JPH01197388A - Molecular ray crystal growth device - Google Patents

Molecular ray crystal growth device

Info

Publication number
JPH01197388A
JPH01197388A JP2059388A JP2059388A JPH01197388A JP H01197388 A JPH01197388 A JP H01197388A JP 2059388 A JP2059388 A JP 2059388A JP 2059388 A JP2059388 A JP 2059388A JP H01197388 A JPH01197388 A JP H01197388A
Authority
JP
Japan
Prior art keywords
getter
crystal growth
cell
substrate
residual impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2059388A
Other languages
Japanese (ja)
Inventor
Toshio Baba
寿夫 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2059388A priority Critical patent/JPH01197388A/en
Publication of JPH01197388A publication Critical patent/JPH01197388A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To prevent the residual impurities from being mixed into a crystal growth membrane and to obtain the crystal growth membrane of high purity and high quality by trapping the residual impurities generated during the temp. rising of a base plate and during the growing of crystal, on a getter surface by an active getter material. CONSTITUTION:The inside of the device is kept in about 10<-10>Torr by ultrahigh- vacuum pump and a liquid nitrogen shroud 3, and a getter surface 6 is cooled enough. Then, raw material cells 2, 3 and getter cell 5 disposed not to confront to a base plate 1 are heated, and the residual impurities, such as H2O, CO, CO2, generated from the raw material in crucibles 2, 3 and a heater of electric furnace are gettered by the getter material 4 which is projected from the inside of a getter cell 5 and stuck to a getter surface 6 so that the concn. of the residual impurities in the device is reduced. Then, the base plate 1 is heated to grow a semiconductor membrane.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体結晶の製造分野に属するもので、高純
度、高品質の半導体結晶を得るための分子線結晶成長装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention belongs to the field of manufacturing semiconductor crystals, and relates to a molecular beam crystal growth apparatus for obtaining semiconductor crystals of high purity and quality.

(従来の技術) 半導体の結晶成長装置の一つに、10・”Torr程度
の超高真空中において、半導体の構成元素をそれぞれ蒸
発させて基板上に半導体を結晶成長させる分子線結晶成
長(Molecular Beam Epitaxy、
 MBE)装置がある。MBE装置では、結晶の成長速
度が37vsec程度と非常に低いため、原子層程度の
膜厚の制御が容易である。例えば、江崎らによりMBE
装置を用いた半導体超格子の作成がシン・ソリッド・フ
ィルムズ(Thin 5olid Films、 Vo
l、 36. pp。
(Prior Art) One type of semiconductor crystal growth apparatus is molecular beam crystal growth, in which each of the constituent elements of a semiconductor is evaporated to grow crystals of a semiconductor on a substrate in an ultra-high vacuum of about 10 Torr. Beam Epitaxy,
MBE) equipment is available. In the MBE apparatus, since the crystal growth rate is very low at about 37 vsec, it is easy to control the film thickness on the order of atomic layers. For example, MBE by Ezaki et al.
The creation of semiconductor superlattices using equipment is being developed by Thin Solid Films (Vo.
l, 36. pp.

285−298.1976)に報告されている。また、
この結晶成長装置は超高真空中で高純度材料を蒸発させ
るだけであるから、成長時の操作が容易である。
285-298.1976). Also,
Since this crystal growth apparatus only evaporates high-purity materials in an ultra-high vacuum, it is easy to operate during growth.

従来のMBE装置およびこれによる半導体の結晶成長方
法について図を用いて説明する。
A conventional MBE apparatus and a semiconductor crystal growth method using the same will be explained using figures.

