was significantly accelerated. On the other hand, twin crystals are clearly recognized in FIG.

なお、雰囲気をZnにした場合もほぼ同様の結果が得ら
れた。
Note that almost similar results were obtained when the atmosphere was Zn.

次に第13ないし第16の発明の実施例につき第19図
ないし第24図を参照して説明する。
Next, thirteenth to sixteenth embodiments of the invention will be described with reference to FIGS. 19 to 24.

第19図に第13の発明の実施例に用いた封管とその内
部の配置を断面図で示す。第19図に示すように、耐熱
材たとえば石英で形成された封管11内にCVD法で予
め製造された原材料12の一例の多結晶Zn5eと封管
内の雰囲気を形成する多量のZn13とを封入し、10
−″トール(Torr)程度に排気し、一端部を溶封す
る。取上の封管11を加熱炉の均熱部に配置し、この状
態で一例として約20時間経過される熱処理を施す。こ
の熱処理は第20図に示す温度分布の加熱炉で処理温度
1000℃で施す。
FIG. 19 shows a sectional view of the sealed tube used in the embodiment of the thirteenth invention and its internal arrangement. As shown in FIG. 19, polycrystalline Zn5e, which is an example of a raw material 12 previously produced by the CVD method, and a large amount of Zn13 forming an atmosphere inside the sealed tube are sealed in a sealed tube 11 made of a heat-resistant material such as quartz. 10
- Evacuate the tube to a temperature of approximately 1.5 Torr, and melt-seal one end.The sealed tube 11 taken up is placed in a soaking section of a heating furnace, and heat treatment is performed in this state for about 20 hours, for example. This heat treatment is performed at a treatment temperature of 1000° C. in a heating furnace with a temperature distribution shown in FIG.

−」二記熱処理は封管11に一例として直径20on+
、長さ200mの石英アンプルを用い、その一端部にZ
n5e12を20g、抽出体13のZnを30gを夫々
内装し上述の真空封止を施した後、第20図に示される
温度分布の電気炉内に配置し熱処理を施した。
-"The second heat treatment is performed on the sealed tube 11 with a diameter of 20 on+ as an example.
, a quartz ampoule with a length of 200 m was used, and one end of the quartz ampoule was
After 20 g of n5e12 and 30 g of Zn of extract 13 were placed inside and vacuum-sealed as described above, they were placed in an electric furnace with a temperature distribution shown in FIG. 20 and heat-treated.

引続いて第21図に示すように、石英で形成された封管
21内に取上の処理を施した原材料22と封管内の雰囲
気を形成するZn23及び沃素24とを封入し、10−
’ )−−ル(Torr)程度に排気し、この封管の頂
部を溶封する。取上の封管21は前記原材料22と輸送
体23及び24が配置された底部を加熱炉の高温部に、
頂部を加熱炉の低温部に夫々配置し、この状態で一例と
して約2週間経過させる熱処理を施す。この熱処理は前
記第2図に示す温度勾配の加熱炉で、高温部温度が一例
の850℃、低温部温度が一例の840℃で施す。上記
熱処理は封管21に一例として直径が20on、長さ5
0raの石英アンプルを用い、その底部に取上の如く処
理をした原材料のZn5e22を10g、不純物輸送体
のZn23を100■そして沃素24を50■夫々内装
し上述の真空封止を施した後、第2図に示される温度分
布の電気炉内に配置し熱処理を施した。
Subsequently, as shown in FIG. 21, the raw material 22 that has undergone the pick-up treatment and Zn 23 and iodine 24 that form the atmosphere inside the sealed tube are sealed in a sealed tube 21 made of quartz.
) - Evacuate to about Torr and seal the top of the sealed tube. The bottom of the sealed tube 21 where the raw material 22 and transport bodies 23 and 24 are placed is placed in the high temperature part of the heating furnace.
The top portions are each placed in the low temperature section of a heating furnace, and heat treatment is performed in this state for about two weeks, for example. This heat treatment is carried out in a heating furnace having the temperature gradient shown in FIG. 2, with a high temperature of 850° C. and a low temperature of 840° C., for example. The above heat treatment is applied to the sealed tube 21, for example, with a diameter of 20 on and a length of 5 mm.
Using a 0ra quartz ampule, 10 g of raw material Zn5e22 treated as described above, 100 μ of Zn23 as an impurity transporter, and 50 μ of iodine 24 were placed in the bottom of the ampoule, and the vacuum sealing was performed as described above. It was placed in an electric furnace with the temperature distribution shown in FIG. 2 and heat treated.

更に第21図に示した封管と同じ物を用い、叙−ヒの如
く処理を施した原材料32と封管内の雰囲気を形成する
5e33及び沃素34とを封入し、1o−6トール(T
orr)程度に排気し、この封管の頂部を溶封する。
Furthermore, using the same sealed tube as shown in FIG.
orr) and melt-seal the top of this sealed tube.

その後、成上の封管31は成上の封管21の如く同様な
処理条件で熱処理を施す。なお、実施例の原材料のZn
5eは10g、Seを50■、そして沃素を50■を夫
々底部に配置した。
Thereafter, the finished sealed tube 31 is heat treated under the same treatment conditions as the finished sealed tube 21. In addition, Zn of the raw material in the example
10 g of 5e, 50 μ of Se, and 50 μ of iodine were placed at the bottom.

成上の如くして処理される多結晶Zn5e32中のCu
Cu in polycrystalline Zn5e32 processed as above
.

AQ、 Cr等の不純物は抽出体13.輸送体23.2
4及び33、34によって吸着または低温部に沈積され
る。
Impurities such as AQ and Cr are extracted from the extract 13. Transporter 23.2
4, 33, and 34, and are adsorbed or deposited in the low-temperature part.

このようにして原材料とこれに前記熱処理を施した後の
夫々の不純物濃度をICP(Injected Cou
pledPlasma)法により分析し、次の第7表に
示される結果が得られた。
In this way, the impurity concentration of the raw material and each impurity after the heat treatment is determined by ICP (Injected Couple Coupling Process).
The results shown in Table 7 below were obtained.

以下余白 第  7  表 第7表に見られるように、熱処理により原材料の高純度
化が顕著に進み、特にCu、Cr等の重金属類の抽出に
大きな効果のあることが明らかになった。
As shown in Table 7 below, it was revealed that the heat treatment significantly improved the purity of the raw materials, and was particularly effective in extracting heavy metals such as Cu and Cr.

次に第2実施例について説明する。第22図に用いた封
管とその内部の配置を断面図で示す。この第22図に示
すように例えば石英で形成された封管51内の底部に、
精製された原材料52の一例の多結晶Zn5eと沃素な
どの化学輸送体53をまた、封管51の頂部のくびれ部
51aに単結晶Zn5eの種結晶54を夫々配置する。
Next, a second embodiment will be described. FIG. 22 shows a sectional view of the sealed tube used and its internal arrangement. As shown in FIG. 22, at the bottom of the sealed tube 51 made of quartz, for example,
Polycrystalline Zn5e, which is an example of the purified raw material 52, and a chemical transporter 53 such as iodine are also placed in the constriction 51a at the top of the sealed tube 51, and a seed crystal 54 of single-crystalline Zn5e is placed, respectively.

その後封管51は前記第2図に示す温度分布の加熱炉で
結晶成長を行い、同図に図示したZn5e単結晶成長体
55が得られた。なお、実施例の原材料の多結晶Zn5
eを10g、沃素を50■底部に配置し、種結M54の
単結晶Zn5eは頂部のくびれ部51aに夫々配置した
のち封管内を10−’ トール(Torr)程度に排気
して前記結晶成長を行う。
Thereafter, the sealed tube 51 was subjected to crystal growth in a heating furnace having the temperature distribution shown in FIG. 2, and a Zn5e single crystal grown body 55 shown in the figure was obtained. In addition, polycrystalline Zn5 as the raw material in the example
After placing 10 g of iodine and 50 g of iodine at the bottom, and placing the seed M54 single crystal Zn5e at the constriction 51a at the top, the inside of the sealed tube was evacuated to about 10-' Torr to stop the crystal growth. conduct.

次に第3実施例について説明する。前記第1実施例にお
けろ石英アンプルを用い、成上の如く高純度品単結晶Z
n5e62と、封管内の雰囲気を形成するとともに拡散
材としての363を封入し、10−6トール(Torr
)程度に排気しこの封管の頂部を溶封する。成上の封管
61は前記Zn5e結晶体62と拡散材63が加熱炉の
均熱部に配置され、この状態で一例として約1週間経過
される熱処理を施す。この熱処理は前記第20図に示す
温度分布の加熱炉で、処理温度を1000℃で施す。1
週間の熱処理後、採り出されたZnSSe結晶体は、そ
の色が白色を帯びていることからバンドギャップが大き
くなっていることが確認された。また、結晶内のSの分
布は第23図に示すように、はぼSは均一に分布してい
ることが明らかであった。
Next, a third embodiment will be described. In the first embodiment, a quartz ampoule was used, and a high-purity single crystal Z was used as described above.
n5e62 and 363, which forms the atmosphere inside the sealed tube and acts as a diffusion material, are sealed to form a 10-6 Torr (Torr)
) and melt-seal the top of this sealed tube. The finished sealed tube 61 is placed with the Zn5e crystal 62 and the diffusion material 63 in a soaking section of a heating furnace, and is heat-treated in this state for about one week, for example. This heat treatment is performed at a treatment temperature of 1000° C. in a heating furnace having the temperature distribution shown in FIG. 20. 1
After the heat treatment for a week, the ZnSSe crystals extracted had a white color, which confirmed that the band gap had increased. Furthermore, as shown in FIG. 23, it was clear that S was distributed uniformly within the crystal.