第2図は従来のMBE装置の主要部の断面模式図である
。図において、1は単結晶の基板、2は該基板1上に成
長させる半導体の原料を加熱して飛ばす原料セル、3は
基板1および原料セル2を取り囲み液体窒素を充満させ
ている液体窒素シュラウドである。なお、それぞれのセ
ルはヒータやルツボ等からできているがここではルツボ
だけしか示していない。
FIG. 2 is a schematic cross-sectional view of the main parts of a conventional MBE apparatus. In the figure, 1 is a single crystal substrate, 2 is a raw material cell that heats and blows the semiconductor raw material to be grown on the substrate 1, and 3 is a liquid nitrogen shroud that surrounds the substrate 1 and the raw material cell 2 and is filled with liquid nitrogen. It is. Note that each cell is made up of a heater, a crucible, etc., but only the crucible is shown here.

また、セル前にはセルシャッタ、基板前面には主シヤツ
タ、基板裏には加熱用ヒータが備え付けてあり、これら
は全て超高真空容器に収められであるが、図には記して
いない。
Additionally, a cell shutter is installed in front of the cell, a main shutter is installed in front of the substrate, and a heater is installed behind the substrate, all of which are housed in an ultra-high vacuum container, but are not shown in the figure.

成長を始めるにあたっては、まず基板1および原料セル
2の周囲を、超高真空用ポンプ(イオンポンプ、クライ
オポンプ等)と液体窒素シュラウドにより10”Tor
r程度の真空度に保つ。そして原料の入ったルツボを加
熱し目的の蒸気圧となるように温度を調節しておく。こ
の時セルシャッタは閉じておく。次に基板1を結晶成長
の温度まで加熱し、それぞれのセルシャッタを開く。こ
れにより、原料が基板1に飛んでゆき、基板上に半導体
結晶が成長する。
To start growth, first, the area around the substrate 1 and raw material cell 2 is heated to 10” Tor using an ultra-high vacuum pump (ion pump, cryopump, etc.) and a liquid nitrogen shroud.
Maintain a degree of vacuum around r. Then, the crucible containing the raw materials is heated and the temperature is adjusted to achieve the desired vapor pressure. At this time, keep the cell shutter closed. Next, the substrate 1 is heated to a temperature for crystal growth, and each cell shutter is opened. As a result, the raw material flies to the substrate 1, and a semiconductor crystal grows on the substrate.

(発明が解決しようとする問題点) MBE成長膜中の残留不純物は、原料中から持ち込まれ
るものもあるが、真空中の残留不純物に依ることが多い
。10”Torr程度の超高真空中であっても、そこで
の大部分を占める水素以外にH2O、C01CO2やハ
イドロカーボンが存在する。特にCOは基板や原料加熱
用のヒータまたは原料、基板から発生し、イオンポンプ
や液体窒素シュラウドにおいてもトラップされにくく、
シュラウド内に多数存在し、成長膜中に取り込まれる。
(Problems to be Solved by the Invention) Some of the residual impurities in the MBE-grown film are brought in from the raw materials, but they often depend on residual impurities in vacuum. Even in an ultra-high vacuum of about 10" Torr, there are H2O, CO1CO2, and hydrocarbons in addition to hydrogen, which makes up the majority of the vacuum. In particular, CO is generated from the substrate, the heater for heating the raw material, the raw material, and the substrate. , is difficult to be trapped even in ion pumps and liquid nitrogen shrouds,
A large number of them exist in the shroud and are incorporated into the grown film.

例えばアンドープGaAsではP型の不純物となり、結
晶の質を低下させている。このように、従来のMBE成
長装置ではCOのような残留不純物の混入を防ぐことは
困難であった。
For example, in undoped GaAs, it becomes a P-type impurity and deteriorates the quality of the crystal. As described above, it is difficult to prevent residual impurities such as CO from being mixed in with the conventional MBE growth apparatus.

本発明の目的は、MBE成長において残留不純物の成長
膜への混入を防ぎ、高純度、高品質の膜を作る装置を提
供することにある。
An object of the present invention is to provide an apparatus that prevents residual impurities from being mixed into a grown film during MBE growth and produces a film of high purity and quality.