次に、第24図に示す第4実施例は、青色発光素子を示
す。図において71は本発明で得られた原材料を用い沃
素輸送法で得られたn型Zn5e基板結晶であり、この
上に原料としてジメチル亜鉛(DMZ)、およびジメチ
ルセレン(DMSe)を用いたMOCVD法によりn型
Zn5eの結晶層72.p型Zn5e結品層73を順次
積層形成させpn接合型発光素子を構成した。この際、
n型Zn5e結晶層72の主要なn型不純物はCQであ
り、またp型Zn5e結晶層73の主要なp型不純物は
Liである。Zn5ev:に板71の裏面にはn型電極
としてInGa電極74が形成され、p型Zn5e層7
3の表面しこはp型電極としてAuZn電極75が形成
されている。
Next, a fourth example shown in FIG. 24 shows a blue light emitting element. In the figure, 71 is an n-type Zn5e substrate crystal obtained by the iodine transport method using the raw material obtained in the present invention, and on this is a MOCVD method using dimethylzinc (DMZ) and dimethylselenium (DMSe) as raw materials. The n-type Zn5e crystal layer 72. P-type Zn5e crystalline layers 73 were sequentially laminated to form a pn junction type light emitting device. On this occasion,
The main n-type impurity of the n-type Zn5e crystal layer 72 is CQ, and the main p-type impurity of the p-type Zn5e crystal layer 73 is Li. Zn5ev: An InGa electrode 74 is formed as an n-type electrode on the back surface of the plate 71, and a p-type Zn5e layer 7
On the surface of No. 3, an AuZn electrode 75 is formed as a p-type electrode.

このようにして得られた発光素子は、良好な青色発光を
示し、優れた発光特性を示す素子が得られた。
The light-emitting device thus obtained exhibited good blue light emission and exhibited excellent light-emitting characteristics.

この発明は従来高純度化の困難であった■−■族化合物
半導体材料の精製が極めて容易に速成でき、この熱処理
を繰返し施すことにより各種不純物のゲッタリングが可
能である。また、本発明によれば、大型で高品質のZn
SSe結晶体を得ることも可能となった。
According to the present invention, it is possible to extremely easily and rapidly purify the ■-■ group compound semiconductor material, which has been difficult to achieve high purity in the past, and gettering of various impurities is possible by repeatedly applying this heat treatment. Further, according to the present invention, large-sized and high-quality Zn
It has also become possible to obtain SSe crystals.

更に、この高品質なZnSSe結晶体を原材料とし、こ
れから単結晶を作成し、これを基板結晶とすることで、
良好な青色発光特性を示す半導体発光素子が得られ、量
生性と発光特性の均一化が図られる。
Furthermore, by using this high-quality ZnSSe crystal as a raw material, creating a single crystal from it, and using this as a substrate crystal,
A semiconductor light-emitting device exhibiting good blue light-emitting characteristics can be obtained, and uniformity in quantity production and light-emitting characteristics can be achieved.

なお、前記実施例ではZn5eについて説明したが、同
様の効果がZuS、 ZnTe、 CdSe、 CdT
e等、他の■−VI族化合物半導体の材料に応用できる
ことは言うまでもない。また、この発光素子に適用され
る基板は、すでに説述したII−VI族化合物半導体単
結晶の製造方法によって製造される単結晶基板のすべて
が適用されることは勿論である。さらに、n−VI族化
合物半導体層の成長法としてもMOCVD法に限らず、
他の気相成長やMBE法或いは液相成長法を利用するこ
とが可能である。
In addition, although Zn5e was explained in the above example, similar effects can be obtained with ZuS, ZnTe, CdSe, CdT.
Needless to say, the present invention can be applied to other ■-VI group compound semiconductor materials such as e.g. Further, it goes without saying that all the single crystal substrates manufactured by the method for manufacturing a II-VI group compound semiconductor single crystal described above can be applied to the substrate applied to this light emitting element. Furthermore, the growth method for the n-VI group compound semiconductor layer is not limited to the MOCVD method.
It is possible to use other vapor phase growth, MBE methods, or liquid phase growth methods.