(問題点を解決するための手段) 本発明は、液体窒素シュラウドに囲まれた成長室内にお
いて、基板には向かないように配置されたゲッタセルと
、該ゲッタセル内に真空中の残留不純物の吸着または吸
収が容易な高純度ゲッタ材料と、該ゲッタ材料が飛来す
るゲッタ面とを具備することを特徴とする分子線結晶成
長装置である。
(Means for Solving the Problems) The present invention provides a getter cell arranged in a growth chamber surrounded by a liquid nitrogen shroud so as not to face the substrate, and a getter cell that absorbs or absorbs residual impurities in a vacuum within the getter cell. This is a molecular beam crystal growth apparatus characterized by comprising a high-purity getter material that is easily absorbed and a getter surface onto which the getter material flies.

(作用) 本発明の分子線結晶成長装置においては、基板の昇温時
および結晶成長時において出てくる残留不純物は、活性
なゲッタ材料によってゲッタ面上にトラップされるため
、成長膜中への取り込みが激減する。したがって、高純
度・高品質の結晶成長膜を得ることができる。
(Function) In the molecular beam crystal growth apparatus of the present invention, residual impurities that come out during heating of the substrate and during crystal growth are trapped on the getter surface by the active getter material, so that they do not enter the grown film. Uptake is drastically reduced. Therefore, a crystal grown film of high purity and high quality can be obtained.

(実施例) 以下、本発明による分子線結晶成長装置を図面を参照し
て詳細に説明する。
(Example) Hereinafter, a molecular beam crystal growth apparatus according to the present invention will be described in detail with reference to the drawings.

第1図は本発明による分子線結晶成長装置の実施例を説
明するための図で、装置主要部の断面模式第1図におい
て、従来の分子線結晶成長装置を示した第2図と同じ番
号のものは第2図と同等物で同一機能を果すものである
。第1図において4は高純度ゲッタ材料、5は該ゲッタ
材料を飛ばすためのゲッタセル、6はゲッタ材料を付着
させるためのゲッタ面として高純度のMoからなる面を
形成させである。
FIG. 1 is a diagram for explaining an embodiment of the molecular beam crystal growth apparatus according to the present invention. In FIG. The one shown in Fig. 2 is equivalent to the one shown in Fig. 2 and performs the same function. In FIG. 1, reference numeral 4 denotes a high-purity getter material, 5 a getter cell for discharging the getter material, and 6 a surface made of high-purity Mo formed as a getter surface for attaching the getter material.

基板1として半絶縁性のGaAs基板、原料としてGa
およびAs1高純度ゲッタ材料4としてAIを用いて、
本発明による分子線結晶成長装置を用いた結晶成長の手
順を詳細に説明する。
A semi-insulating GaAs substrate is used as the substrate 1, and Ga is used as the raw material.
and using AI as As1 high purity getter material 4,
The procedure for crystal growth using the molecular beam crystal growth apparatus according to the present invention will be explained in detail.

まず、超高真空用ポンプと液体窒素シュラウド3により
装置内を10”Torr程度の真空度に保つ。この時、
ゲッタ面6も液体窒素シュラウドに接し、充分冷却でき
るようにしておく。又、基板の前にある主シヤツタは閉
じておく。この状態でGa、 AsおよびAIを昇温し
、目的の温度に設定する。この時、原料中や電気炉ヒー
タからH2O1CoSC02等の残留不純物が出でくる
ので、各ルツボの前にあるセルシャッタは開けた状態に
し、ゲッタ面上に付着するA1によってゲッタされるよ
うにする。
First, the inside of the device is maintained at a vacuum level of approximately 10” Torr using an ultra-high vacuum pump and liquid nitrogen shroud 3. At this time,
The getter surface 6 is also in contact with the liquid nitrogen shroud so that it can be sufficiently cooled. Also, keep the main shutter in front of the board closed. In this state, the temperatures of Ga, As, and AI are raised and set to the desired temperature. At this time, residual impurities such as H2O1CoSC02 come out from the raw materials and the electric furnace heater, so the cell shutters in front of each crucible are left open so that they are gettered by A1 deposited on the getter surface.