その他、本発明はその趣旨を逸脱しない範囲で種々変形
して実施することができる。
In addition, the present invention can be implemented with various modifications without departing from the spirit thereof.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来、高純度化が困難であったn −
VI族化合物半導体材料の精製が極めて容易に達成でき
、この熱処理を繰返し施すことにより、各種不純物のゲ
ッタリングが可能である。このようにして精製された多
結晶化合物半導体原材料を、気相成長用、固相成長用、
あるいは液相エピタキシャル用に用いて高純度の結結晶
体を形成すること、およびこれらの化合物半導体単結晶
体に対しその純度の向上をはかることが可能である。
According to the present invention, n −
Purification of Group VI compound semiconductor materials can be achieved extremely easily, and by repeatedly performing this heat treatment, gettering of various impurities is possible. The polycrystalline compound semiconductor raw material purified in this way can be used for vapor phase growth, solid phase growth,
Alternatively, it is possible to use it for liquid phase epitaxial use to form highly pure crystalline materials, and to improve the purity of these compound semiconductor single crystals.

このようにして得られた単結晶基板に発光層の半導体層
をMOCVD法等により形成し、発光効率。
A semiconductor layer of a light emitting layer is formed on the single crystal substrate thus obtained by MOCVD method or the like, and the light emitting efficiency is determined.

発光特性の優れた青色発光素子を得ることができる。A blue light emitting element with excellent light emitting characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1ないし第3の発明の実施例に用いられる封
管とその内部に内装される原材料等の配置を示す断面図
、第2図は本発明の実施例に用いられる封管の熱処理条
件を示す線図、第3図は第4および第5の発明の実施例
に用いられる封管の熱処理後の状態を示す断面図、第4
図は第6および第7の発明の実施例に用いられる封管と
その内部に内装される単結晶等の配置を示す断面図、第
5図は第6および第7の発明の実施例に用いられる封管
の熱処理後の状態を示す断面図、第6図は本発明に係る
沃素とZnをドープしたものと、沃素みのドープしたも
のとの結晶成長で得られた夫々の単結晶の光吸収を比較
した線図、第7図は本発明に係る沃素とZnをドープし
たものと、沃素のみドープしたものとの結晶成長で得ら
れた夫々の単結晶の室温フォトルミネッセンス・スペク
トルを比較した線図、第8図は本発明に係るZnドープ
量と結晶成長速度との相関を示す線図、第9図(a)。 (b)は第8の発明に係る固相拡散による単結晶Zn5
eの製造を工程順に示すいずれも断面図、第10図およ
び第11図はいずれも夫々が第8の発明に係る別の実施
例の封管を示す断面図、第12図および第13図は第9
ないし第11の発明の実施例に用いられる封管とこれに
内装されるZn5e単結晶等の配置を示す断面図、第1
4図および第15図は第9ないし第11の発明の実施例
に用いられる封管とこれに内装されるZnSSe単結晶
等の配置を示す断面図、第16図は第9ないし第11の
発明の実施例により得られる単結晶体内におけるSの濃
度を示す線図、第17図は第9ないし第11の発明の実
施例により得られた単結晶体の結晶構造を示す顕微鏡写
真、第18図は双晶を含む結晶体の結晶構造を示す顕微
鏡写真、第19図は第13ないし第16の発明の実施例
に用いられる封管とその内部に内装される原材料等の配
置を示す断面図、第20図は第13ないし第16の発明
の実施例に用いられる加熱炉の温度分布を示す線図、第
21図および第22図は第13ないし第16の発明の実
施例に用いられる封管の熱処理後の状態を示す断面図、
第23図は第13ないし第16の発明の実施例により得
られるZnSSe単結晶体内におけるSの濃度を示す線
図、第24図は第13ないし第16の発明の実施例で形
成されるpn接合型発光素子の断面図である。 11、21.31.51・・・封管 12、32.52・・・原材料 13、33.53・・・化学輸送体 14、54・・・種結晶 15・・・Zn融液 17・・・支持部材 23、24・・・化学輸送体 71−n型Zn5e基板 72・・・n型Zn5e種結晶層 73・・・P型Zn5e結晶層 74− InGa電極 75− AuZn電極 代理人 弁理士  大 胡 典 夫 第  1  図         第  2  図第 
 3  図          第  4  図’ll
a: <σ孔@   z÷=4儲百晶戎長1本@  5
  図 第  6  図 第7図 第  8  図 3z:  や≧舌晶Z、、Lsご        牟2
: j江a七冒ムヱルSε第  9  図 z2 :  多岳舌晶:ZrLse 1g: grb 
Qk第10 l71 31 ; 多t−品La5a 第11図 第12図   第13図 Sの7農曳→  びf−熱目盛) jシ 17し: 第19図 毛丁几C長 □ 第20図 23、2一つ・: イF−ξ?*嬌jI主イ幕第21図 第22図 第24図
FIG. 1 is a cross-sectional view showing a sealed tube used in the embodiments of the first to third inventions and the arrangement of raw materials etc. placed inside the tube, and FIG. 2 is a sectional view of the sealed tube used in the embodiments of the present invention. Diagram showing heat treatment conditions; FIG. 3 is a sectional view showing the state of sealed tubes used in the fourth and fifth embodiments of the invention after heat treatment;