装置内の残留不純物濃度が少なくなったところで、基板
ヒータにより基板1を目的の温度まで昇温する。この時
、Ga用セルシャッタを閉じ、主シヤツタを開ける。ゲ
ッタセル5は基板を向いてないのでゲッタ材料のA1が
基板に到達することはない。
When the residual impurity concentration in the device is reduced, the temperature of the substrate 1 is raised to a target temperature by the substrate heater. At this time, close the Ga cell shutter and open the main shutter. Since the getter cell 5 does not face the substrate, the getter material A1 does not reach the substrate.

これにより、基板昇温中はAsビームによりGaAs基
板が保護され、基板加熱ヒータおよび基板から出てくる
不純物はAlによりゲッタ面6上にゲッタされる。
As a result, the GaAs substrate is protected by the As beam while the substrate temperature is rising, and impurities coming out from the substrate heater and the substrate are gettered onto the getter surface 6 by Al.

GaAs基板表面の酸化膜が飛び、基板が成長温度にな
ったら、Ga用セルシャッタを開けて成長を開始する。
When the oxide film on the surface of the GaAs substrate is blown off and the substrate reaches the growth temperature, the Ga cell shutter is opened to start growth.

成長中もゲッタ材料のAIはゲッタ面6に飛んでいるた
め、成長中の残留不純物はゲッタ面6上にゲッタされ、
成長膜中への取り込みは少ない。
Even during growth, the AI of the getter material flies to the getter surface 6, so any impurities remaining during growth are gettered onto the getter surface 6.
Incorporation into the grown film is small.

本発明の分子線結晶成長装置により、GaAs成長膜中
のP型不純物濃度が従来装置に比べ4分の1(2X 1
0”am’から5 X 1013cm−3)に減少した
By using the molecular beam crystal growth apparatus of the present invention, the P-type impurity concentration in the GaAs grown film can be reduced to one quarter (2X 1
0"am' to 5 x 1013 cm-3).

以上述べたように本発明の実施例では高純度ゲッタ材料
を飛ばすセルとして電気炉タイプのものしか示さなかっ
たが、電子線加熱セルのように他の方式のセルでもよい
ことは明らかである。
As described above, in the embodiments of the present invention, only an electric furnace type cell is shown as a cell for discharging high purity getter material, but it is clear that other types of cells such as an electron beam heating cell may be used.

また、高純度ゲッタ材料としてALLか示さなかったが
、Mn、 Nd%Sc、 Sm1Yb等の活性な元素で
も良い。なお、本実施例においては、ゲッタ面としてモ
リブデンを形成させたが、他の材料例えば高純度なステ
ンレスでもよいし、またゲッタ面として新たに設ける必
要は必ずしもなく液体窒素シュラウドの表面で代用する
こともできる。
Further, although ALL was not shown as a high purity getter material, active elements such as Mn, Nd%Sc, Sm1Yb, etc. may also be used. In this example, molybdenum was formed as the getter surface, but other materials such as high-purity stainless steel may be used, and it is not necessarily necessary to provide a new getter surface, and the surface of the liquid nitrogen shroud may be used instead. You can also do it.