The figure is a sectional view showing the arrangement of the sealed tube and the single crystal etc. installed inside the tube used in the embodiment of the sixth and seventh inventions, and FIG. FIG. 6 is a cross-sectional view showing the state of the sealed tube after heat treatment, and FIG. Figure 7 is a diagram comparing the absorption, and compares the room temperature photoluminescence spectra of single crystals obtained by crystal growth of the one doped with iodine and Zn according to the present invention and the one doped with only iodine. A diagram, FIG. 8 is a diagram showing the correlation between Zn doping amount and crystal growth rate according to the present invention, FIG. 9(a). (b) is a single crystal Zn5 produced by solid phase diffusion according to the eighth invention.
10 and 11 are sectional views each showing a sealed tube of another embodiment according to the eighth invention, and FIGS. 12 and 13 are sectional views showing the manufacturing process of e. 9th
A sectional view showing the arrangement of the sealed tube and the Zn5e single crystal etc. contained therein used in the embodiments of the 11th to 11th inventions, 1st
4 and 15 are cross-sectional views showing the arrangement of the sealed tube and the ZnSSe single crystal etc. contained therein used in the embodiments of the ninth to eleventh inventions, and FIG. 16 is a cross-sectional view showing the arrangement of the ZnSSe single crystal, etc. FIG. 17 is a diagram showing the concentration of S in the single crystal body obtained by the embodiment of the invention, FIG. 19 is a micrograph showing the crystal structure of a crystal containing twins; FIG. 19 is a sectional view showing the arrangement of the sealed tube and the raw materials contained therein used in the embodiments of the thirteenth to sixteenth inventions; Fig. 20 is a diagram showing the temperature distribution of the heating furnace used in the embodiments of the 13th to 16th inventions, and Figs. 21 and 22 are the sealed tubes used in the embodiments of the 13th to 16th inventions. A cross-sectional view showing the state after heat treatment,
FIG. 23 is a diagram showing the concentration of S in the ZnSSe single crystal obtained by the embodiments of the 13th to 16th inventions, and FIG. 24 is a diagram showing the pn junction formed by the embodiments of the 13th to 16th inventions. FIG. 2 is a cross-sectional view of a type light emitting device. 11, 21.31.51...Sealed tube 12, 32.52...Raw material 13, 33.53...Chemical transporter 14, 54...Seed crystal 15...Zn melt 17... - Supporting members 23, 24 - Chemical transporter 71 - N-type Zn5e substrate 72 - N-type Zn5e seed crystal layer 73 - P-type Zn5e crystal layer 74 - InGa electrode 75 - AuZn electrode agent Patent attorney Dai Hu Dianfu Figure 1 Figure 2
3 Figure 4 Figure'll
a: <σ hole @ z÷=4 100 crystals 1 piece @ 5
Figure 6 Figure 7 Figure 8 Figure 3z: Ya ≧ tongue crystal Z,, Ls go 2
: j Ea Seven Adventures Sε No. 9 Figure z2 : Tatake Tongue Crystal : ZrLse 1g : grb
Qk No. 10 l71 31 ; Multi-T product La5a Fig. 11 Fig. 12 Fig. 13 , 2 one・: iF−ξ? *嬌jI Main Act Act 21 Figure 22 Figure 24

Claims (16)

【特許請求の範囲】[Claims] (1)封管による化合物半導体の精製に、温度差を設け
た封管内の高温部にII−VI族化合物半導体を配置し、こ
の化合物半導体内の不純物を封管内の低温部に輸送させ
て前記化合物半導体の純度を向上させることを特徴とす
るII−VI族化合物半導体の精製方法。
(1) When purifying a compound semiconductor using a sealed tube, a II-VI compound semiconductor is placed in a high-temperature part of a sealed tube with a temperature difference, and impurities in this compound semiconductor are transported to a low-temperature part of the sealed tube. A method for purifying a II-VI group compound semiconductor, characterized by improving the purity of the compound semiconductor.
(2)封管内をII族元素またはVI族元素のいずれか、ま
たは前記両族元素のいずれかとハロゲン元素との混合雰
囲気にして行う請求項1に記載のII−VI族化合物半導体
の精製方法。
(2) The method for purifying a II-VI group compound semiconductor according to claim 1, wherein the inside of the sealed tube is carried out in a mixed atmosphere of either a group II element or a group VI element, or one of the above-mentioned both group elements and a halogen element.
(3)封管による化合物半導体の精製に、温度差を設け
た封管内の高温部にII−VI族化合物半導体を、低温部に
不純物吸着材を夫々配置してこの化合物半導体内の不純
物を封管内の低温部に輸送させて純度を向上させること
を特徴とするII−VI族化合物半導体単結晶の精製方法。
(3) When purifying a compound semiconductor using a sealed tube, a II-VI compound semiconductor is placed in the high-temperature part of the sealed tube with a temperature difference, and an impurity adsorbent is placed in the low-temperature part to seal impurities in the compound semiconductor. 1. A method for purifying a II-VI group compound semiconductor single crystal, the method comprising transporting it to a low-temperature section in a tube to improve its purity.
(4)封管によって化合物半導体単結晶を製造するに際
し、温度差を設けた封管内の高温部にII−VI族化合物半
導体を、低温部に不純物吸着材を夫々配置してこの化合
物半導体内の不純物を封管内の低温部に輸送させて純度
を向上させ単結晶とすることを特徴とするII−VI族化合
物半導体単結晶の製造方法。
(4) When manufacturing a compound semiconductor single crystal using a sealed tube, a group II-VI compound semiconductor is placed in the high-temperature part of the sealed tube with a temperature difference, and an impurity adsorbent is placed in the low-temperature part. 1. A method for producing a group II-VI compound semiconductor single crystal, which comprises transporting impurities to a low-temperature part within a sealed tube to improve purity and form a single crystal.
(5)封管内をII族元素またはVI族元素のいずれか、ま
たは前記両族元素のいずれかとハロゲン元素との混合雰
囲気にして行う請求項4に記載のII−VI族化合物半導体
単結晶の製造方法。
(5) The production of a II-VI group compound semiconductor single crystal according to claim 4, wherein the production is carried out in a sealed tube in a mixed atmosphere of either a group II element or a group VI element, or one of the above-mentioned both group elements and a halogen element. Method.
(6)封管による化合物半導体の製造に、温度差を設け
た封管内の高温部にII−VI族化合物半導体を、また低温
部に同種の単結晶体を夫々配置して単結晶成長を行うこ
とを特徴とするII−VI族化合物半導体単結晶の製造方法
(6) In manufacturing compound semiconductors using sealed tubes, a II-VI group compound semiconductor is placed in the high-temperature part of the sealed tube with a temperature difference, and a single crystal of the same type is placed in the low-temperature part, and single crystal growth is performed. A method for producing a II-VI group compound semiconductor single crystal, characterized in that:
(7)封管による化合物半導体の製造に、温度差を設け
た封管内の高温部にII−VI族化合物半導体の多結晶体を
、また低温部に同種の単結晶体を夫々配置し、この封管
内をII族またはVI族元素とハロゲン元素の混合雰囲気に
して同種の単結晶体単結晶成長を行うことを特徴とする
II−VI族化合物半導体単結晶の製造方法。
(7) In manufacturing a compound semiconductor using a sealed tube, a polycrystalline material of a II-VI group compound semiconductor is placed in the high-temperature part of the sealed tube with a temperature difference, and a single crystal of the same type is placed in the low-temperature part. It is characterized by growing the same type of single crystal in a sealed tube with a mixed atmosphere of group II or group VI elements and halogen elements.
A method for producing a II-VI group compound semiconductor single crystal.
(8)封管によって化合物半導体単結晶を製造するに際
し、温度差を設けた封管内の高温部にII−VI族化合物半
導体を構成するII族元素の融液にII−VI族化合物半導体
の多結晶体を配置し、所定温度に上昇させて前記多結晶
体を固相成長により単結晶化させることを特徴とするI
I−VI族化合物半導体単結晶の製造方法。
(8) When manufacturing a compound semiconductor single crystal using a sealed tube, a polycontainer of the II-VI compound semiconductor is added to the melt of the group II elements constituting the group II-VI compound semiconductor in the high-temperature part of the sealed tube with a temperature difference. I, characterized in that the polycrystalline body is made into a single crystal by solid phase growth by arranging a crystalline body and raising the temperature to a predetermined temperature.
A method for manufacturing a group I-VI compound semiconductor single crystal.
(9)II−VI族化合物半導体材料を一端から所定の温度
で溶融し、この溶融部分を順次材料の他端に移して単結
晶化をはかるII−VI族化合物半導体単結晶の製造方法に
おいて、第1の封管内で多結晶体を固化形成する工程と
、前記固化した結晶を内壁との接触面積を低減させるよ
うに前記第1の封管よりも径の大きい第2の封管内に移
して再封入し、前記II−VI族化合物半導体結晶の融解温
度よりも低い温度で熱処理を施し単結晶化する工程とを
具備するII−VI族化合物半導体単結晶の製造方法。