(発明の効果) 本発明の分子線結晶成長装置により、高純度・高品質の
半導体成長膜が得られた。
(Effects of the Invention) A semiconductor grown film of high purity and high quality was obtained using the molecular beam crystal growth apparatus of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の分子線結晶成長装置を説明するための
装置の主要部断面模式図、第2図は従来装置を説明する
ための図である。 1・・・基板 2・・・原料セル 3・・・液体窒素シュラウド 4・・・高純度ゲッタ材料 5・・・ゲッタセル 6・・・ゲッタ面 7・・・成長室
FIG. 1 is a schematic sectional view of the main parts of the molecular beam crystal growth apparatus of the present invention, and FIG. 2 is a diagram illustrating a conventional apparatus. 1... Substrate 2... Raw material cell 3... Liquid nitrogen shroud 4... High purity getter material 5... Getter cell 6... Getter surface 7... Growth chamber

Claims (1)

【特許請求の範囲】[Claims]  分子線結晶成長装置の液体窒素シュラウドに囲まれた
成長室内において、基板には向かないように配置された
ゲッタセルと、該ゲッタセル内に真空中の残留不純物の
吸着または吸収が容易な高純度ゲッタ材料と、該ゲッタ
材料が飛来するゲッタ面とを具備することを特徴とする
分子線結晶成長装置。
A getter cell is placed in a growth chamber surrounded by a liquid nitrogen shroud of a molecular beam crystal growth apparatus so as not to face the substrate, and a high-purity getter material that easily adsorbs or absorbs residual impurities in a vacuum is provided in the getter cell. and a getter surface onto which the getter material flies.
JP2059388A 1988-01-29 1988-01-29 Molecular ray crystal growth device Pending JPH01197388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2059388A JPH01197388A (en) 1988-01-29 1988-01-29 Molecular ray crystal growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2059388A JPH01197388A (en) 1988-01-29 1988-01-29 Molecular ray crystal growth device

Publications (1)

Publication Number Publication Date
JPH01197388A true JPH01197388A (en) 1989-08-09

Family

ID=12031554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2059388A Pending JPH01197388A (en) 1988-01-29 1988-01-29 Molecular ray crystal growth device

Country Status (1)

Country Link
JP (1) JPH01197388A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5863602A (en) * 1996-06-03 1999-01-26 Nec Corporation Method for capturing gaseous impurities and semiconductor device manufacturing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5863602A (en) * 1996-06-03 1999-01-26 Nec Corporation Method for capturing gaseous impurities and semiconductor device manufacturing apparatus

Similar Documents

Publication Publication Date Title
JP3098773B2 (en) Preparation and doping method of highly insulating single crystal gallium nitride thin film
US3992233A (en) Surface treatment of III-V compound crystals
US6281099B1 (en) Method for synthesizing single crystal AIN thin films of low resistivity n-type and low resistivity p-type
Tomlinson et al. The growth and doping of single crystals of CuInTe2
Kita et al. Synthesis of CuO films using mass‐separated, low‐energy O+ ion beams
JPH01197388A (en) Molecular ray crystal growth device
US4426237A (en) Volatile metal oxide suppression in molecular beam epitaxy systems
JPH01203290A (en) Method for growing crystal with molecular beam
JP3369816B2 (en) Method for manufacturing p-type semiconductor crystal
JPS61225817A (en) Apparatus for molecular beam epitaxial growth
CN215560800U (en) Molecular beam flow limiting device and molecular beam epitaxy equipment
JPS6245107A (en) Formation of semiconductor thin-film
JPH06263587A (en) Molecular beam epitaxial growth apparatus
JPS6132414A (en) Thin film forming equipment
JP3385228B2 (en) Crystal growth apparatus and crystal growth method
JP3168276B2 (en) Crystal growth equipment
JPH06191989A (en) Production of semiconductor crystal thin film
JPH05182910A (en) Molecular beam epitaxtially growing method
JP3214133B2 (en) Epitaxial growth apparatus and epitaxial growth method
JP2004193388A (en) Method and equipment for manufacturing semiconductor element
JPS6246993A (en) Apparatus for growing thin filmlike crystal
JPH0555144A (en) Molecular beam epitaxial system
JPH0350131A (en) Device for molecular-beam epitaxy
WO2019086570A1 (en) Molecular beam epitaxy system and method for reducing excess flux in a molecular beam epitaxy system
Campagna et al. Solid state polarized electron sources