(9) A method for producing a group II-VI compound semiconductor single crystal, in which a group II-VI compound semiconductor material is melted at a predetermined temperature from one end, and the melted portion is sequentially transferred to the other end of the material to achieve single crystallization, solidifying and forming a polycrystal in a first sealed tube; and transferring the solidified crystal to a second sealed tube having a larger diameter than the first sealed tube so as to reduce the contact area with the inner wall. A method for producing a II-VI group compound semiconductor single crystal, comprising the steps of re-encapsulating the compound semiconductor crystal, and performing a heat treatment at a temperature lower than the melting temperature of the II-VI group compound semiconductor crystal to form a single crystal.
(10)第2の封管内にて行う熱処理に、低温部に不純
物吸着結晶体を配置して施す請求項9に記載のII−VI族
化合物半導体単結晶の製造方法。
(10) The method for producing a II-VI group compound semiconductor single crystal according to claim 9, wherein the heat treatment performed in the second sealed tube is performed with an impurity adsorbing crystal placed in the low temperature part.
(11)第2の封管内にて行う熱処理に、II族元素、V
I族元素、またはハロゲン元素を過剰に封入して施す請
求項9に記載のII−VI族化合物半導体単結晶の製造方法
(11) Group II elements, V
10. The method for producing a II-VI group compound semiconductor single crystal according to claim 9, wherein the method is performed by enclosing an excess of a group I element or a halogen element.
(12)封管による化合物半導体の製造に、温度差を設
けた封管内の高温部にII−VI族化合物半導体の単結晶体
を、また低温部に同種の単結晶体を夫々配置し、この封
管内をII族またはVI族元素とハロゲン元素の混合雰囲気
にして単結晶成長を行うことを特徴とするII−VI族化合
物半導体単結晶の製造方法。
(12) In manufacturing a compound semiconductor using a sealed tube, a single crystal of a II-VI compound semiconductor is placed in the high temperature part of the sealed tube with a temperature difference, and a single crystal of the same type is placed in the low temperature part. 1. A method for producing a group II-VI compound semiconductor single crystal, which comprises growing a single crystal in a sealed tube in a mixed atmosphere of a group II or group VI element and a halogen element.
(13)封管に温度差を設け、封管内の高温部にII−V
I族化合物半導体の多結晶体を、これを構成するII族元
素の融液中に配置し、固相成長によりII−VI族化合物半
導体単結晶基板を形成し、この単結晶基板上にこれと同
種のエピタキシャル層を積層形成し、このエピタキシャ
ル層を発光層とする半導体発光素子の製造方法。
(13) Create a temperature difference in the sealed tube, and place II-V in the high temperature part inside the sealed tube.
A polycrystal of a group I compound semiconductor is placed in a melt of a group II element constituting the polycrystal, a group II-VI compound semiconductor single crystal substrate is formed by solid phase growth, and a group II-VI compound semiconductor single crystal substrate is placed on this single crystal substrate. A method for manufacturing a semiconductor light emitting device in which epitaxial layers of the same type are stacked and this epitaxial layer is used as a light emitting layer.
(14)温度差を設けた封管内の高温部にII−VI族化合
物半導体の結晶体を、また低温部に同種の単結晶体を夫
々配置し、この封管内をII族またはVI族元素とハロゲン
元素の混合雰囲気にして単結晶成長を行いII−VI族化合
物半導体単結晶基板を形成し、この単結晶基板上にこれ
と同種のエピタキシャル層を積層形成し、このエピタキ
シャル層を発光層とする半導体発光素子の製造方法。
(14) A crystal of a group II-VI compound semiconductor is placed in the high-temperature part of a sealed tube with a temperature difference, and a single crystal of the same type is placed in the low-temperature part, and the inside of this sealed tube is filled with a group II or group VI compound semiconductor. Single crystal growth is performed in a mixed atmosphere of halogen elements to form a II-VI group compound semiconductor single crystal substrate, and an epitaxial layer of the same type as this is laminated on this single crystal substrate, and this epitaxial layer is used as a light emitting layer. A method for manufacturing a semiconductor light emitting device.
(15)発光層を有機金属気相成長法により形成するこ
とを特徴とする請求項13または14のいずれかに記載
の半導体発光素子の製造方法。
(15) The method for manufacturing a semiconductor light emitting device according to claim 13 or 14, wherein the light emitting layer is formed by metal organic vapor phase epitaxy.
(16)発光層をその構成元素の少なくとも一方の元素
を用い液相成長により形成することを特徴とする請求項
13または14のいずれかに記載の半導体発光素子の製
造方法。
(16) The method for manufacturing a semiconductor light emitting device according to claim 13 or 14, wherein the light emitting layer is formed by liquid phase growth using at least one of its constituent elements.
JP63207527A 1987-11-10 1988-08-22 Method of refinning ii-vi compound semiconductor, production of ii-vi compound semiconductor single crystal and production of semiconductor light emitting element formed by using semiconductor single crystal obtained by the same method as substrate Pending JPH01264990A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP88310558A EP0316161B1 (en) 1987-11-10 1988-11-09 Method of heat treatment of a groups II-VI compound semiconductor
DE88310558T DE3887274D1 (en) 1987-11-10 1988-11-09 Thermal treatment of a II-VI semiconductor compound.
US07/268,926 US4960721A (en) 1987-11-10 1988-11-09 Method for purifying group II-IV compound semiconductors

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP28212987 1987-11-10
JP62-282129 1987-11-10
JP62-287291 1987-11-16
JP62-325450 1987-12-24

Publications (1)

Publication Number Publication Date
JPH01264990A true JPH01264990A (en) 1989-10-23

Family

ID=17648495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63207527A Pending JPH01264990A (en) 1987-11-10 1988-08-22 Method of refinning ii-vi compound semiconductor, production of ii-vi compound semiconductor single crystal and production of semiconductor light emitting element formed by using semiconductor single crystal obtained by the same method as substrate

Country Status (1)

Country Link
JP (1) JPH01264990A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19609862A1 (en) * 1995-03-16 1996-09-19 Kobe Steel Ltd Low twin density single crystal prodn. process
KR19980018445A (en) * 1996-08-12 1998-06-05 구라우치 노리타카 Heat treatment method of YSN crystal
WO2019155674A1 (en) * 2018-02-09 2019-08-15 Jx金属株式会社 Compound semiconductor and production method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230599A (en) * 1987-03-18 1988-09-27 Seisan Gijutsu Shinko Kyokai Production of znse single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230599A (en) * 1987-03-18 1988-09-27 Seisan Gijutsu Shinko Kyokai Production of znse single crystal

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19609862A1 (en) * 1995-03-16 1996-09-19 Kobe Steel Ltd Low twin density single crystal prodn. process
US5679151A (en) * 1995-03-16 1997-10-21 Kabushiki Kaisha Kobe Seiko Sho Method for growing single crystal
DE19609862C2 (en) * 1995-03-16 2002-03-21 Kobe Steel Ltd Method and device for growing a single crystal
KR19980018445A (en) * 1996-08-12 1998-06-05 구라우치 노리타카 Heat treatment method of YSN crystal
WO2019155674A1 (en) * 2018-02-09 2019-08-15 Jx金属株式会社 Compound semiconductor and production method therefor
JPWO2019155674A1 (en) * 2018-02-09 2020-12-03 Jx金属株式会社 Compound semiconductors and their manufacturing methods
US11552174B2 (en) 2018-02-09 2023-01-10 Jx Nippon Mining & Metals Corporation Compound semiconductor and method for producing the same

Similar Documents

Publication Publication Date Title
EP0316161B1 (en) Method of heat treatment of a groups II-VI compound semiconductor
US7905958B2 (en) Group III-nitride semiconductor crystal and manufacturing method thereof, and group III-nitride semiconductor device
Isshiki et al. Wide-bandgap II-VI semiconductors: growth and properties
Casey Jr et al. Single crystal electroluminescent materials
JP2559492B2 (en) Method for manufacturing compound semiconductor light emitting device
US3249473A (en) Use of metallic halide as a carrier gas in the vapor deposition of iii-v compounds
JPH0140000B2 (en)
JPH02243592A (en) Epitaxial growth of compound semiconductor
JPH01264990A (en) Method of refinning ii-vi compound semiconductor, production of ii-vi compound semiconductor single crystal and production of semiconductor light emitting element formed by using semiconductor single crystal obtained by the same method as substrate
JP4014411B2 (en) Group III nitride crystal manufacturing method
JP2004296821A (en) ZnO SEMICONDUCTOR DEVICE AND ITS MANUFACTURING METHOD
JPH06219898A (en) Production of n-type silicon carbide single crystal
Korenstein et al. Copper outdiffusion from CdZnTe substrates and its effect on the properties of metalorganic chemical vapor deposition-grown HgCdTe
EP1304733A2 (en) Process of and apparatus for heat-treating II-IV compound semiconductors and semiconductor heat-treated by the process
JP2610319B2 (en) Method for producing group II-VI compound semiconductor crystal
JP2579336B2 (en) Method for manufacturing blue light emitting diode
JPS5827240B2 (en) Heat treatment method for zinc sulfide single crystal
JPH0682618B2 (en) &lt;II&gt;-&lt;VI&gt; Group compound semiconductor thin film manufacturing method
JP3083755B2 (en) Method for epitaxial growth of compound semiconductor
JP2712247B2 (en) (II)-Method for producing bulk single crystal of group VI compound
JP2650635B2 (en) Method for producing II-VI compound semiconductor thin film
JPH04137566A (en) Manufacture of ii-vi compound semiconductor single crystal and manufacture of semiconductor light emitting element
Woods Group II-VI Semiconductors
Capper et al. incepal rech. Methods and watering
JPH11228299A (en) Single crystal of compound semiconductor and its production